PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (670226)

Clipboard (0)
None

Related Articles

1.  Niche adaptation by expansion and reprogramming of general transcription factors 
Experimental analysis of TFB family proteins in a halophilic archaeon reveals complex environment-dependent fitness contributions. Gene conversion events among these proteins can generate novel niche adaptation capabilities, a process that may have contributed to archaeal adaptation to extreme environments.
Evolution of archaeal lineages correlate with duplication events in the TFB family.Each TFB is required for adaptation to multiple environments.The relative fitness contributions of TFBs change with environmental context.Changes in the regulation of duplicated TFBs can generate new adaptation capabilities.
The evolutionary success of an organism depends on its ability to continually adapt to changes in the patterns of constant, periodic, and transient challenges within its environment. This process of ‘niche adaptation' requires reprogramming of the organism's environmental response networks by reorganizing interactions among diverse parts including environmental sensors, signal transducers, and transcriptional and post-transcriptional regulators. Gene duplications have been discovered to be one of the principal strategies in this process, especially for reprogramming of gene regulatory networks (GRNs). Whereas eukaryotes require dozens of factors for recruitment of RNA polymerase, archaea require just two general transcription factors (GTFs) that are orthologous to eukaryotic TFIIB (TFB in archaea) and TATA-binding protein (TBP) (Bell et al, 1998). Both of these GTFs have expanded extensively in nearly 50% of all archaea whose genomes have been fully sequenced. The phylogenetic analysis presented in this study reveal lineage-specific expansions of TFBs, suggesting that they might encode functionally specialized gene regulatory programs for the unique environments to which these organisms have adapted. This hypothesis is particularly appealing when we consider that the greatest expansion is observed within the group of halophilic archaea whose habitats are associated with routine and dynamic changes in a number of environmental factors including light, temperature, oxygen, salinity, and ionic composition (Rodriguez-Valera, 1993; Litchfield, 1998).
We have previously demonstrated that variations in the expanded set of TFBs (a through e) in Halobacterium salinarum NRC-1 manifests at the level of physical interactions within and across the two families, their DNA-binding specificity, their differential regulation in varying environments, and, ultimately, on the large-scale segregation of transcription of all genes into overlapping yet distinct sets of functionally related groups (Facciotti et al, 2007). We have extended findings from this earlier study with a systematic survey of the fitness consequences of perturbing the TFB network of H. salinarum NRC-1 across 17 environments. Notably, each TFB conferred fitness in two or more environmental conditions tested, and the relative fitness contributions (see Table I) of the five TFBs varied significantly by environment. From an evolutionary perspective, the relationships among these fitness landscapes reveal that two classes of TFBs (c/g- and f-type) appear to have played an important role in the evolution of halophilic archaea by overseeing regulation of core physiological capabilities in these organisms. TFBs of the other clades (b/d and a/e) seem to have emerged much more recently through gene duplications or horizontal gene transfers (HGTs) and are being utilized for adaptation to specialized environmental conditions.
We also investigated higher-order functional interactions and relationships among the duplicated TFBs by performing competition experiments and by mapping genetic interactions in different environments. This demonstrated that depending on environmental context, the TFBs have strikingly different functional hierarchies and genetic interactions with one another. This is remarkable as it makes each TFB essential albeit at different times in a dynamically changing environment.
In order to understand the process by which such gene family expansions shape architecture and functioning of a GRN, we performed integrated analysis of phylogeny, physical interactions, regulation, and fitness landscapes of the seven TFBs in H. salinarum NRC-1. This revealed that evolution of both their protein-coding sequence and their promoter has been instrumental in the encoding of environment-specific regulatory programs. Importantly, the convergent and divergent evolution of regulation and binding properties of TFBs suggested that, aside from HGT and random mutations, a third plausible (and perhaps most interesting) mechanism for acquiring a novel TFB variant is through gene conversion. To test this hypothesis, we synthesized a novel TFBx by transferring TFBa/e clade-specific residues to a TFBd backbone, transformed this variant under the control of either the TFBd or the TFBe promoter (PtfbD or PtfbE) into three different host genetic backgrounds (Δura3 (parent), ΔtfbD, and ΔtfbE), and analyzed fitness and gene expression patterns during growth at 25 and 37°C. This showed that gene conversion events spanning the coding sequence and the promoter, environmental context, and genetic background of the host are all extremely influential in the functional integration of a TFB into the GRN. Importantly, this analysis suggested that altering the regulation of an existing set of expanded TFBs might be an efficient mechanism to reprogram the GRN to rapidly generate novel niche adaptation capability. We have confirmed this experimentally by increasing fitness merely by moving tfbE to PtfbD control, and by generating a completely novel phenotype (biofilm-like appearance) by overexpression of tfbE.
Altogether this study clearly demonstrates that archaea can rapidly generate novel niche adaptation programs by simply altering regulation of duplicated TFBs. This is significant because expansions in the TFB family is widespread in archaea, a class of organisms that not only represent 20% of biomass on earth but are also known to have colonized some of the most extreme environments (DeLong and Pace, 2001). This strategy for niche adaptation is further expanded through interactions of the multiple TFBs with members of other expanded TF families such as TBPs (Facciotti et al, 2007) and sequence-specific regulators (e.g. Lrp family (Peeters and Charlier, 2010)). This is analogous to combinatorial solutions for other complex biological problems such as recognition of pathogens by Toll-like receptors (Roach et al, 2005), generation of antibody diversity by V(D)J recombination (Early et al, 1980), and recognition and processing of odors (Malnic et al, 1999).
