Search tips
Search criteria

Results 1-25 (1187697)

Clipboard (0)

Related Articles

1.  The Presence of VEGF Receptors on the Luminal Surface of Endothelial Cells Affects VEGF Distribution and VEGF Signaling 
PLoS Computational Biology  2009;5(12):e1000622.
Vascular endothelial growth factor (VEGF) is a potent cytokine that binds to specific receptors on the endothelial cells lining blood vessels. The signaling cascade triggered eventually leads to the formation of new capillaries, a process called angiogenesis. Distributions of VEGF receptors and VEGF ligands are therefore crucial determinants of angiogenic events and, to our knowledge, no quantification of abluminal vs. luminal receptors has been performed. We formulate a molecular-based compartment model to investigate the VEGF distribution in blood and tissue in humans and show that such quantification would lead to new insights on angiogenesis and VEGF-dependent diseases. Our multiscale model includes two major isoforms of VEGF (VEGF121 and VEGF165), as well as their receptors (VEGFR1 and VEGFR2) and the non-signaling co-receptor neuropilin-1 (NRP1). VEGF can be transported between tissue and blood via transendothelial permeability and the lymphatics. VEGF receptors are located on both the luminal and abluminal sides of the endothelial cells. In this study, we analyze the effects of the VEGF receptor localization on the endothelial cells as well as of the lymphatic transport. We show that the VEGF distribution is affected by the luminal receptor density. We predict that the receptor signaling occurs mostly on the abluminal endothelial surface, assuming that VEGF is secreted by parenchymal cells. However, for a low abluminal but high luminal receptor density, VEGF binds predominantly to VEGFR1 on the abluminal surface and VEGFR2 on the luminal surface. Such findings would be pertinent to pathological conditions and therapies related to VEGF receptor imbalance and overexpression on the endothelial cells and will hopefully encourage experimental receptor quantification for both luminal and abluminal surfaces on endothelial cells.
Author Summary
Angiogenesis is the growth of new blood vessels from pre-existing vasculature that occurs in physiological (e.g., exercise) and pathological contexts (e.g., cancer). This process is often triggered by a signaling cascade that occurs upon ligand-receptor binding between vascular endothelial growth factor (VEGF) and its receptors (VEGFR1/Flt-1, VEGFR2/KDR). These receptors are expressed by endothelial cells that line the blood vessels. Little is known about the quantitative proportion of abluminal receptors (facing the tissue) as compared to those on the luminal surface (facing the blood). We have built a compartment model with molecular details from human tissues to investigate why such experimental data would be of importance. We conclude that the receptor distribution on the endothelial cells can significantly alter the VEGF distribution and the VEGF signaling (through its binding to the receptors) and that quantification of luminal vs. abluminal VEGF receptors would shed light on VEGF signaling and VEGF-dependent mechanisms of angiogenesis.
PMCID: PMC2790341  PMID: 20041209
2.  Computational Model of Vascular Endothelial Growth Factor Spatial Distribution in Muscle and Pro-Angiogenic Cell Therapy 
PLoS Computational Biology  2006;2(9):e127.
Members of the vascular endothelial growth factor (VEGF) family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironmental transport of two isoforms of VEGF in rat extensor digitorum longus skeletal muscle under in vivo conditions. Using parameters based on experimental measurements, the model includes: VEGF secretion from muscle fibers; binding to the extracellular matrix; binding to and activation of endothelial cell surface VEGF receptors; and internalization. For 2-D cross sections of tissue, we analyzed predicted VEGF distributions, gradients, and receptor binding. Significant VEGF gradients (up to 12% change in VEGF concentration over 10 μm) were predicted in resting skeletal muscle with uniform VEGF secretion, due to non-uniform capillary distribution. These relative VEGF gradients were not sensitive to extracellular matrix composition, or to the overall VEGF expression level, but were dependent on VEGF receptor density and affinity, and internalization rate parameters. VEGF upregulation in a subset of fibers increased VEGF gradients, simulating transplantation of pro-angiogenic myoblasts, a possible therapy for ischemic diseases. The number and relative position of overexpressing fibers determined the VEGF gradients and distribution of VEGF receptor activation. With total VEGF expression level in the tissue unchanged, concentrating overexpression into a small number of adjacent fibers can increase the number of capillaries activated. The VEGF concentration gradients predicted for resting muscle (average 3% VEGF/10 μm) is sufficient for cellular sensing; the tip cell of a vessel sprout is approximately 50 μm long. The VEGF gradients also result in heterogeneity in the activation of blood vessel VEGF receptors. This first model of VEGF tissue transport and heterogeneity provides a platform for the design and evaluation of therapeutic approaches.
It is not currently possible to experimentally quantify the gradients of protein concentration in the extracellular space in vivo. However, the concentration gradients of vascular endothelial growth factor (VEGF) are essential for both initiation and directed guidance of new blood vessels. The authors develop a computational model of VEGF transport in tissue in vivo (skeletal muscle, though the method is applicable to other tissues and other proteins) with realistic geometry and including biophysical interactions of VEGF, its receptors, and the extracellular matrix. Using this model, the authors predict for the first time the distribution of VEGF concentration and VEGF receptor activation throughout the tissue. VEGF concentration gradients are significant, up to 12% change in VEGF concentration over 10 μm in resting muscle. Transplanting VEGF-overexpressing myocytes (for therapeutic induction of blood vessel growth) increases the gradients significantly. Endothelial cells in sprouting vessels are approximately 50 μm long, and therefore the predicted gradients across the cell are high and sufficient for chemotactic guidance of the new vessels. The VEGF concentration gradients also result in significant heterogeneity in the activation of VEGF receptors on blood vessels throughout the tissue, a possible reason for the sporadic nature of sprout initiation.
PMCID: PMC1570371  PMID: 17002494
3.  Compartment Model Predicts VEGF Secretion and Investigates the Effects of VEGF Trap in Tumor-Bearing Mice 
Frontiers in Oncology  2013;3:196.
Angiogenesis, the formation of new blood vessels from existing vasculature, is important in tumor growth and metastasis. A key regulator of angiogenesis is vascular endothelial growth factor (VEGF), which has been targeted in numerous anti-angiogenic therapies aimed at inhibiting tumor angiogenesis. Systems biology approaches, including computational modeling, are useful for understanding this complex biological process and can aid in the development of novel and effective therapeutics that target the VEGF family of proteins and receptors. We have developed a computational model of VEGF transport and kinetics in the tumor-bearing mouse, which includes three-compartments: normal tissue, blood, and tumor. The model simulates human tumor xenografts and includes human (VEGF121 and VEGF165) and mouse (VEGF120 and VEGF164) isoforms. The model incorporates molecular interactions between these VEGF isoforms and receptors (VEGFR1 and VEGFR2), as well as co-receptors (NRP1 and NRP2). We also include important soluble factors: soluble VEGFR1 (sFlt-1) and α-2-macroglobulin. The model accounts for transport via macromolecular transendothelial permeability, lymphatic flow, and plasma clearance. We have fit the model to available in vivo experimental data on the plasma concentration of free VEGF Trap and VEGF Trap bound to mouse and human VEGF in order to estimate the rates at which parenchymal cells (myocytes and tumor cells) and endothelial cells secrete VEGF. Interestingly, the predicted tumor VEGF secretion rates are significantly lower (0.007–0.023 molecules/cell/s, depending on the tumor microenvironment) than most reported in vitro measurements (0.03–2.65 molecules/cell/s). The optimized model is used to investigate the interstitial and plasma VEGF concentrations and the effect of the VEGF-neutralizing agent, VEGF Trap (aflibercept). This work complements experimental studies performed in mice and provides a framework with which to examine the effects of anti-VEGF agents, aiding in the optimization of such anti-angiogenic therapeutics as well as analysis of clinical data. The model predictions also have implications for biomarker discovery with anti-angiogenic therapies.
