Search tips
Search criteria

Results 1-25 (882009)

Clipboard (0)

Related Articles

1.  Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells 
Redox Biology  2014;2:570-579.
NADPH oxidases are the major sources of reactive oxygen species in cardiovascular, neural, and kidney cells. The NADPH oxidase 5 (NOX5) gene is present in humans but not rodents. Because Nox isoforms in renal proximal tubules (RPTs) are involved in the pathogenesis of hypertension, we tested the hypothesis that NOX5 is differentially expressed in RPT cells from normotensive (NT) and hypertensive subjects (HT). We found that NOX5 mRNA, total NOX5 protein, and apical membrane NOX5 protein were 4.2±0.7-fold, 5.2±0.7-fold, and 2.8±0.5-fold greater in HT than NT. Basal total NADPH oxidase activity was 4.5±0.2-fold and basal NOX5 activity in NOX5 immunoprecipitates was 6.2±0.2-fold greater in HT than NT (P=<0.001, n=6–14/group). Ionomycin increased total NOX and NOX5 activities in RPT cells from HT (P<0.01, n=4, ANOVA), effects that were abrogated by pre-treatment of the RPT cells with diphenylene-iodonium or superoxide dismutase. Silencing NOX5 using NOX5-siRNA decreased NADPH oxidase activity (−45.1±3.2% vs. mock-siRNA, n=6–8) in HT. D1-like receptor stimulation decreased NADPH oxidase activity to a greater extent in NT (−32.5±1.8%) than HT (−14.8±1.8). In contrast to the marked increase in expression and activity of NOX5 in HT, NOX1 mRNA and protein were minimally increased in HT, relative to NT; total NOX2 and NOX4 proteins were not different between HT and NT, while the increase in apical RPT cell membrane NOX1, NOX2, and NOX4 proteins in HT, relative to NT, was much less than those observed with NOX5. Thus, we demonstrate, for the first time, that NOX5 is expressed in human RPT cells and to greater extent than the other Nox isoforms in HT than NT. We suggest that the increased expression of NOX5, which may be responsible for the increased oxidative stress in RPT cells in human essential hypertension, is caused, in part, by a defective renal dopaminergic system.
Graphical abstract
The schematic diagram shows that total cellular and apical membrane NOX5 proteins are greater than the other NOX proteins (NOX1, NOX2, and NOX4) in human renal proximal tubule (RPT) cells from hypertensive subjects. The increase in NOX5 expression is associated with increased reactive oxygen species production in these RPT cells. We suggest that the increased expression of NOX5, which is, in part, due to increased transcription, may be responsible for the increased oxidative stress in RPT cells in human essential hypertension.
•Basal levels of NOX5 mRNA and NOX5 protein in RPT cells were greater in HT than NT.•Basal level of NOX5 protein in apical membrane of RPT cells was greater in HT than NT.•NOX5-dependent oxidase activity, intra and extracellular ROS, and total membrane NADPH oxidase activity in RPT cells were greater in HT than NT.•D1-like receptor inhibition of NADPH oxidase activity is impaired in RPT cells from HT.
PMCID: PMC3969603  PMID: 24688893
NOX5; ROS; Oxidative stress; Dopamine receptor
2.  The Nicotinamide Adenine Dinucleotide Phosphate Oxidase Homologues NOX1 and NOX2/gp91phox Mediate Hepatic Fibrosis in Mice 
Hepatology (Baltimore, Md.)  2011;53(5):1730-1741.
NADPH oxidase (NOX) is a multicomponent enzyme that mediates electron transfer from NADPH to molecular oxygen, which leads to the production of superoxide. NOX2/gp91phox is a catalytic subunit of NOX expressed in phagocytic cells. Several homologues of NOX2, including NOX1, have been identified in non-phagocytic cells. We investigated the contributory role of NOX1 and NOX2 in hepatic fibrosis. Hepatic fibrosis was induced in wild-type (WT) mice, NOX1-knockout (NOX1KO) mice, and NOX2-knockout (NOX2KO) mice by either CCl4 injections or bile duct ligation (BDL). The functional contribution of NOX1 and NOX2 in endogenous liver cells, including hepatic stellate cells (HSCs), and bone marrow (BM) derived cells, including Kupffer cells (KCs), to hepatic reactive oxygen species (ROS) generation and hepatic fibrosis was assessed in vitro and in vivo using NOX1- or NOX2-BM chimeric mice. Hepatic NOX1 and NOX2 mRNA expression was increased in the two experimental mouse models of hepatic fibrosis. While NOX1 was expressed in HSCs but not in KCs, NOX2 was expressed in both HSCs and KCs. Hepatic fibrosis and ROS generation were attenuated in both NOX1KO and NOX2KO mice after CCl4 or BDL. Liver fibrosis in chimeric mice indicated that NOX1 mediates the profibrogenic effects in endogenous liver cells, while NOX2 mediates the profibrogenic effects in both endogenous liver cells and BM-derived cells. Multiple NOX1 and NOX2 components were upregulated in activated HSCs. Both NOX1- and NOX2-deficient HSCs had decreased ROS generation and failed to upregulate collagen α1(I) and TGF-β in response to angiotensin II.