Numerous lineage-specific expansions of the transcription factor B (TFB) family in archaea suggests an important role for expanded TFBs in encoding environment-specific gene regulatory programs. Given the characteristics of hypersaline lakes, the unusually large numbers of TFBs in halophilic archaea further suggests that they might be especially important in rapid adaptation to the challenges of a dynamically changing environment. Motivated by these observations, we have investigated the implications of TFB expansions by correlating sequence variations, regulation, and physical interactions of all seven TFBs in Halobacterium salinarum NRC-1 to their fitness landscapes, functional hierarchies, and genetic interactions across 2488 experiments covering combinatorial variations in salt, pH, temperature, and Cu stress. This systems analysis has revealed an elegant scheme in which completely novel fitness landscapes are generated by gene conversion events that introduce subtle changes to the regulation or physical interactions of duplicated TFBs. Based on these insights, we have introduced a synthetically redesigned TFB and altered the regulation of existing TFBs to illustrate how archaea can rapidly generate novel phenotypes by simply reprogramming their TFB regulatory network.
doi:10.1038/msb.2011.87
PMCID: PMC3261711  PMID: 22108796
evolution by gene family expansion; fitness; niche adaptation; reprogramming of gene regulatory network; transcription factor B
2.  Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA 
BMC Genetics  2007;8:61.
Background
Archaea are prokaryotic organisms with simplified versions of eukaryotic transcription systems. Genes coding for the general transcription factors TBP and TFB are present in multiple copies in several Archaea, including Halobacterium sp. NRC-1. Multiple TBP and TFBs have been proposed to participate in transcription of genes via recognition and recruitment of RNA polymerase to different classes of promoters.
Results
We attempted to knock out all six TBP and seven TFB genes in Halobacterium sp. NRC-1 using the ura3-based gene deletion system. Knockouts were obtained for six out of thirteen genes, tbpCDF and tfbACG, indicating that they are not essential for cell viability under standard conditions. Screening of a population of 1,000 candidate mutants showed that genes which did not yield mutants contained less that 0.1% knockouts, strongly suggesting that they are essential. The transcriptomes of two mutants, ΔtbpD and ΔtfbA, were compared to the parental strain and showed coordinate down regulation of many genes. Over 500 out of 2,677 total genes were regulated in the ΔtbpD and ΔtfbA mutants with 363 regulated in both, indicating that over 10% of genes in both strains require the action of both TbpD and TfbA for normal transcription. Culturing studies on the ΔtbpD and ΔtfbA mutant strains showed them to grow more slowly than the wild-type at an elevated temperature, 49°C, and they showed reduced viability at 56°C, suggesting TbpD and TfbA are involved in the heat shock response. Alignment of TBP and TFB protein sequences suggested the expansion of the TBP gene family, especially in Halobacterium sp. NRC-1, and TFB gene family in representatives of five different genera of haloarchaea in which genome sequences are available.
Conclusion
Six of thirteen TBP and TFB genes of Halobacterium sp. NRC-1 are non-essential under standard growth conditions. TbpD and TfbA coordinate the expression of over 10% of the genes in the NRC-1 genome. The ΔtbpD and ΔtfbA mutant strains are temperature sensitive, possibly as a result of down regulation of heat shock genes. Sequence alignments suggest the existence of several families of TBP and TFB transcription factors in Halobacterium which may function in transcription of different classes of genes.
doi:10.1186/1471-2156-8-61
PMCID: PMC2121645  PMID: 17892563
3.  Coordination of frontline defense mechanisms under severe oxidative stress 
Inference of an environmental and gene regulatory influence network (EGRINOS) by integrating transcriptional responses to H2O2 and paraquat (PQ) has revealed a multi-tiered oxidative stress (OS)-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism.ChIP-chip, microarray, and survival assays have validated important architectural aspects of this network, identified novel defense mechanisms (including two evolutionarily distant peroxidase enxymes), and showed that general transcription factors of the transcription factor B family have an important function in coordinating the OS response (OSR) despite their inability to directly sense ROS.A comparison of transcriptional responses to sub-lethal doses of H2O2 and PQ with predictions of these responses made by an EGRIN model generated earlier from responses to other environmental factors has confirmed that a significant fraction of the OSR is made up of a generalized component that is also observed in response to other stressors.Analysis of active regulons within environment and gene regulatory influence network for OS (EGRINOS) across diverse environmental conditions has identified the specialized component of oxidative stress response (OSR) that is triggered by sub-lethal OS, but not by other stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of γ rays.
Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (O2−), and hydroxyl (OH−) radicals, are normal by-products of aerobic metabolism. Evolutionarily conserved mechanisms including detoxification enzymes (peroxidase/catalase and superoxide dismutase (SOD)) and free radical scavengers manage this endogenous production of ROS. OS is a condition reached when certain environmental stresses or genetic defects cause the production of ROS to exceed the management capacity. The damage to diverse cellular components including DNA, proteins, lipids, and carbohydrates resulting from OS (Imlay, 2003; Apel and Hirt, 2004; Perrone et al, 2008) is recognized as an important player in many diseases and in the aging process (Finkel, 2005).
We have applied a systems approach to characterize the OSR of an archaeal model organism, Halobacterium salinarum NRC-1. This haloarchaeon grows aerobically at 4.3 M salt concentration in which it routinely faces cycles of desiccation and rehydration, and increased ultraviolet radiation—both of which can increase the production of ROS (Farr and Kogoma, 1991; Oliver et al, 2001). We have reconstructed the physiological adjustments associated with management of excessive OS through the analysis of global transcriptional changes elicited by step exposure to growth sub-inhibitory and sub-lethal levels of H2O2 and PQ (a redox-cycling drug that produces O2−; Hassan and Fridovich, 1979) as well as during subsequent recovery from these stresses. We have integrated all of these data into a unified model for OSR to discover conditional functional links between protective mechanisms and normal aspects of metabolism. Subsequent phenotypic analysis of gene deletion strains has verified the conditional detoxification functions of three putative peroxidase/catalase enzymes, two SODs, and the protective function of rhodopsins under increased levels of H2O2 and PQ. Similarly, we have also validated ROS scavenging by carotenoids and flotation by gas vesicles as secondary mechanisms that may minimize OS.