PMCID: PMC3727077  PMID: 23908970
systems biology; mathematical model; computational model; angiogenesis; tumor xenograft model; anti-angiogenic therapy; cancer
4.  A Compartment Model of VEGF Distribution in Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap 
PLoS ONE  2009;4(4):e5108.
Vascular endothelial growth factor (VEGF), through its activation of cell surface receptor tyrosine kinases including VEGFR1 and VEGFR2, is a vital regulator of stimulatory and inhibitory processes that keep angiogenesis – new capillary growth from existing microvasculature – at a dynamic balance in normal physiology. Soluble VEGF receptor-1 (sVEGFR1) – a naturally-occurring truncated version of VEGFR1 lacking the transmembrane and intracellular signaling domains – has been postulated to exert inhibitory effects on angiogenic signaling via two mechanisms: direct sequestration of angiogenic ligands such as VEGF; or dominant-negative heterodimerization with surface VEGFRs. In pre-clinical studies, sVEGFR1 gene and protein therapy have demonstrated efficacy in inhibiting tumor angiogenesis; while in clinical studies, sVEGFR1 has shown utility as a diagnostic or prognostic marker in a widening array of angiogenesis–dependent diseases. Here we developed a novel computational multi-tissue model for recapitulating the dynamic systemic distributions of VEGF and sVEGFR1. Model features included: physiologically-based multi-scale compartmentalization of the human body; inter-compartmental macromolecular biotransport processes (vascular permeability, lymphatic drainage); and molecularly-detailed binding interactions between the ligand isoforms VEGF121 and VEGF165, signaling receptors VEGFR1 and VEGFR2, non-signaling co-receptor neuropilin-1 (NRP1), as well as sVEGFR1. The model was parameterized to represent a healthy human subject, whereupon we investigated the effects of sVEGFR1 on the distribution and activation of VEGF ligands and receptors. We assessed the healthy baseline stability of circulating VEGF and sVEGFR1 levels in plasma, as well as their reliability in indicating tissue-level angiogenic signaling potential. Unexpectedly, simulated results showed that sVEGFR1 – acting as a diffusible VEGF sink alone, i.e., without sVEGFR1-VEGFR heterodimerization – did not significantly lower interstitial VEGF, nor inhibit signaling potential in tissues. Additionally, the sensitivity of plasma VEGF and sVEGFR1 to physiological fluctuations in transport rates may partially account for the heterogeneity in clinical measurements of these circulating angiogenic markers, potentially hindering their diagnostic reliability for diseases.
PMCID: PMC2663039  PMID: 19352513
5.  A compartment model of VEGF distribution in blood, healthy and diseased tissues 
BMC Systems Biology  2008;2:77.
Angiogenesis is a process by which new capillaries are formed from pre-existing blood vessels in physiological (e.g., exercise, wound healing) or pathological (e.g., ischemic limb as in peripheral arterial disease, cancer) contexts. This neovascular mechanism is mediated by the vascular endothelial growth factor (VEGF) family of cytokines. Although VEGF is often targeted in anti-angiogenic therapies, there is little knowledge about how its concentration may vary between tissues and the vascular system. A compartment model is constructed to study the VEGF distribution in the tissue (including matrix-bound, cell surface receptor-bound and free VEGF isoforms) and in the blood. We analyze the sensitivity of this distribution to the secretion rate, clearance rate and vascular permeability of VEGF.
We find that, in a physiological context, VEGF concentration varies approximately linearly with the VEGF secretion rate. VEGF concentration in blood but not in tissue is dependent on the vascular permeability of healthy tissue. Model simulations suggest that relative VEGF increases are similar in blood and tissue during exercise and return to baseline within several hours. In a pathological context (tumor), we find that blood VEGF concentration is relatively insensitive to increased vascular permeability in tumors, to the secretion rate of VEGF by tumors and to the clearance. However, it is sensitive to the vascular permeability in the healthy tissue. Finally, the VEGF distribution profile in healthy tissue reveals that about half of the VEGF is complexed with the receptor tyrosine kinase VEGFR2 and the co-receptor Neuropilin-1. In diseased tissues, this binding can be reduced to 15% while VEGF bound to the extracellular matrix and basement membranes increases.
The results are of importance for physiological conditions (e.g., exercise) and pathological conditions (e.g., peripheral arterial disease, coronary artery disease, cancer). This mathematical model can serve as a tool for understanding the VEGF distribution in physiological and pathological contexts as well as a foundation to investigate pro- or anti-angiogenic strategies.
PMCID: PMC2562372  PMID: 18713470
6.  Targeting Neuropilin-1 to Inhibit VEGF Signaling in Cancer: Comparison of Therapeutic Approaches 
PLoS Computational Biology  2006;2(12):e180.
Angiogenesis (neovascularization) plays a crucial role in a variety of physiological and pathological conditions including cancer, cardiovascular disease, and wound healing. Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis. Multiple VEGF receptors are expressed on endothelial cells, including signaling receptor tyrosine kinases (VEGFR1 and VEGFR2) and the nonsignaling co-receptor Neuropilin-1. Neuropilin-1 binds only the isoform of VEGF responsible for pathological angiogenesis (VEGF165), and is thus a potential target for inhibiting VEGF signaling. Using the first molecularly detailed computational model of VEGF and its receptors, we have shown previously that the VEGFR–Neuropilin interactions explain the observed differential effects of VEGF isoforms on VEGF signaling in vitro, and demonstrated potent VEGF inhibition by an antibody to Neuropilin-1 that does not block ligand binding but blocks subsequent receptor coupling. In the present study, we extend that computational model to simulation of in vivo VEGF transport and binding, and predict the in vivo efficacy of several Neuropilin-targeted therapies in inhibiting VEGF signaling: (a) blocking Neuropilin-1 expression; (b) blocking VEGF binding to Neuropilin-1; (c) blocking Neuropilin–VEGFR coupling. The model predicts that blockade of Neuropilin–VEGFR coupling is significantly more effective than other approaches in decreasing VEGF–VEGFR2 signaling. In addition, tumor types with different receptor expression levels respond differently to each of these treatments. In designing human therapeutics, the mechanism of attacking the target plays a significant role in the outcome: of the strategies tested here, drugs with similar properties to the Neuropilin-1 antibody are predicted to be most effective. The tumor type and the microenvironment of the target tissue are also significant in determining therapeutic efficacy of each of the treatments studied.
Neuropilin is a co-receptor for some of the isoforms of the vascular endothelial growth factor (VEGF) family. The presence of Neuropilin on endothelial or other cells increases binding of these isoforms to their signaling receptor VEGFR2, thus increasing pro-angiogenesis signaling and stimulating vascular growth. Neuropilin is thus a suitable target for anti-angiogenesis therapy, which holds promise for the treatment of vasculature-dependent diseases such as cancer and diabetic retinopathy. In this study, Mac Gabhann and Popel perform computational simulations of VEGF transport in breast cancer, using a previously validated model of VEGF–VEGF receptor interactions, as well as geometrical information on the tumor itself—tumor cells, vasculature, and extracellular matrix. Three different molecular therapies targeting Neuropilin are tested in silico, and the simulations predict that one of these therapies will be effective at reducing VEGFR2 signaling in certain types (or subtypes) of tumors, while the others will not. Thus, we demonstrate that identification of a target molecule is not sufficient; different therapeutic strategies targeting the same molecule may result in different outcomes.