Both NOX1 and NOX2 in endogenous liver cells, including HSCs, have an important role in hepatic fibrosis, while NOX2 in BM-derived cells has a lesser role.
PMCID: PMC3082608  PMID: 21384410
NADPH oxidase; oxidative stress; hepatic fibrosis; hepatic stellate cells
3.  Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase 
Free radical biology & medicine  2012;53(3):437-446.
The dopamine D2 receptor (D2R) regulates renal reactive oxygen species (ROS) production and impaired D2R function results in ROS-dependent hypertension. Paraoxonase 2 (PON2), which belongs to the paraoxonase gene family, is expressed in various tissues, acting to protect against cellular oxidative stress. We hypothesized that PON2 may be involved in preventing excessive renal ROS production and thus may contribute to maintenance of normal blood pressure. Moreover, the D2R may decrease ROS production, in part, through regulation of PON2.
D2R co-localized with PON2 in the brush border of mouse renal proximal tubules. Renal PON2 protein was decreased (-33%±6%) in D2-/- relative to D2+/+ mice. The renal subcapsular infusion of PON2 siRNA decreased PON2 protein expression (-55%), increased renal oxidative stress (2.2-fold), associated with increased renal NADPH oxidase expression (Nox1: 1.9-fold; Nox2: 2.9-fold; and Nox4: 1.6-fold) and activity (1.9-fold), and elevated arterial blood pressure (systolic: 134±5 vs. 93±6 mmHg; diastolic: 97±4 vs. 65±7 mmHg; mean: 113±4 vs. 75±7 mmHg). To determine the relevance of the PON2 and D2R interaction in humans, we studied human renal proximal tubule cells. Both D2R and PON2 were found in non-lipid and lipid rafts and physically interacted with each other. Treatment of these cells with the D2R/D3R agonist quinpirole (1μM, 24h) decreased ROS production (-35%±6%), associated with decreased NADPH oxidase activity (-32%±3%) and expression of Nox2 (-41%±7%) and Nox4 (-47%±8%) protein, and increased expression of PON2 mRNA (2.1-fold) and protein (1.6-fold) at 24h. Silencing PON2 (siRNA, 10nM, 48 h) not only partially prevented the quinpiroleinduced decrease in ROS production by 36%, but also increased basal ROS production (1.3-fold) which was associated with an increase in NADPH oxidase activity (1.4-fold) and expression of Nox2 (2.1-fold) and Nox4 (1.8-fold) protein. Inhibition of NADPH oxidase with diphenylene iodonium (10 μM/30 min) inhibited the increase in ROS production caused by PON2 silencing.
Our results suggest that renal PON2 is involved in the inhibition of renal NADPH oxidase activity and ROS production and contributes to the maintenance of normal blood pressure. PON2 is positively regulated by D2R and may, in part, mediate the inhibitory effect of renal D2R on NADPH oxidase activity and ROS production.
PMCID: PMC3408834  PMID: 22634053
Paraoxonase 2; Dopamine D2 receptor; Reactive oxygen species; NADPH oxidase; Hypertension
4.  Role of Nicotinamide Adenine Dinucleotide Phosphate–Reduced Oxidase Proteins in Pseudomonas aeruginosa–Induced Lung Inflammation and Permeability 
Earlier studies indicated a role for reactive oxygen species (ROS) in host defense against Pseudomonas aeruginosa infection. However, the role of nicotinamide adenine dinucleotide phosphate–reduced (NADPH) oxidase (NOX) proteins and the mechanism of activation for NADPH oxidase in P. aeruginosa infection are not well-defined. Here, we investigated the role of NOX2 and NOX4 proteins in P. aeruginosa infection, ROS generation, and endothelial barrier function in murine lungs and in human lung microvascular endothelial cells (HLMVECs). Airway instillation of P. aeruginosa strain 103 (PA103) significantly increased ROS concentrations in bronchial alveolar lavage (BAL) fluid, along with the expression of NOX2 and NOX4, but not NOX1 and NOX3, in lung tissue. In addition, PA103-infected HLMVECs revealed elevated concentrations of ROS, NOX2, and NOX4. In murine lungs and HLMVECs, PA103 induced the NF-κB pathway, and its inhibition blocked PA103-dependent NOX2 and NOX4 expression. Barrier function analysis showed that heat-killed PA103 induced endothelial permeability in a dose-dependent manner, which was attenuated by treatment with small interfering (si)RNA specific for NOX4, but not NOX2. Furthermore, the knockdown of NOX4, but not NOX2, with siRNA reduced PA103-mediated apoptosis in HLMVECs. In vivo, the down-regulation of NOX4 with NOX4 siRNA attenuated PA103-induced lung vascular permeability. The deletion of NOX2 in mice exerted no effect on permeability, but offered significant resistance to P. aeruginosa–induced lung inflammation. These data show that P. aeruginosa lung infection up-regulates NOX2 and NOX4 expression and ROS generation, which play distinct roles in regulating lung inflammation, apoptosis, and permeability.