Given the ubiquitous nature of OS, it is not entirely surprising that most organisms have evolved similar multiple lines of defense—both passive and active. Although such mechanisms have been extensively characterized using other model organisms, our integrated systems approach has uncovered additional protective mechanisms in H. salinarum (e.g. two evolutionarily distant peroxidase/catalase enzymes) and revealed a structure and hierarchy to the OSR through conditional regulatory associations among various components of the response. We have validated some aspects of the architecture of the regulatory network for managing OS by confirming physical protein–DNA interactions of six transcription factors (TFs) with promoters of genes they were predicted to influence in EGRINOS. Furthermore, we have also shown the consequence of deleting two of these TFs on transcript levels of genes they control and survival rate under OS. It is notable that these TFs are not directly associated with sensing ROS, but, rather, they have a general function in coordinating the overall response. This insight would not have been possible without constructing EGRINOS through systems integration of diverse datasets.
Although it has been known that OS is a component of diverse environmental stress conditions, we quantitatively show for the first time that much of the transcriptional responses induced by the two treatments could indeed have been predicted using a model constructed from the analysis of transcriptional responses to changes in other environmental factors (UV and γ-radiation, light, oxygen, and six metals). However, using specific examples we also reveal the specific components of the OSR that are triggered only under severe OS. Notably, this model of OSR gives a unified perspective of the interconnections among all of these generalized and OS-specific regulatory mechanisms.
Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations—this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of γ rays.
doi:10.1038/msb.2010.50
PMCID: PMC2925529  PMID: 20664639
gene regulatory network; microbiology; oxidative stress
4.  Dissection of the regulatory mechanism of a heat-shock responsive promoter in Haloarchaea: a new paradigm for general transcription factor directed archaeal gene regulation 
Nucleic Acids Research  2008;36(9):3031-3042.
Multiple general transcription factors (GTFs), TBP and TFB, are present in many haloarchaea, and are deemed to accomplish global gene regulation. However, details and the role of GTF-directed transcriptional regulation in stress response are still not clear. Here, we report a comprehensive investigation of the regulatory mechanism of a heat-induced gene (hsp5) from Halobacterium salinarum. We demonstrated by mutation analysis that the sequences 5′ and 3′ to the core elements (TATA box and BRE) of the hsp5 promoter (Phsp5) did not significantly affect the basal and heat-induced gene expression, as long as the transcription initiation site was not altered. Moreover, the BRE and TATA box of Phsp5 were sufficient to render a nonheat-responsive promoter heat-inducible, in both Haloferax volcanii and Halobacterium sp. NRC-1. DNA–protein interactions revealed that two heat-inducible GTFs, TFB2 from H. volcanii and TFBb from Halobacterium sp. NRC-1, could specifically bind to Phsp5 likely in a temperature-dependent manner. Taken together, the heat-responsiveness of Phsp5 was mainly ascribed to the core promoter elements that were efficiently recognized by specific heat-induced GTFs at elevated temperature, thus providing a new paradigm for GTF-directed gene regulation in the domain of Archaea.
doi:10.1093/nar/gkn152
PMCID: PMC2396416  PMID: 18390887
5.  The RosR transcription factor is required for gene expression dynamics in response to extreme oxidative stress in a hypersaline-adapted archaeon 
BMC Genomics  2012;13:351.
Background
Previous work has shown that the hypersaline-adapted archaeon, Halobacterium salinarum NRC-1, is highly resistant to oxidative stress caused by exposure to hydrogen peroxide, UV, and gamma radiation. Dynamic alteration of the gene regulatory network (GRN) has been implicated in such resistance. However, the molecular functions of transcription regulatory proteins involved in this response remain unknown.
Results
Here we have reanalyzed several existing GRN and systems biology datasets for H. salinarum to identify and characterize a novel winged helix-turn-helix transcription factor, VNG0258H, as a regulator required for reactive oxygen species resistance in this organism. This protein appears to be unique to the haloarchaea at the primary sequence level. High throughput quantitative growth assays in a deletion mutant strain implicate VNG0258H in extreme oxidative stress resistance. According to time course gene expression analyses, this transcription factor is required for the appropriate dynamic response of nearly 300 genes to reactive oxygen species damage from paraquat and hydrogen peroxide. These genes are predicted to function in repair of oxidative damage to proteins and DNA. In vivo DNA binding assays demonstrate that VNG0258H binds DNA to mediate gene regulation.
Conclusions
Together these results suggest that VNG0258H is a novel archaeal transcription factor that regulates gene expression to enable adaptation to the extremely oxidative, hypersaline niche of H. salinarum. We have therefore renamed VNG0258H as RosR, for reactive oxygen species regulator.
doi:10.1186/1471-2164-13-351
PMCID: PMC3443676  PMID: 22846541
Halobacterium salinarum; Oxidative stress; Gene regulation; Transcription factor; Archaea
6.  MutS and MutL Are Dispensable for Maintenance of the Genomic Mutation Rate in the Halophilic Archaeon Halobacterium salinarum NRC-1 
PLoS ONE  2010;5(2):e9045.
Background
The genome of the halophilic archaeon Halobacterium salinarum NRC-1 encodes for homologs of MutS and MutL, which are key proteins of a DNA mismatch repair pathway conserved in Bacteria and Eukarya. Mismatch repair is essential for retaining the fidelity of genetic information and defects in this pathway result in the deleterious accumulation of mutations and in hereditary diseases in humans.
Methodology/Principal Findings
We calculated the spontaneous genomic mutation rate of H. salinarum NRC-1 using fluctuation tests targeting genes of the uracil monophosphate biosynthesis pathway. We found that H. salinarum NRC-1 has a low incidence of mutation suggesting the presence of active mechanisms to control spontaneous mutations during replication. The spectrum of mutational changes found in H. salinarum NRC-1, and in other archaea, appears to be unique to this domain of life and might be a consequence of their adaption to extreme environmental conditions. In-frame targeted gene deletions of H. salinarum NRC-1 mismatch repair genes and phenotypic characterization of the mutants demonstrated that the mutS and mutL genes are not required for maintenance of the observed mutation rate.