PMCID: PMC1761657  PMID: 17196035
7.  Vascular Endothelial Growth Factor Mediates Intracrine Survival in Human Breast Carcinoma Cells through Internally Expressed VEGFR1/FLT1 
PLoS Medicine  2007;4(6):e186.
While vascular endothelial growth factor (VEGF) expression in breast tumors has been correlated with a poor outcome in the pathogenesis of breast cancer, the expression, localization, and function of VEGF receptors VEGFR1 (also known as FLT1) and VEGFR2 (also known as KDR or FLK1), as well as neuropilin 1 (NRP1), in breast cancer are controversial.
Methods and Findings
We investigated the expression and function of VEGF and VEGF receptors in breast cancer cells. We observed that VEGFR1 expression was abundant, VEGFR2 expression was low, and NRP1 expression was variable. MDA-MB-231 and MCF-7 breast cancer cells, transfected with antisense VEGF cDNA or with siVEGF (VEGF-targeted small interfering RNA), showed a significant reduction in VEGF expression and increased apoptosis as compared to the control cells. Additionally, specifically targeted knockdown of VEGFR1 expression by siRNA (siVEGFR1) significantly decreased the survival of breast cancer cells through down-regulation of protein kinase B (AKT) phosphorylation, while targeted knockdown of VEGFR2 or NRP1 expression had no effect on the survival of these cancer cells. Since a VEGFR1-specific ligand, placenta growth factor (PGF), did not, as expected, inhibit the breast cancer cell apoptosis induced by siVEGF, and since VEGFR1 antibody also had no effects on the survival of these cells, we examined VEGFR1 localization. VEGFR1 was predominantly expressed internally in MDA-MB-231 and MCF-7 breast cancer cells. Specifically, VEGFR1 was found to be colocalized with lamin A/C and was expressed mainly in the nuclear envelope in breast cancer cell lines and primary breast cancer tumors. Breast cancer cells treated with siVEGFR1 showed significantly decreased VEGFR1 expression levels and a lack of VEGFR1 expression in the nuclear envelope.
This study provides, to our knowledge for the first time, evidence of a unique survival system in breast cancer cells by which VEGF can act as an internal autocrine (intracrine) survival factor through its binding to VEGFR1. These results may lead to an improved strategy for tumor therapy based on the inhibition of angiogenesis.
Shalom Avraham and colleagues' study provides evidence of a survival system in breast cancer cells by which VEGF acts as an internal autocrine survival factor through its binding to VEGFR1.
Editors' Summary
One woman in eight will develop breast cancer during her lifetime. Most of these women live for many years after their diagnosis and many are cured of their cancer. However, sometimes the cancer grows inexorably and spreads (metastasizes) around the body despite the efforts of oncologists. Characteristics of the tumor known as prognostic factors can indicate whether this spreading is likely to happen. Large tumors that have metastasized have a poorer prognosis than small tumors that are confined to the breast. The expression of specific proteins within the tumor also provides prognostic information. One protein whose expression is associated with a poor prognosis is vascular endothelial growth factor (VEGF). VEGF stimulates angiogenesis—the growth of new blood vessels. Small tumors get the nutrients needed for their growth from existing blood vessels but large tumors need to organize their own blood supply. They do this, in part, by secreting VEGF. This compound binds to proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels), which then send a signal into the cell instructing it to make new blood vessels. Angiogenesis inhibitors, including molecules that block the activity of VEGF receptors, are being developed for the treatment of cancer.
Why Was This Study Done?
Some breast cancer cell lines (cells isolated from breast cancers and grown in the laboratory) make VEGF and VEGF receptors (VEGFR1, VEGFR2, and neuropilin 1 [NRP1]). But, although some studies have reported an association between VEGFR1 expression in breast tumors and a poor prognosis, other studies have found no expression of VEGFR1 in breast tumors. Consequently, the role of VEGF receptors in breast cancer is unclear. In this study, the researchers analyzed the expression and function of VEGF and its receptors in breast cancer cells to investigate whether and how VEGF helps these cells to survive.
What Did the Researchers Do and Find?
The researchers first examined the expression of VEGF receptors in several human breast cancer cell lines. All of them expressed VEGFR1, some expressed NRP1, but VEGFR2 expression was universally low. They then investigated the function of VEGF and its receptors in two human breast cancer cell lines (MDA-MB-231 and MCF-7). In both cell lines, blocking the expression of VEGF or of VEGFR1 (but not of the other two receptors) reduced cell survival by stimulating a specific process of cell death called apoptosis. Unexpectedly, adding VEGF to the cultures did not reverse the effect of blocking VEGF expression, a result that suggests that VEGF and VEGFR1 do not affect breast cancer cell survival by acting at the cell surface. Accordingly, when the researchers examined where VEGFR1 occurs in the cell, they found it on the membranes around the nucleus of the breast cancer cell lines and not on the cell surface; several primary breast tumors and normal breast tissue had the same localization pattern. Finally, the researchers showed that inhibitors of VEGF action that act at the cell surface did not affect the survival of the breast cancer cell lines.
What Do These Findings Mean?
These findings suggest that VEGF helps breast cancer cells to survive in a unique way: by binding to VEGFR1 inside the cell. In other words, whereas VEGF normally acts as a paracrine growth factor (it is released by one cell and affects another cell), in breast cancer cells it might act as an internal autocrine (intracrine) survival factor, a factor that affects the cells in which it is produced. These findings need confirming in more cell lines and in primary breast cancers but could have important implications for the treatment of breast cancer. Inhibitors of VEGF and VEGFR1 that act inside the cell (small molecule drugs) might block breast cancer growth more effectively than inhibitors that act at the cell surface (for example, proteins that bind to the receptor), because internally acting inhibitors might both kill the tumor directly and have antiangiogenic effects, whereas externally acting inhibitors could only have the second effect.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute information for patients and professionals on breast cancer (in English and Spanish) and on angiogenesis (in English and Spanish)
MedlinePlus Encyclopedia information for patients on breast cancer (in English and Spanish)
CancerQuest, information from Emory University on cancer biology and on angiogenesis and angiogenesis inhibitors (in several languages)
Wikipedia pages on VEGF (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC1885450  PMID: 17550303
8.  Pharmacokinetics and pharmacodynamics of VEGF-neutralizing antibodies 
BMC Systems Biology  2011;5:193.
Vascular endothelial growth factor (VEGF) is a potent regulator of angiogenesis, and its role in cancer biology has been widely studied. Many cancer therapies target angiogenesis, with a focus being on VEGF-mediated signaling such as antibodies to VEGF. However, it is difficult to predict the effects of VEGF-neutralizing agents. We have developed a whole-body model of VEGF kinetics and transport under pathological conditions (in the presence of breast tumor). The model includes two major VEGF isoforms VEGF121 and VEGF165, receptors VEGFR1, VEGFR2 and co-receptors Neuropilin-1 and Neuropilin-2. We have added receptors on parenchymal cells (muscle fibers and tumor cells), and incorporated experimental data for the cell surface density of receptors on the endothelial cells, myocytes, and tumor cells. The model is applied to investigate the action of VEGF-neutralizing agents (called "anti-VEGF") in the treatment of cancer.
Through a sensitivity study, we examine how model parameters influence the level of free VEGF in the tumor, a measure of the response to VEGF-neutralizing drugs. We investigate the effects of systemic properties such as microvascular permeability and lymphatic flow, and of drug characteristics such as the clearance rate and binding affinity. We predict that increasing microvascular permeability in the tumor above 10-5 cm/s elicits the undesired effect of increasing tumor interstitial VEGF concentration beyond even the baseline level. We also examine the impact of the tumor microenvironment, including receptor expression and internalization, as well as VEGF secretion. We find that following anti-VEGF treatment, the concentration of free VEGF in the tumor can vary between 7 and 233 pM, with a dependence on both the density of VEGF receptors and co-receptors and the rate of neuropilin internalization on tumor cells. Finally, we predict that free VEGF in the tumor is reduced following anti-VEGF treatment when VEGF121 comprises at least 25% of the VEGF secreted by tumor cells.
This study explores the optimal drug characteristics required for an anti-VEGF agent to have a therapeutic effect and the tumor-specific properties that influence the response to therapy. Our model provides a framework for investigating the use of VEGF-neutralizing drugs for personalized medicine treatment strategies.
PMCID: PMC3229549  PMID: 22104283
9.  Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis 
BMC Systems Biology  2011;5:59.
The spatial distribution of vascular endothelial growth factor A (VEGF) is an important mediator of vascular patterning. Previous experimental studies in the mouse hindbrain and retina have suggested that VEGF alternative splicing, which controls the ability of VEGF to bind to heparan sulfate proteoglycans (HSPGs) in the extracellular matrix (ECM), plays a key role in controlling VEGF diffusion and gradients in tissues. Conversely, proteolysis notably by matrix metalloproteinases (MMPs), plays a critical role in pathological situations by releasing matrix-sequestered VEGF and modulating angiogenesis. However, computational models have predicted that HSPG binding alone does not affect VEGF localization or gradients at steady state.
Using a 3D molecular-detailed reaction-diffusion model of VEGF ligand-receptor kinetics and transport, we test alternate models of VEGF transport in the extracellular environment surrounding an endothelial sprout. We show that differences in localization between VEGF isoforms, as observed experimentally in the mouse hindbrain, as well as the ability of proteases to redistribute VEGF in pathological situations, are consistent with a model where VEGF is endogenously cleared or degraded in an isoform-specific manner. We use our predictions of the VEGF distribution to quantify a tip cell's receptor binding and gradient sensing capacity. A novel prediction is that neuropilin-1, despite functioning as a coreceptor to VEGF165-VEGFR2 binding, reduces the ability of a cell to gauge the relative steepness of the VEGF distribution. Comparing our model to available in vivo vascular patterning data suggests that vascular phenotypes are most consistently predicted at short range by the soluble fraction of the VEGF distributions, or at longer range by matrix-bound VEGF detected in a filopodia-dependent manner.
Isoform-specific VEGF degradation provides a possible explanation for numerous examples of isoform specificity in VEGF patterning and examples of proteases relocation of VEGF upon release.
PMCID: PMC3113235  PMID: 21535871
10.  Predicting the Effects of Anti-angiogenic Agents Targeting Specific VEGF Isoforms 
The AAPS Journal  2012;14(3):500-509.
Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis, whose effect on cancer growth and development is well characterized. Alternative splicing of VEGF leads to several different isoforms, which are differentially expressed in various tumor types and have distinct functions in tumor blood vessel formation. Many cancer therapies aim to inhibit angiogenesis by targeting VEGF and preventing intracellular signaling leading to tumor vascularization; however, the effects of targeting specific VEGF isoforms have received little attention in the clinical setting. In this work, we investigate the effects of selectively targeting a single VEGF isoform, as compared with inhibiting all isoforms. We utilize a molecular-detailed whole-body compartment model of VEGF transport and kinetics in the presence of breast tumor. The model includes two major VEGF isoforms, VEGF121 and VEGF165, receptors VEGFR1 and VEGFR2, and co-receptors Neuropilin-1 and Neuropilin-2. We utilize the model to predict the concentrations of free VEGF, the number of VEGF/VEGFR2 complexes (considered to be pro-angiogenic), and the receptor occupancy profiles following inhibition of VEGF using isoform-specific anti-VEGF agents. We predict that targeting VEGF121 leads to a 54% and 84% reduction in free VEGF in tumors that secrete both VEGF isoforms or tumors that overexpress VEGF121, respectively. Additionally, 21% of the VEGFR2 molecules in the blood are ligated following inhibition of VEGF121, compared with 88% when both isoforms are targeted. Targeting VEGF121 reduces tumor free VEGF and is an effective treatment strategy. Our results provide a basis for clinical investigation of isoform-specific anti-VEGF agents.
Electronic supplementary material
The online version of this article (doi:10.1208/s12248-012-9363-4) contains supplementary material, which is available to authorized users.
PMCID: PMC3385824  PMID: 22547351
angiogenesis; cancer drug target; computational model; pharmacokinetic model; systems biology
11.  Quantifying the Proteolytic Release of Extracellular Matrix-Sequestered VEGF with a Computational Model 
PLoS ONE  2010;5(7):e11860.
VEGF proteolysis by plasmin or matrix metalloproteinases (MMPs) is believed to play an important role in regulating vascular patterning in vivo by releasing VEGF from the extracellular matrix (ECM). However, a quantitative understanding of the kinetics of VEGF cleavage and the efficiency of cell-mediated VEGF release is currently lacking. To address these uncertainties, we develop a molecular-detailed quantitative model of VEGF proteolysis, used here in the context of an endothelial sprout.
Methodology and Findings
To study a cell's ability to cleave VEGF, the model captures MMP secretion, VEGF-ECM binding, VEGF proteolysis from VEGF165 to VEGF114 (the expected MMP cleavage product of VEGF165) and VEGF receptor-mediated recapture. Using experimental data, we estimated the effective bimolecular rate constant of VEGF165 cleavage by plasmin to be 328 M−1s−1 at 25°C, which is relatively slow compared to typical MMP-ECM proteolysis reactions. While previous studies have implicated cellular proteolysis in growth factor processing, we show that single cells do not individually have the capacity to cleave VEGF to any appreciable extent (less than 0.1% conversion). In addition, we find that a tip cell's receptor system will not efficiently recapture the cleaved VEGF due to an inability of cleaved VEGF to associate with Neuropilin-1.
Overall, VEGF165 cleavage in vivo is likely to be mediated by the combined effect of numerous cells, instead of behaving in a single-cell-directed, autocrine manner. We show that heparan sulfate proteoglycans (HSPGs) potentiate VEGF cleavage by increasing the VEGF clearance time in tissues. In addition, we find that the VEGF-HSPG complex is more sensitive to proteases than is soluble VEGF, which may imply its potential relevance in receptor signaling. Finally, according to our calculations, experimentally measured soluble protease levels are approximately two orders of magnitude lower than that needed to reconcile levels of VEGF cleavage seen in pathological situations.
PMCID: PMC2912330  PMID: 20686621
12.  Complex receptor-ligand dynamics control the response of the VEGF system to protease injury 
BMC Systems Biology  2011;5:170.
Vascular homeostasis and response to injury are dependent on the coordinated activity of growth factors such as vascular endothelial growth factor-A (VEGF). VEGF signaling is mediated by VEGF receptors 1 (VEGFR1) and 2 (VEGFR2). VEGF also binds to extracellular matrix (ECM) and neuropilin (NP), a cell surface glycoprotein that enhances VEGF binding to VEGFR2 while inhibiting VEGF-VEGFR1 interactions. Proteases such as neutrophil elastase release VEGF bound to ECM; however, this results in proteolytic processing of VEGF to a smaller species termed VEGF fragment (VEGFf). We hypothesized that the generation and presence of VEGFf would have significant effects on the binding distribution of VEGF.