Conclusions/Significance
We established that H. salinarum NRC-1 mutS and mutL genes are redundant to an alternative system that limits spontaneous mutation in this organism. This finding leads to the puzzling question of what mechanism is responsible for maintenance of the low genomic mutation rates observed in the Archaea, which for the most part do not have MutS and MutL homologs.
doi:10.1371/journal.pone.0009045
PMCID: PMC2816208  PMID: 20140215
7.  Transcription Start Site Associated RNAs (TSSaRNAs) Are Ubiquitous in All Domains of Life 
PLoS ONE  2014;9(9):e107680.
A plethora of non-coding RNAs has been discovered using high-resolution transcriptomics tools, indicating that transcriptional and post-transcriptional regulation is much more complex than previously appreciated. Small RNAs associated with transcription start sites of annotated coding regions (TSSaRNAs) are pervasive in both eukaryotes and bacteria. Here, we provide evidence for existence of TSSaRNAs in several archaeal transcriptomes including: Halobacterium salinarum, Pyrococcus furiosus, Methanococcus maripaludis, and Sulfolobus solfataricus. We validated TSSaRNAs from the model archaeon Halobacterium salinarum NRC-1 by deep sequencing two independent small-RNA enriched (RNA-seq) and a primary-transcript enriched (dRNA-seq) strand-specific libraries. We identified 652 transcripts, of which 179 were shown to be primary transcripts (∼7% of the annotated genome). Distinct growth-associated expression patterns between TSSaRNAs and their cognate genes were observed, indicating a possible role in environmental responses that may result from RNA polymerase with varying pausing rhythms. This work shows that TSSaRNAs are ubiquitous across all domains of life.
doi:10.1371/journal.pone.0107680
PMCID: PMC4169567  PMID: 25238539
8.  A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability 
During evolution, enzyme-coding genes are acquired and/or replaced through lateral gene transfer and compiled into metabolic pathways. Gene regulatory networks evolve to fine tune biochemical fluxes through such metabolic pathways, enabling organisms to acclimate to nutrient fluctuations in a competitive environment. Here, we demonstrate that a single TrmB family transcription factor in Halobacterium salinarum NRC-1 globally coordinates functionally linked enzymes of diverse phylogeny in response to changes in carbon source availability. Specifically, during nutritional limitation, TrmB binds a cis-regulatory element to activate or repress 113 promoters of genes encoding enzymes in diverse metabolic pathways. By this mechanism, TrmB coordinates the expression of glycolysis, TCA cycle, and amino-acid biosynthesis pathways with the biosynthesis of their cognate cofactors (e.g. purine and thiamine). Notably, the TrmB-regulated metabolic network includes enzyme-coding genes that are uniquely archaeal as well as those that are conserved across all three domains of life. Simultaneous analysis of metabolic and gene regulatory network architectures suggests an ongoing process of co-evolution in which TrmB integrates the expression of metabolic enzyme-coding genes of diverse origins.
doi:10.1038/msb.2009.40
PMCID: PMC2710871  PMID: 19536205
archaea; central metabolism; ChIP-chip; transcription regulation; TrmB
9.  Evolution of context dependent regulation by expansion of feast/famine regulatory proteins 
BMC Systems Biology  2014;8(1):122.
Background
Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment.
Results
We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively.
Conclusions
This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.
Electronic supplementary material
The online version of this article (doi:10.1186/s12918-014-0122-2) contains supplementary material, which is available to authorized users.
doi:10.1186/s12918-014-0122-2
PMCID: PMC4236453  PMID: 25394904
Transcription factor; Expansion; Systems biology
10.  Metallochaperones Regulate Intracellular Copper Levels 
PLoS Computational Biology  2013;9(1):e1002880.
Copper (Cu) is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.
Author Summary
Copper (Cu) toxicity is a problem of medical, agricultural, and environmental significance. Cu toxicity severely inhibits growth of plant roots significantly affecting their morphology; Cu overload also accounts for some of the most common metal-metabolism abnormalities and neuropsychiatric problems including Wilson's and Menkes diseases. There is a large body of literature on how Cu enters and exits the cell; the kinetic and structural details of Cu translocation between trafficking, sensing, metabolic, and pumping proteins; and phenotypes associated with defects in metalloregulatory and efflux functions. Although the role of metallochaperones in Cu-cytotoxicity has been poorly studied, it has been observed that in animals deletion of metallochaperones results in elevated intracellular Cu levels along with overexpression of the P1-type ATPase efflux pump, ultimately causing malformation with high mortality. These observations are mechanistically explained by a predictive model of the Cu circuit in Halobacterium salinarum, which serves as an excellent model system for Cu trafficking and regulation in organisms with multiple chaperones. Constructed through iterative modeling and experimentation, this model accurately recapitulates known dynamical properties of the Cu circuit and predicts that intracellular Cu-buffering emerges as a consequence of the interplay of paralogous metallochaperones that traffic and allocate Cu to distinct targets.
doi:10.1371/journal.pcbi.1002880
PMCID: PMC3551603  PMID: 23349626
11.  Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea 
BMC Genomics  2007;8:415.
Background
Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in Saccharomyces cerevisiae, Arabidopsis thaliana, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available.
Results
A global analysis of translational control was performed with two haloarchaeal model species, Halobacterium salinarum and Haloferax volcanii. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared.
More than 20% of H. salinarum transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in H. salinarum, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase.
In H. volcanii, 12% of all genes are translated with non-average efficiencies. The overlap with H. salinarum is negligible. In contrast to H. salinarum, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase.
Conclusion
For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns were discovered. However, neither the fractions nor the identity of regulated genes are conserved between H. salinarum and H. volcanii, indicating that prokaryotes as well as eukaryotes use differential translational control for the regulation of gene expression, but that the identity of regulated genes is not conserved.
For 70 H. salinarum genes potentiation of regulation was observed, but for the majority of regulated genes either transcriptional or translational regulation is employed.
doi:10.1186/1471-2164-8-415
PMCID: PMC3225822  PMID: 17997854
12.  Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: a comparative proteomic approach to study heat shock response 
Proteome Science  2006;4:6.
Background
Halobacterium sp. NRC-1 is an extremely halophilic archaeon and has adapted to optimal growth under conditions of extremely high salinity. Its proteome is highly acidic with a median pI of 4.9, a unique characteristic which helps the organism to adapt high saline environment. In the natural growth environment, Halobacterium NRC-1 encounters a number of stressful conditions including high temperature and intense solar radiation, oxidative and cold stress. Heat shock proteins and chaperones play indispensable roles in an organism's survival under many stress conditions. The aim of this study was to develop an improved method of 2-D gel electrophoresis with enhanced resolution of the acidic proteome, and to identify proteins with diverse cellular functions using in-gel digestion and LC-MS/MS and MALDI-TOF approach.
Results
A modified 2-D gel electrophoretic procedure, employing IPG strips in the range of pH 3–6, enabled improved separation of acidic proteins relative to previous techniques. Combining experimental data from 2-D gel electrophoresis with available genomic information, allowed the identification of at least 30 cellular proteins involved in many cellular functions: stress response and protein folding (CctB, PpiA, DpsA, and MsrA), DNA replication and repair (DNA polymerase A α subunit, Orc4/CDC6, and UvrC), transcriptional regulation (Trh5 and ElfA), translation (ribosomal proteins Rps27ae and Rphs6 of the 30 S ribosomal subunit; Rpl31eand Rpl18e of the 50 S ribosomal subunit), transport (YufN), chemotaxis (CheC2), and housekeeping (ThiC, ThiD, FumC, ImD2, GapB, TpiA, and PurE). In addition, four gene products with undetermined function were also identified: Vng1807H, Vng0683C, Vng1300H, and Vng6254. To study the heat shock response of Halobacterium NRC-1, growth conditions for heat shock were determined and the proteomic profiles under normal (42°C), and heat shock (49°C) conditions, were compared. Using a differential proteomic approach in combination with available genomic information, bioinformatic analysis revealed five putative heat shock proteins that were upregulated in cells subjected to heat stress at 49°C, namely DnaJ, GrpE, sHsp-1, Hsp-5 and sHsp-2.
Conclusion
The modified 2-D gel electrophoresis markedly enhanced the resolution of the extremely acidic proteome of Halobacterium NRC-1. Constitutive expression of stress proteins and chaperones help the organism to adapt and survive under extreme salinity and other stress conditions. The upregulated expression pattern of putative chaperones DnaJ, GrpE, sHsp-1, Hsp-5 and sHsp-2 under elevated temperature clearly suggests that Halobacterium NRC-1 has a sophisticated defense mechanism to survive in extreme environments.
doi:10.1186/1477-5956-4-6
PMCID: PMC1475562  PMID: 16623945
13.  Global Analysis of mRNA Decay in Halobacterium salinarum NRC-1 at Single-Gene Resolution Using DNA Microarrays▿ †  
Journal of Bacteriology  2007;189(19):6936-6944.
RNA degradation is an important factor in the regulation of gene expression. It allows organisms to quickly respond to changing environmental conditions by adapting the expression of individual genes. The stability of individual mRNAs within an organism varies considerably, contributing to differential amounts of proteins expressed. In this study we used DNA microarrays to analyze mRNA degradation in exponentially growing cultures of the extremely halophilic euryarchaeon Halobacterium salinarum NRC-1 on a global level. We determined mRNA half-lives for 1,717 open reading frames, 620 of which are part of known or predicted operons. Under the tested conditions transcript stabilities ranged from 5 min to more than 18 min, with 79% of the evaluated mRNAs showing half-lives between 8 and 12 min. The overall mean half-life was 10 min, which is considerably longer than the ones found in the other prokaryotes investigated thus far. As previously observed in Escherichia coli and Saccharomyces cerevisiae, we could not detect a significant correlation between transcript length and transcript stability, but there was a relationship between gene function and transcript stability. Genes that are known or predicted to be transcribed in operons exhibited similar mRNA half-lives. These results provide initial insights into mRNA turnover in a euryarchaeon. Moreover, our model organism, H. salinarum NRC-1, is one of just two archaea sequenced to date that are missing the core subunits of the archaeal exosome. This complex orthologous to the RNA degrading exosome of eukarya is found in all other archaeal genomes sequenced thus far.
doi:10.1128/JB.00559-07
PMCID: PMC2045193  PMID: 17644597
14.  A workflow for genome-wide mapping of archaeal transcription factors with ChIP-seq 
Nucleic Acids Research  2012;40(10):e74.
Deciphering the structure of gene regulatory networks across the tree of life remains one of the major challenges in postgenomic biology. We present a novel ChIP-seq workflow for the archaea using the model organism Halobacterium salinarum sp. NRC-1 and demonstrate its application for mapping the genome-wide binding sites of natively expressed transcription factors. This end-to-end pipeline is the first protocol for ChIP-seq in archaea, with methods and tools for each stage from gene tagging to data analysis and biological discovery. Genome-wide binding sites for transcription factors with many binding sites (TfbD) are identified with sensitivity, while retaining specificity in the identification the smaller regulons (bacteriorhodopsin-activator protein). Chromosomal tagging of target proteins with a compact epitope facilitates a standardized and cost-effective workflow that is compatible with high-throughput immunoprecipitation of natively expressed transcription factors. The Pique package, an open-source bioinformatics method, is presented for identification of binding events. Relative to ChIP-Chip and qPCR, this workflow offers a robust catalog of protein–DNA binding events with improved spatial resolution and significantly decreased cost. While this study focuses on the application of ChIP-seq in H. salinarum sp. NRC-1, our workflow can also be adapted for use in other archaea and bacteria with basic genetic tools.
doi:10.1093/nar/gks063
PMCID: PMC3378898  PMID: 22323522
15.  Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature 
Saline Systems  2007;3:6.