We show that VEGFf, unlike VEGF, does not bind ECM, fibronectin, or NP-1. Using computational simulations, we find that excess VEGFf can lead to increased binding of VEGF to VEGFR2 through VEGFf binding to VEGFR1 and subsequent liberation of NP-1. We show experimentally that VEGF-induced migration has a biphasic response to conversion of VEGF to VEGFf. Simulations suggest that a simple change in VEGFR1 or VEGFR2 complexes are unlikely to be responsible and that a more complex integration of signals is more likely involved.
These findings suggest that proteolytic damage at sites of tissue injury and inflammation has the potential to modulate the VEGF system through a complex process and highlight the need for quantitative analysis to reveal mechanisms of growth factor control.
PMCID: PMC3253741  PMID: 22014244
13.  r84, a Novel Therapeutic Antibody against Mouse and Human VEGF with Potent Anti-Tumor Activity and Limited Toxicity Induction 
PLoS ONE  2010;5(8):e12031.
Vascular endothelial growth factor (VEGF) is critical for physiological and pathological angiogenesis. Within the tumor microenvironment, VEGF functions as an endothelial cell survival factor, permeability factor, mitogen, and chemotactic agent. The majority of these functions are mediated by VEGF-induced activation of VEGF receptor 2 (VEGFR2), a high affinity receptor tyrosine kinase expressed by endothelial cells and other cell types in the tumor microenvironment. VEGF can also ligate other cell surface receptors including VEGFR1 and neuropilin-1 and -2. However, the importance of VEGF-induced activation of these receptors in tumorigenesis is still unclear. We report the development and characterization of r84, a fully human monoclonal antibody that binds human and mouse VEGF and selectively blocks VEGF from interacting with VEGFR2 but does not interfere with VEGF∶VEGFR1 interaction. Selective blockade of VEGF binding to VEGFR2 by r84 is shown through ELISA, receptor binding assays, receptor activation assays, and cell-based functional assays. Furthermore, we show that r84 has potent anti-tumor activity and does not alter tissue histology or blood and urine chemistry after chronic high dose therapy in mice. In addition, chronic r84 therapy does not induce elevated blood pressure levels in some models. The ability of r84 to specifically block VEGF∶VEGFR2 binding provides a valuable tool for the characterization of VEGF receptor pathway activation during tumor progression and highlights the utility and safety of selective blockade of VEGF-induced VEGFR2 signaling in tumors.
PMCID: PMC2917360  PMID: 20700512
14.  Effect of Tumor Microenvironment on Tumor VEGF During Anti-VEGF Treatment: Systems Biology Predictions 
Vascular endothelial growth factor (VEGF) is known to be a potent promoter of angiogenesis under both physiological and pathological conditions. Given its role in regulating tumor vascularization, VEGF has been targeted in various cancer treatments, and anti-VEGF therapy has been used clinically for treatment of several types of cancer. Systems biology approaches, particularly computational models, provide insight into the complexity of tumor angiogenesis. These models complement experimental studies and aid in the development of effective therapies targeting angiogenesis.
We developed an experiment-based, molecular-detailed compartment model of VEGF kinetics and transport to investigate the distribution of two major VEGF isoforms (VEGF121 and VEGF165) in the body. The model is applied to predict the dynamics of tumor VEGF and, importantly, to gain insight into how tumor VEGF responds to an intravenous injection of an anti-VEGF agent.
The model predicts that free VEGF in the tumor interstitium is seven to 13 times higher than plasma VEGF and is predominantly in the form of VEGF121 (>70%), predictions that are validated by experimental data. The model also predicts that tumor VEGF can increase or decrease with anti-VEGF treatment depending on tumor microenvironment, pointing to the importance of personalized medicine.
This computational study suggests that the rate of VEGF secretion by tumor cells may serve as a biomarker to predict the patient population that is likely to respond to anti-VEGF treatment. Thus, the model predictions have important clinical relevance and may aid clinicians and clinical researchers seeking interpretation of pharmacokinetic and pharmacodynamic observations and optimization of anti-VEGF therapies.
PMCID: PMC3672077  PMID: 23670728
15.  Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding 
eLife  2014;3:e03720.
During development, tissue repair, and tumor growth, most blood vessel networks are generated through angiogenesis. Vascular endothelial growth factor (VEGF) is a key regulator of this process and currently both VEGF and its receptors, VEGFR1, VEGFR2, and Neuropilin1 (NRP1), are targeted in therapeutic strategies for vascular disease and cancer. NRP1 is essential for vascular morphogenesis, but how NRP1 functions to guide vascular development has not been completely elucidated. In this study, we generated a mouse line harboring a point mutation in the endogenous Nrp1 locus that selectively abolishes VEGF-NRP1 binding (Nrp1VEGF−). Nrp1VEGF− mutants survive to adulthood with normal vasculature revealing that NRP1 functions independent of VEGF-NRP1 binding during developmental angiogenesis. Moreover, we found that Nrp1-deficient vessels have reduced VEGFR2 surface expression in vivo demonstrating that NRP1 regulates its co-receptor, VEGFR2. Given the resources invested in NRP1-targeted anti-angiogenesis therapies, our results will be integral for developing strategies to re-build vasculature in disease.
eLife digest
Blood flows through blood vessels to carry oxygen and nutrients towards, and waste away from, the cells of the body. New blood vessels are formed not only during development but also throughout life as part of normal tissue growth and repair. However, blood vessels may also form as a consequence of diseases, such as cancer. For example, tumors often stimulate the growth of new blood vessels to ensure a good supply of blood carrying nutrients and oxygen. As such, some anti-cancer therapies try to stop blood vessels from developing in an attempt to slow down or prevent tumor growth.
New blood vessels often form by branching off from existing vessels. One molecule that stimulates this branching process is called vascular endothelial growth factor (or VEGF for short). Three ‘receptor’ proteins found on the outside of cells can bind to the VEGF molecule and then trigger a response inside the cell that guides the development of new blood vessels. VEGF and its receptor proteins—including one called NRP1—are being investigated as a possible target for drugs that could treat cancer and other diseases affecting blood vessels. However, the exact mechanisms that control the formation of new blood vessels are not fully understood, which makes it difficult to develop these treatments.
Now Gelfand et al. have created mice whose NRP1 receptors cannot bind VEGF. These mice unexpectedly survive to adulthood and develop normal blood vessels. This outcome is in contrast to mice that lack NRP1, which normally die as embryos and have severe defects with their nerves and blood vessels. Gelfand et al. instead found that mice that only lack NRP1 in the cells of their blood vessels had less of another receptor protein called VEGFR2 on the surface of these cells. This result suggests that NRP1 controls blood vessel development, not by binding to VEGF but by affecting how much of the VEGFR2 receptor is available to interact with VEGF.
These findings challenge the long-held view of how NRP1 functions and lead Gelfand et al. to suggest a new mechanism: NRP1 interacts with VEGFR2, rather than with VEGF, to control the formation of new blood vessels. Future work will aim to uncover how these interactions regulate the normal development of blood vessels, and if other molecules that bind to NRP1 are involved in this process. Furthermore, these findings may help to guide the on-going efforts to develop drugs that target NRP1 into treatments that are effective against diseases that involve problems with blood vessels—including diabetes, immune disorders, and cancer.