Background
The model halophile Halobacterium sp. NRC-1 was among the first Archaea to be completely sequenced and many post-genomic tools, including whole genome DNA microarrays are now being applied to its analysis. This extremophile displays tolerance to multiple stresses, including high salinity, extreme (non-mesophilic) temperatures, lack of oxygen, and ultraviolet and ionizing radiation.
Results
In order to study the response of Halobacterium sp. NRC-1 to two common stressors, salinity and temperature, we used whole genome DNA microarrays to assay for changes in gene expression under differential growth conditions. Cultures grown aerobically in rich medium at 42°C were compared to cultures grown at elevated or reduced temperature and high or low salinity. The results obtained were analyzed using a custom database and microarray analysis tools. Growth under salt stress conditions resulted in the modulation of genes coding for many ion transporters, including potassium, phosphate, and iron transporters, as well as some peptide transporters and stress proteins. Growth at cold temperature altered the expression of genes involved in lipid metabolism, buoyant gas vesicles, and cold shock proteins. Heat shock showed induction of several known chaperone genes. The results showed that Halobacterium sp. NRC-1 cells are highly responsive to environmental changes at the level of gene expression.
Conclusion
Transcriptional profiling showed that Halobacterium sp. NRC-1 is highly responsive to its environment and provided insights into some of the specific responses at the level of gene expression. Responses to changes in salt conditions appear to be designed to minimize the loss of essential ionic species and abate possible toxic effects of others, while exposure to temperature extremes elicit responses to promote protein folding and limit factors responsible for growth inhibition. This work lays the foundation for further bioinformatic and genetic studies which will lead to a more comprehensive understanding of the biology of a model halophilic Archaeon.
doi:10.1186/1746-1448-3-6
PMCID: PMC1971269  PMID: 17651475
16.  An improved genetic system for bioengineering buoyant gas vesicle nanoparticles from Haloarchaea 
BMC Biotechnology  2013;13:112.
Background
Gas vesicles are hollow, buoyant organelles bounded by a thin and extremely stable protein membrane. They are coded by a cluster of gvp genes in the halophilic archaeon, Halobacterium sp. NRC-1. Using an expression vector containing the entire gvp gene cluster, gas vesicle nanoparticles (GVNPs) have been successfully bioengineered for antigen display by constructing gene fusions between the gvpC gene and coding sequences from bacterial and viral pathogens.
Results
To improve and streamline the genetic system for bioengineering of GVNPs, we first constructed a strain of Halobacterium sp. NRC-1 deleted solely for the gvpC gene. The deleted strain contained smaller, more spindle-shaped nanoparticles observable by transmission electron microscopy, confirming a shape-determining role for GvpC in gas vesicle biogenesis. Next, we constructed expression plasmids containing N-terminal coding portions or the complete gvpC gene. After introducing the expression plasmids into the Halobacterium sp. NRC-1 ΔgvpC strain, GvpC protein and variants were localized to the GVNPs by Western blotting analysis and their effects on increasing the size and shape of nanoparticles established by electron microscopy. Finally, a synthetic gene coding for Gaussia princeps luciferase was fused to the gvpC gene fragments on expression plasmids, resulting in an enzymatically active GvpC-luciferase fusion protein bound to the buoyant nanoparticles from Halobacterium.
Conclusion
GvpC protein and its N-terminal fragments expressed from plasmid constructs complemented a Halobacterium sp. NRC-1 ΔgvpC strain and bound to buoyant GVNPs. Fusion of the luciferase reporter gene from Gaussia princeps to the gvpC gene derivatives in expression plasmids produced GVNPs with enzymatically active luciferase bound. These results establish a significantly improved genetic system for displaying foreign proteins on Halobacterium gas vesicles and extend the bioengineering potential of these novel nanoparticles to catalytically active enzymes.
doi:10.1186/1472-6750-13-112
PMCID: PMC3878110  PMID: 24359319
Vaccine; Halophiles; Archaea; Luciferase
17.  Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1 
Genome Biology  2004;5(8):R52.
Simultaneous analysis of the association network, coordinated mRNA level changes in microarray experiments and genome-wide structure prediction of the three-dimensional structure of 1,185 proteins and protein domains provided insights into the roles of several Halobacterium NRC-1 proteins of previously unknown function.
Background
Large fractions of all fully sequenced genomes code for proteins of unknown function. Annotating these proteins of unknown function remains a critical bottleneck for systems biology and is crucial to understanding the biological relevance of genome-wide changes in mRNA and protein expression, protein-protein and protein-DNA interactions. The work reported here demonstrates that de novo structure prediction is now a viable option for providing general function information for many proteins of unknown function.
Results
We have used Rosetta de novo structure prediction to predict three-dimensional structures for 1,185 proteins and protein domains (<150 residues in length) found in Halobacterium NRC-1, a widely studied halophilic archaeon. Predicted structures were searched against the Protein Data Bank to identify fold similarities and extrapolate putative functions. They were analyzed in the context of a predicted association network composed of several sources of functional associations such as: predicted protein interactions, predicted operons, phylogenetic profile similarity and domain fusion. To illustrate this approach, we highlight three cases where our combined procedure has provided novel insights into our understanding of chemotaxis, possible prophage remnants in Halobacterium NRC-1 and archaeal transcriptional regulators.
Conclusions
Simultaneous analysis of the association network, coordinated mRNA level changes in microarray experiments and genome-wide structure prediction has allowed us to glean significant biological insights into the roles of several Halobacterium NRC-1 proteins of previously unknown function, and significantly reduce the number of proteins encoded in the genome of this haloarchaeon for which no annotation is available.
doi:10.1186/gb-2004-5-8-r52
PMCID: PMC507877  PMID: 15287974
18.  Identification of a Lycopene β-Cyclase Required for Bacteriorhodopsin Biogenesis in the Archaeon Halobacterium salinarum 
Journal of Bacteriology  2002;184(11):2889-2897.
Biogenesis of the light-driven proton pump bacteriorhodopsin in the archaeon Halobacterium salinarum requires coordinate synthesis of the bacterioopsin apoprotein and carotenoid precursors of retinal, which serves as a covalently bound cofactor. As a step towards elucidating the mechanism and regulation of carotenoid metabolism during bacteriorhodopsin biogenesis, we have identified an H. salinarum gene required for conversion of lycopene to β-carotene, a retinal precursor. The gene, designated crtY, is predicted to encode an integral membrane protein homologous to lycopene β-cyclases identified in bacteria and fungi. To test crtY function, we constructed H. salinarum strains with in-frame deletions in the gene. In the deletion strains, bacteriorhodopsin, retinal, and β-carotene were undetectable, whereas lycopene accumulated to high levels (≈1.3 nmol/mg of total cell protein). Heterologous expression of H. salinarum crtY in a lycopene-producing Escherichia coli strain resulted in β-carotene production. These results indicate that H. salinarum crtY encodes a functional lycopene β-cyclase required for bacteriorhodopsin biogenesis. Comparative sequence analysis yields a topological model of the protein and provides a plausible evolutionary connection between heterodimeric lycopene cyclases in bacteria and bifunctional lycopene cyclase-phytoene synthases in fungi.
doi:10.1128/JB.184.11.2889-2897.2002
PMCID: PMC135044  PMID: 12003928
19.  Large scale physiological readjustment during growth enables rapid, comprehensive and inexpensive systems analysis 
BMC Systems Biology  2010;4:64.
Background
Rapidly characterizing the operational interrelationships among all genes in a given organism is a critical bottleneck to significantly advancing our understanding of thousands of newly sequenced microbial and eukaryotic species. While evolving technologies for global profiling of transcripts, proteins, and metabolites are making it possible to comprehensively survey cellular physiology in newly sequenced organisms, these experimental techniques have not kept pace with sequencing efforts. Compounding these technological challenges is the fact that individual experiments typically only stimulate relatively small-scale cellular responses, thus requiring numerous expensive experiments to survey the operational relationships among nearly all genetic elements. Therefore, a relatively quick and inexpensive strategy for observing changes in large fractions of the genetic elements is highly desirable.
Results
We have discovered in the model organism Halobacterium salinarum NRC-1 that batch culturing in complex medium stimulates meaningful changes in the expression of approximately two thirds of all genes. While the majority of these changes occur during transition from rapid exponential growth to the stationary phase, several transient physiological states were detected beyond what has been previously observed. In sum, integrated analysis of transcript and metabolite changes has helped uncover growth phase-associated physiologies, operational interrelationships among two thirds of all genes, specialized functions for gene family members, waves of transcription factor activities, and growth phase associated cell morphology control.
Conclusions
Simple laboratory culturing in complex medium can be enormously informative regarding the activities of and interrelationships among a large fraction of all genes in an organism. This also yields important baseline physiological context for designing specific perturbation experiments at different phases of growth. The integration of such growth and perturbation studies with measurements of associated environmental factor changes is a practical and economical route for the elucidation of comprehensive systems-level models of biological systems.
doi:10.1186/1752-0509-4-64
PMCID: PMC2880973  PMID: 20470417
20.  Prevalence of transcription promoters within archaeal operons and coding sequences 
Despite the knowledge of complex prokaryotic-transcription mechanisms, generalized rules, such as the simplified organization of genes into operons with well-defined promoters and terminators, have had a significant role in systems analysis of regulatory logic in both bacteria and archaea. Here, we have investigated the prevalence of alternate regulatory mechanisms through genome-wide characterization of transcript structures of ∼64% of all genes, including putative non-coding RNAs in Halobacterium salinarum NRC-1. Our integrative analysis of transcriptome dynamics and protein–DNA interaction data sets showed widespread environment-dependent modulation of operon architectures, transcription initiation and termination inside coding sequences, and extensive overlap in 3′ ends of transcripts for many convergently transcribed genes. A significant fraction of these alternate transcriptional events correlate to binding locations of 11 transcription factors and regulators (TFs) inside operons and annotated genes—events usually considered spurious or non-functional. Using experimental validation, we illustrate the prevalence of overlapping genomic signals in archaeal transcription, casting doubt on the general perception of rigid boundaries between coding sequences and regulatory elements.
doi:10.1038/msb.2009.42
PMCID: PMC2710873  PMID: 19536208
archaea; ChIP–chip; non-coding RNA; tiling array; transcription
21.  Low-pass sequencing for microbial comparative genomics 
BMC Genomics  2004;5:3.
Background
We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1) the metabolically versatile Haloarcula marismortui; (2) the non-pigmented Natrialba asiatica; (3) the psychrophile Halorubrum lacusprofundi and (4) the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe.
Results
As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI) for their predicted proteins. Multiple insertion sequence (IS) elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP) and transcription factor IIB (TFB) homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi.