PMCID: PMC4197402  PMID: 25244320
Neuropilin-1; developmental angiogenesis; VEGFR2; VEGF; mouse genetics; mouse
16.  A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA 
PLoS Medicine  2008;5(5):e94.
Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells.
Methods and Findings
Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the tumors did not respond to interferon (IFN)α therapy at all. We showed that stable silencing of endogenous vegf mRNA in HCT116 cells enhanced both STAT1 expression and IFNα responses.
These findings suggest that cancer cells have a survival system that is regulated by vegf mRNA and imply that both vegf mRNA and its protein may synergistically promote the malignancy of tumor cells. Therefore, combination of anti-vegf transcript strategies, such as siRNA-based gene silencing, with anti-VEGF antibody treatment may improve anti-cancer therapies that target VEGF.
Shigetada Teshima-Kondo and colleagues find that cancer cells have a survival system that is regulated by vegf mRNA and that vegf mRNA and its protein may synergistically promote the malignancy of tumor cells.
Editors' Summary
Normally, throughout life, cell division (which produces new cells) and cell death are carefully balanced to keep the body in good working order. But sometimes cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—disorganized masses of cells. When a cancer is small, it uses the body's existing blood supply to get the oxygen and nutrients it needs for its growth and survival. But, when it gets bigger, it has to develop its own blood supply. This process is called angiogenesis. It involves the release by the cancer cells of proteins called growth factors that bind to other proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels). The receptors then send signals into the endothelial cells that tell them to make new blood vessels. One important angiogenic growth factor is “vascular endothelial growth factor” (VEGF). Tumors that make large amounts of VEGF tend to be more abnormal and more aggressive than those that make less VEGF. In addition, high levels of VEGF in the blood are often associated with poor responses to chemotherapy, drug regimens designed to kill cancer cells.
Why Was This Study Done?
Because VEGF is a key regulator of tumor development, several anti-VEGF therapies—drugs that target VEGF and its receptors—have been developed. These therapies strongly suppress the growth of tumor cells in the laboratory and in animals but, when used alone, are no better at increasing the survival times of patients with cancer than standard chemotherapy. Scientists are now looking for an explanation for this disappointing result. Like all proteins, cells make VEGF by “transcribing” its DNA blueprint into an mRNA copy (vegf mRNA), the coding region of which is “translated” into the VEGF protein. Other, “noncoding” regions of vegf mRNA control when and where VEGF is made. Scientists have recently discovered that the noncoding regions of some mRNAs suppress tumor development. In this study, therefore, the researchers investigate whether vegf mRNA has an unrecognized function in tumor cells that could explain the disappointing clinical results of anti-VEGF therapeutics.
What Did the Researchers Do and Find?
The researchers first used a technique called small interfering (si) RNA knockdown to stop VEGF expression in human colon cancer cells growing in dishes. siRNAs are short RNAs that bind to and destroy specific mRNAs in cells, thereby preventing the translation of those mRNAs into proteins. The treatment of human colon cancer cells with vegf-targeting siRNAs made the cells more sensitive to chemotherapy-induced apoptosis (a type of cell death). This sensitivity was only partly reversed by adding VEGF to the cells. By contrast, cancer cells engineered to make more vegf mRNA had increased resistance to chemotherapy-induced apoptosis. Treatment of these cells with an antibody that inhibited VEGF function did not completely block this resistance. Together, these results suggest that both vegf mRNA and VEGF protein have anti-apoptotic effects. The researchers show that the anti-apoptotic activity of vegf mRNA requires a noncoding part of the mRNA called the 5′ UTR, and that whereas human colon cancer cells expressing this 5′ UTR form tumors in mice, cells expressing a mutated 5′ UTR do not. Finally, they report that the expression of several pro-apoptotic genes and of an anti-tumor pathway known as the interferon/STAT1 tumor suppression pathway is down-regulated in tumors that express the vegf 5′ UTR.
What Do These Findings Mean?
These findings suggest that some cancer cells have a survival system that is regulated by vegf mRNA and are the first to show that a 5′UTR of mRNA can promote tumor growth. They indicate that VEGF and its mRNA work together to promote their development and to increase their resistance to chemotherapy drugs. They suggest that combining therapies that prevent the production of vegf mRNA (for example, siRNA-based gene silencing) with therapies that block the function of VEGF might improve survival times for patients whose tumors overexpress VEGF.
Additional Information.
Please access these Web sites via the online version of this summary at
This study is discussed further in a PLoS Medicine Perspective by Hughes and Jones
The US National Cancer Institute provides information about all aspects of cancer, including information on angiogenesis, and on bevacizumab, an anti-VEGF therapeutic (in English and Spanish)
CancerQuest, from Emory University, provides information on all aspects of cancer, including angiogenesis (in several languages)
Cancer Research UK also provides basic information about what causes cancers and how they develop, grow, and spread, including information about angiogenesis
Wikipedia has pages on VEGF and on siRNA (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2386836  PMID: 18494554
17.  Induction of Aberrant Vascular Growth, But Not of Normal Angiogenesis, by Cell-Based Expression of Different Doses of Human and Mouse VEGF Is Species-Dependent 
Human Gene Therapy Methods  2013;24(1):28-37.
Therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery is an attractive approach to treat ischemia. VEGF remains localized around each producing cell in vivo, and overexpression of mouse VEGF164 (mVEGF164) induces normal or aberrant angiogenesis, depending strictly on its dose in the microenvironment in vivo. However, the dose-dependent effects of the clinically relevant factor, human VEGF165 (hVEGF165), are unknown. Here we exploited a highly controlled gene delivery platform, based on clonal populations of transduced myoblasts overexpressing specific VEGF levels, to rigorously compare the in vivo dose-dependent effects of hVEGF165 and mVEGF164 in skeletal muscle of severe combined immune deficient (SCID) mice. While low levels of both factors efficiently induced similar amounts of normal angiogenesis, only high levels of mVEGF164 caused widespread angioma-like structures, whereas equivalent or even higher levels of hVEGF165 induced exclusively normal and mature capillaries. Expression levels were confirmed both in vitro and in vivo by enzyme-linked immunosorbent assay (ELISA) and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). However, in vitro experiments showed that hVEGF165 was significantly more effective in activating VEGF receptor signaling in human endothelial cells than mVEGF164, while the opposite was true in murine endothelial cells. In conclusion, we found that, even though hVEGF is similarly efficient to the syngenic mVEGF in inducing angiogenesis at lower doses in a widely adopted and convenient mouse preclinical model, species-dependent differences in the relative activation of the respective receptors may specifically mask the toxic effects of high doses of the human factor.
Mujagic and colleagues evaluate dose-dependent effects of cell-based overexpression of human or mouse vascular endothelial growth factor (hVEGF, mVEGF) in human and mouse endothelial cell cultures as well as in the skeletal muscle of immunocompromised mice. At low levels, both factors similarly induced normal angiogenesis in vivo, whereas at high levels, mVEGF resulted in widespread angiomalike structures. In vitro, hVEGF was significantly more effective in activating VEGF receptor signaling in human cells than mVEGF, with the opposite effect observed in murine cultures.
PMCID: PMC4015081  PMID: 23360398
18.  Increase of plasma VEGF after intravenous administration of bevacizumab is predicted by a pharmacokinetic model 
Cancer research  2010;70(23):9886-9894.
Vascular endothelial growth factor (VEGF) is one of the most potent cytokines targeted in anti-angiogenic therapies. Bevacizumab, a recombinant humanized monoclonal antibody to VEGF, is being used clinically in combination with chemotherapy for colorectal, non-small cell lung and breast cancers, and as a single agent for glioblastoma, and is being tested for other types of cancer in numerous clinical trials. It has been reported that the intravenous injection of bevacizumab leads to an increase of plasma VEGF concentration in cancer patients. The mechanism responsible for this counterintuitive increase has not been elucidated, although several hypotheses have been proposed. We use a multiscale systems biology approach to address this problem. We have constructed a whole-body pharmacokinetic model comprising three compartments: blood, normal tissue and tumor tissue. Molecular interactions between VEGF-A family members, their major receptors, the extracellular matrix, and an anti-VEGF ligand are considered for each compartment. Diffusible molecules extravasate, intravasate, are removed from the healthy tissue through the lymphatics, and are cleared from the blood. Our model reproduces the experimentally-observed increase of plasma VEGF following intravenous administration of bevacizumab, and predicts this increase to be a consequence of inter-compartmental exchange of VEGF, the anti-VEGF agent and the VEGF/anti-VEGF complex. Our results suggest that a fraction of the anti-VEGF drug extravasates, allowing the agent to bind the interstitial VEGF. When the complex intravasates (via a combination of lymphatic drainage and microvascular transport of macromolecules) and dissociates in the blood, VEGF is released and the VEGF concentration increases in the plasma. These results provide a new hypothesis on the kinetics of VEGF and on the VEGF distribution in the body caused by anti-angiogenic therapies, as well as their mechanisms of action and could help in designing anti-angiogenic therapies.
PMCID: PMC3058319  PMID: 21118974
angiogenesis; anti-VEGF; bevacizumab; anti-angiogenic therapy; mathematical model
19.  Computational Modeling of Interacting VEGF and Soluble VEGF Receptor Concentration Gradients 
Experimental data indicates that soluble vascular endothelial growth factor (VEGF) receptor 1 (sFlt-1) modulates the guidance cues provided to sprouting blood vessels by VEGF-A. To better delineate the role of sFlt-1 in VEGF signaling, we have developed an experimentally based computational model. This model describes dynamic spatial transport of VEGF, and its binding to receptors Flt-1 and Flk-1, in a mouse embryonic stem cell model of vessel morphogenesis. The model represents the local environment of a single blood vessel. Our simulations predict that blood vessel secretion of sFlt-1 and increased local sFlt-1 sequestration of VEGF results in decreased VEGF–Flk-1 levels on the sprout surface. In addition, the model predicts that sFlt-1 secretion increases the relative gradient of VEGF–Flk-1 along the sprout surface, which could alter endothelial cell perception of directionality cues. We also show that the proximity of neighboring sprouts may alter VEGF gradients, VEGF receptor binding, and the directionality of sprout growth. As sprout distances decrease, the probability that the sprouts will move in divergent directions increases. This model is a useful tool for determining how local sFlt-1 and VEGF gradients contribute to the spatial distribution of VEGF receptor binding, and can be used in conjunction with experimental data to explore how multi-cellular interactions and relationships between local growth factor gradients drive angiogenesis.
PMCID: PMC3185289  PMID: 22007175
angiogenesis; vascular development; computational model; mathematical model; sFlt-1; VEGF; capillary sprouting
20.  Monitoring of the Biological Response to Murine Hindlimb Ischemia With 64Cu-Labeled Vascular Endothelial Growth Factor-121 Positron Emission Tomography 
Circulation  2008;117(7):915-922.
Vascular endothelial growth factor-121 (VEGF121), an angiogenic protein secreted in response to hypoxic stress, binds to VEGF receptors (VEGFRs) overexpressed on vessels of ischemic tissue. The purpose of this study was to evaluate 64Cu-VEGF121 positron emission tomography for noninvasive spatial, temporal, and quantitative monitoring of VEGFR2 expression in a murine model of hindlimb ischemia with and without treadmill exercise training.
Methods and Results
64Cu-labeled VEGF121 and a VEGF mutant were tested for VEGFR2 binding specificity in cell culture. Mice (n=58) underwent unilateral ligation of the femoral artery, and postoperative tissue ischemia was assessed with laser Doppler imaging. Longitudinal VEGFR2 expression in exercised and nonexercised mice was quantified with 64Cu-VEGF121 positron emission tomography at postoperative day 8, 15, 22, and 29 and correlated with postmortem γ-counting. Hindlimbs were excised for immunohistochemistry, Western blotting, and microvessel density measurements. Compared with the VEGF mutant, VEGF121 showed specific binding to VEGFR2. Perfusion in ischemic hindlimbs fell to 9% of contralateral hindlimb on postoperative day 1 and recovered to 82% on day 29. 64Cu-VEGF121 uptake in ischemic hindlimbs increased significantly (P<0.001) from a control level of 0.61 ±0.17% ID/g (percentage of injected dose per gram) to 1.62±0.35% ID/g at postoperative day 8, gradually decreased over the following 3 weeks (0.59±0.14% ID/g at day 29), and correlated with γ-counting (R2=0.99). Compared with nonexercised mice, 64Cu-VEGF121 uptake was increased significantly (P≤0.0001) in exercised mice (at day 15, 22, and 29) and correlated with VEGFR2 levels as obtained by Western blotting (R2=0.76). Ischemic hindlimb tissue stained positively for VEGFR2. In exercised mice, microvessel density was increased significantly (P<0.001) compared with nonexercised mice.
64Cu-VEGF121 positron emission tomography allows longitudinal spatial and quantitative monitoring of VEGFR2 expression in murine hindlimb ischemia and indirectly visualizes enhanced angiogenesis stimulated by treadmill exercise training.
PMCID: PMC4157592  PMID: 18250264
imaging; arteriosclerosis; exercise; angiogenesis; tomography; peripheral vascular disease; growth substances
21.  Differential Expression of VEGF, EG-VEGF, and VEGF Receptors in Human Placentas from Normal and Pre-eclamptic Pregnancies 
Vascular Endothelial Growth Factor (VEGF) is a potent regulator of placental vascular function. Endothelial dysfunction is a key factor associated with pre-eclampsia. In this study, we examined expression of VEGF, endocrine-gland-derived VEGF (EG-VEGF), and VEGF receptors (VEGF receptor-1 [VEGFR-1] and -2 [VEGFR-2], and neuropilin-1 [NP-1] and -2 [NP-2]) in human placentas from women with normal and pre-eclamptic (PE) pregnancies using quantitative or semi-quantitative PCR. We found that total VEGF mRNA expression was increased 2.8 fold (p < 0.05), along with increases in mRNA expression of VEGF121, 165, and 189 (p < 0.05; 1.7, 1.9, and 1.8 fold, respectively) in PE vs normal placentas. Expression of VEGFR-1 mRNA, but not EG-VEGF and the other three VEGF receptors studied, was elevated (p < 0.05) 2.7 fold in PE vs normal placentas. Protein expression of VEGF and its four receptors was determined using Western blot analysis. For VEGF, two major isoforms (VEGF165 and 189) were detected. For VEGFR-1, VEGFR-2, NP-1, and NP-2, one major band was observed at 180, 235, 130 and 130 kD, respectively. All of these bands were corresponding to their positive controls. Of these five proteins studied, only VEGFR-1 levels were increased (p < 0.05; 1.7 fold) in PE placentas. The expression of VEGF and the four VEGF receptors was confirmed using immunohistochemistry. They were primarily present in syncytiotrophoblasts and endothelial cells of villous capillaries and large vessels. Thus, together with the previous reports that VEGFR-1 mediates trophoblast function and inhibits VEGF-induced angiogenesis and endothelium-dependent vasodilation, these data suggest that the increased VEGFR-1 expression may alter VEGF-mediated function on trophoblast and endothelial cells in PE placentas.