Conclusion
Despite the diverse habitats of these species, all five halophiles share (1) high GC content and (2) low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the IS-element rich genome of H. sp. NRC-1. Identification of multiple TBP and TFB homologs in these four halophiles are consistent with the hypothesis that different types of complex transcriptional regulation may occur through multiple TBP-TFB combinations in response to rapidly changing environmental conditions. Low-pass shotgun sequence analyses of genomes permit extensive and diverse analyses, and should be generally useful for comparative microbial genomics.
doi:10.1186/1471-2164-5-3
PMCID: PMC331400  PMID: 14718067
22.  An integrated systems approach for understanding cellular responses to gamma radiation 
Cellular response to stress entails complex mRNA and protein abundance changes, which translate into physiological adjustments to maintain homeostasis as well as to repair and minimize damage to cellular components. We have characterized the response of the halophilic archaeon Halobacterium salinarum NRC-1 to 60Co ionizing gamma radiation in an effort to understand the correlation between genetic information processing and physiological change. The physiological response model we have constructed is based on integrated analysis of temporal changes in global mRNA and protein abundance along with protein–DNA interactions and evolutionarily conserved functional associations. This systems view reveals cooperation among several cellular processes including DNA repair, increased protein turnover, apparent shifts in metabolism to favor nucleotide biosynthesis and an overall effort to repair oxidative damage. Further, we demonstrate the importance of time dimension while correlating mRNA and protein levels and suggest that steady-state comparisons may be misleading while assessing dynamics of genetic information processing across transcription and translation.
doi:10.1038/msb4100091
PMCID: PMC1681521  PMID: 16969339
haloarchaea; iTRAQ; microarray; oxidative stress; proteomics
23.  Model Organisms Retain an “Ecological Memory” of Complex Ecologically Relevant Environmental Variation 
Although tractable model organisms are essential to characterize the molecular mechanisms of evolution and adaptation, the ecological relevance of their behavior is not always clear because certain traits are easily lost during long-term laboratory culturing. Here, we demonstrate that despite their long tenure in the laboratory, model organisms retain “ecological memory” of complex environmental changes. We have discovered that Halobacterium salinarum NRC-1, a halophilic archaeon that dominates microbial communities in a dynamically changing hypersaline environment, simultaneously optimizes fitness to total salinity, NaCl concentration, and the [K]/[Mg] ratio. Despite being maintained under controlled conditions over the last 50 years, peaks in the three-dimensional fitness landscape occur in salinity and ionic compositions that are not replicated in laboratory culturing but are routinely observed in the natural hypersaline environment of this organism. Intriguingly, adaptation to variations in ion composition was associated with differential regulation of anaerobic metabolism genes, suggesting an intertwined relationship between responses to oxygen and salinity. Our results suggest that the ecological memory of complex environmental variations is imprinted in the networks for coordinating multiple cellular processes. These coordination networks are also essential for dealing with changes in other physicochemically linked factors present during routine laboratory culturing and, hence, retained in model organisms.
doi:10.1128/AEM.03280-13
PMCID: PMC3957629  PMID: 24413600
24.  Eight of Fourteen gvp Genes Are Sufficient for Formation of Gas Vesicles in Halophilic Archaea 
Journal of Bacteriology  2000;182(15):4328-4336.
The minimal number of genes required for the formation of gas vesicles in halophilic archaea has been determined. Single genes of the 14 gvp genes present in the p-vac region on plasmid pHH1 of Halobacterium salinarum (p-gvpACNO and p-gvpDEFGHIJKLM) were deleted, and the remaining genes were tested for the formation of gas vesicles in Haloferax volcanii transformants. The deletion of six gvp genes (p-gvpCN, p-gvpDE, and p-gvpHI) still enabled the production of gas vesicles in H. volcanii. The gas vesicles formed in some of these gvp gene deletion transformants were altered in shape (ΔI, ΔC) or strength (ΔH) but still functioned as flotation devices. A minimal p-vac region (minvac) containing the eight remaining genes (gvpFGJKLM-gvpAO) was constructed and tested for gas vesicle formation in H. volcanii. The minvac transformants did not form gas vesicles; however, minvac/gvpJKLM double transformants contained gas vesicles seen as light refractile bodies by phase-contrast microscopy. Transcript analyses demonstrated that minvac transformants synthesized regular amounts of gvpA mRNA, but the transcripts derived from gvpFGJKLM were mainly short and encompassed only gvpFG(J), suggesting that the gvpJKLM genes were not sufficiently expressed. Since gvpAO and gvpFGJKLM are the only gvp genes present in minvac/JKLM transformants containing gas vesicles, these gvp genes represent the minimal set required for gas vesicle formation in halophilic archaea. Homologs of six of these gvp genes are found in Anabaena flos-aquae, and homologs of all eight minimal halobacterial gvp genes are present in Bacillus megaterium and in the genome of Streptomyces coelicolor.
PMCID: PMC101952  PMID: 10894744
25.  Structure of the gas vesicle plasmid in Halobacterium halobium: inversion isomers, inverted repeats, and insertion sequences. 
Journal of Bacteriology  1991;173(6):1958-1964.
Halobacterium-halobium NRC-1 harbors a 200-kb plasmid, pNRC100, which contains a cluster of genes for synthesis of buoyant gas-filled vesicles. Physical mapping of pNRC100 by using pulsed-field gel electrophoresis showed the presence of a large (35 to 38-kb) inverted repeat (IR) sequence. Inversion isomers of pNRC100 were demonstrated by Southern hybridization analysis using two restriction enzymes, AflII and SfiI, that cut asymmetrically within the intervening small single-copy region and the large single-copy region, respectively, but not within the large IRs. No inversion isomers were observed for a deletion derivative of pNRC100 lacking one IR, which suggests that both copies are required for inversion to occur. Additionally, the identities and approximate positions of 17 insertion sequences (IS) in pNRC100 were determined by Southern hybridization and limited nucleotide sequence analysis across the IS element-target site junctions: ISH2, a 0.5-kb element, was found in four copies; ISH3, a 1.4-kb heterogeneous family of elements, was present in seven copies; ISH8, a 1.4-kb element, was found in five copies; and ISH50, a 1.0-kb element, was present in a single copy. The large IRs terminated at an ISH2 element at one end and an ISH3 element at the other end. pNRC100 is similar in structure to chloroplast and mitochondrial genomes, which contain large IRs and other large halobacterial and prokaryotic plasmids that are reservoirs of IS elements but lack the large IRs.
Images
PMCID: PMC207727  PMID: 1848217

Results 1-25 (670226)