PMCID: PMC3282114  PMID: 15126581
VEGF isoforms; VEGF receptors; Pre-eclampsia; Placenta
22.  A Hybrid Model of the Role of VEGF Binding in Endothelial Cell Migration and Capillary Formation 
Frontiers in Oncology  2013;3:102.
Vascular endothelial growth factor (VEGF) is the most studied family of soluble, secreted mediators of endothelial cell migration, survival, and proliferation. VEGF exerts its function by binding to specific tyrosine kinase receptors on the cell surface and transducing the effect through downstream signaling. In order to study the influence of VEGF binding on endothelial cell motion, we develop a hybrid model of VEGF-induced angiogenesis, based on the theory of reinforced random walks. The model includes the chemotactic response of endothelial cells to angiogenic factors bound to cell-surface receptors, rather than approximating this as a function of extracellular chemical concentrations. This allows us to capture biologically observed phenomena such as activation and polarization of endothelial cells in response to VEGF gradients across their lengths, as opposed to extracellular gradients throughout the tissue. We also propose a novel and more biologically reasonable functional form for the chemotactic sensitivity of endothelial cells, which is also governed by activated cell-surface receptors. This model is able to predict the threshold level of VEGF required to activate a cell to move in a directed fashion as well as an optimal VEGF concentration for motion. Model validation is achieved by comparison of simulation results directly with experimental data.
PMCID: PMC3650479  PMID: 23675570
mathematical model; angiogenesis; VEGF binding dynamics; endothelial cell migration; hybrid modeling
23.  High levels of vascular endothelial growth factor (VEGF) and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer 
Human pathology  2008;39(12):1835-1843.
Vascular endothelial growth factor has been shown to be upregulated in breast cancers. VEGFR-1 and VEGFR-2 are the principal mediators of its effects. Together with VEGFR-1 and VEGFR-2, neuropilin-1 may act as a co-receptor for VEGF. Although VEGF exerts important effects on endothelial cells, VEGFRs are likely present on tumor cells as well. We used AQUA to analyze tumor-specific expression of VEGF, VEGFR-1, VEGFR-2, and neuropilin-1 on a large cohort breast cancer tissue microarray. Two-fold redundant arrays were constructed from 642 cases of primary breast adenocarcinomas. Automated image analysis with AQUA was then performed to determine a quantitative expression score. Scores from redundant arrays were normalized and averaged. Kaplan-Meier survival analysis showed that high levels of VEGF, VEGFR-1, VEGFR-2, and neuropilin-1 were all significantly associated with survival (Miller Siegmeund corrected P value 0.0020, 0.0160, and 0.0320 respectively). In addition, VEGF and neuropilin-1 retained a significant association with survival independent of other standard prognostic factors. VEGF, VEGFR-1 and 2, and neuropilin-1 are expressed to varying degrees in primary breast cancers and have prognostic significance. Further study of the functional significance of this finding is warranted as well as the prognostic value of these biomarkers in other tumor microenvironment-specific compartments (e.g. vessels).
PMCID: PMC2632946  PMID: 18715621
VEGF; neuropilin; breast cancer; angiogenesis; automated image analysis
24.  Controlled Angiogenesis in the Heart by Cell-Based Expression of Specific Vascular Endothelial Growth Factor Levels 
Human Gene Therapy Methods  2012;23(5):346-356.
Vascular endothelial growth factor (VEGF) can induce normal angiogenesis or the growth of angioma-like vascular tumors depending on the amount secreted by each producing cell because it remains localized in the microenvironment. In order to control the distribution of VEGF expression levels in vivo, we recently developed a high-throughput fluorescence-activated cell sorting (FACS)-based technique to rapidly purify transduced progenitors that homogeneously express a specific VEGF dose from a heterogeneous primary population. Here we tested the hypothesis that cell-based delivery of a controlled VEGF level could induce normal angiogenesis in the heart, while preventing the development of angiomas. Freshly isolated human adipose tissue–derived stem cells (ASC) were transduced with retroviral vectors expressing either rat VEGF linked to a FACS-quantifiable cell-surface marker (a truncated form of CD8) or CD8 alone as control (CTR). VEGF-expressing cells were FACS-purified to generate populations producing either a specific VEGF level (SPEC) or uncontrolled heterogeneous levels (ALL). Fifteen nude rats underwent intramyocardial injection of 107 cells. Histology was performed after 4 weeks. Both the SPEC and ALL cells produced a similar total amount of VEGF, and both cell types induced a 50%–60% increase in both total and perfused vessel density compared to CTR cells, despite very limited stable engraftment. However, homogeneous VEGF expression by SPEC cells induced only normal and stable angiogenesis. Conversely, heterogeneous expression of a similar total amount by the ALL cells caused the growth of numerous angioma-like structures. These results suggest that controlled VEGF delivery by FACS-purified ASC may be a promising strategy to achieve safe therapeutic angiogenesis in the heart.
Melly and colleagues show that controlled, cell-based delivery of Vascular Endothelial Growth Factor (VEGF) results in safe and stable angiogenesis in mouse hearts. Adipose tissue stem cell populations expressing either homogeneous or heterogeneous levels of retrovirally delivered VEGF were injected into nude mouse hearts. While both cell populations produced similar VEGF amounts and led to increased total and perfused vessel density, cells expressing VEGF heterogeneously resulted in the growth of numerous angioma-like structures not seen in hearts injected with cells expressing homogeneous VEGF levels.
PMCID: PMC4015223  PMID: 23075102
25.  Anti-Tumor Activity of a Novel HS-Mimetic-Vascular Endothelial Growth Factor Binding Small Molecule 
PLoS ONE  2012;7(8):e39444.
The angiogenic process is controlled by variety of factors of which the vascular endothelial growth factor (VEGF) pathway plays a major role. A series of heparan sulfate mimetic small molecules targeting VEGF/VEGFR pathway has been synthesized. Among them, compound 8 (2-butyl-5-chloro-3-(4-nitro-benzyl)-3H-imidazole-4-carbaldehyde) was identified as a significant binding molecule for the heparin-binding domain of VEGF, determined by high-throughput-surface plasmon resonance assay. The data predicted strong binding of compound 8 with VEGF which may prevent the binding of VEGF to its receptor. We compared the structure of compound 8 with heparan sulfate (HS), which have in common the functional ionic groups such as sulfate, nitro and carbaldehyde that can be located in similar positions of the disaccharide structure of HS. Molecular docking studies predicted that compound 8 binds at the heparin binding domain of VEGF through strong hydrogen bonding with Lys-30 and Gln-20 amino acid residues, and consistent with the prediction, compound 8 inhibited binding of VEGF to immobilized heparin. In vitro studies showed that compound 8 inhibits the VEGF-induced proliferation migration and tube formation of mouse vascular endothelial cells, and finally the invasion of a murine osteosarcoma cell line (LM8G7) which secrets high levels of VEGF. In vivo, these effects produce significant decrease of tumor burden in an experimental model of liver metastasis. Collectively, these data indicate that compound 8 may prevent tumor growth through a direct effect on tumor cell proliferation and by inhibition of endothelial cell migration and angiogenesis mediated by VEGF. In conclusion, compound 8 may normalize the tumor vasculature and microenvironment in tumors probably by inhibiting the binding of VEGF to its receptor.
PMCID: PMC3419744  PMID: 22916091

Results 1-25 (1187697)