PMCID: PMC3653606  PMID: 23306835
Pseudomonas aeruginosa; NADPH oxidase; reactive oxygen species; apoptosis; vascular permeability
5.  Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases 
Chronic alcohol abuse is a comorbid variable of Acute Respiratory Distress Syndrome (ARDS). Previous studies showed that, in the lung, chronic alcohol consumption increased oxidative stress and impaired alveolar macrophage (AM) function. NADPH oxidases (Nox) are the main source of reactive oxygen species (ROS) in AMs. Therefore, we hypothesized that chronic alcohol consumption increases AM oxidant stress through modulation of Nox1, Nox2 and Nox4 expression.
AMs were isolated from male C57BL/6J mice, aged 8-10 weeks, which were treated ± ethanol in drinking water (20% w/v, 12 weeks). MH-S cells, a mouse AM cell line, were treated ± ethanol (0.08%, 3 days) for in vitro studies. Selected cells were treated with apocynin (300 μM), a Nox1 and Nox2 complex formation inhibitor, or were transfected with Nox siRNAs (20-35 nM), prior to ethanol exposure. Human AMs were isolated from alcoholic and control patients’ bronchoalveolar lavage fluid. Nox mRNA levels (qRT-PCR), protein levels (western blot and immunostaining), oxidative stress (DCFH-DA and Amplex Red analysis), and phagocytosis (S. aureus internalization) were measured.
Chronic alcohol increased Nox expression and oxidative stress in mouse AMs in vivo and in vitro. Experiments using apocynin and Nox siRNAs demonstrated that ethanol-induced Nox4 expression, oxidative stress, and AM dysfunction were modulated through Nox1 and Nox2 upregulation. Further, Nox1, Nox2 and Nox4 protein levels were augmented in human AMs from alcoholics compared with controls.
Ethanol induces AM oxidative stress initially through upregulation of Nox1 and Nox2 with downstream Nox4 upregulation and subsequent impairment of AM function.
PMCID: PMC3324596  PMID: 22412195
ethanol; alveolar macrophage; NADPH oxidases; oxidative stress
6.  Erlotinib-mediated Inhibition of EGFR Signaling Induces Metabolic Oxidative Stress through NOX4 
Cancer research  2011;71(11):3932-3940.
Redox regulation of EGFR signaling helps protect cells against oxidative stress. In this study, we investigated whether the cytotoxicity of an EGFR tyrosine kinase inhibitor, erlotinib (ERL), was mediated by induction of oxidative stress in human head and neck cancer (HNSCC) cells. ERL elicited cytotoxicity in vitro and in vivo while increasing a panel of oxidative stress parameters which were all reversible by the antioxidant N-acetyl cysteine. Knockdown of EGFR using siRNA similarly increased these oxidative stress parameters. Overexpression of mitochondrial targeted catalase but not superoxide dismutase reversed ERL-induced cytotoxicity. Consistent with a general role for NADPH oxidase (NOX) enzymes in ERL-induced oxidative stress, ERL-induced cytotoxicity was reversed by diphenylene iodonium, a NOX complex inhibitor. ERL reduced the expression of NOX1, NOX2 and NOX5 but induced the expression of NOX4. Knockdown of NOX4 using siRNA protected HNSCC cells from ERL-induced cytotoxicity and oxidative stress. Our findings support the concept that ERL-induced cytotoxicity is based upon a specific mechanism of oxidative stress mediated by hydrogen peroxide production through NOX4 signaling.
PMCID: PMC3217301  PMID: 21482679
Erlotinib; EGFR; NAC; oxidative stress; NOX4
7.  Endothelial NADPH oxidase 4 mediates vascular endothelial growth factor receptor 2–induced intravitreal neovascularization in a rat model of retinopathy of prematurity 
Molecular Vision  2014;20:231-241.
NADPH oxidase–generated reactive oxygen species (ROS) are implicated in angiogenesis. Isoforms of NADPH oxidase NOX1, NOX2, and NOX4 are reported to be expressed in endothelial cells (ECs). Of these, NOX1 and NOX2 have been reported to contribute to intravitreal neovascularization (IVNV) in oxygen-induced retinopathy (OIR) models. In this study, we tested the hypothesis that the isoform NOX4 in ECs contributed to vascular endothelial growth factor (VEGF)–induced angiogenesis and IVNV.
Isoforms of NADPH oxidase mRNA were measured in several types of cultured vascular ECs: human retinal microvascular ECs (hRMVECs), choroidal ECs (CECs), and human umbilical vascular ECs (HUVECs) using real-time PCR. Newborn rat pups and dams were placed into an OIR model that cycled oxygen concentration between 50% and 10% every 24 h for 14 days, and then were placed in room air (RA) for an additional 4 days (rat OIR model). NOX4 expression in retinal lysates from the RA–raised pups at postnatal day 0 (P0), P14, and P18 was determined with western blots. STAT3 activation was determined as the ratio of phosphorylated STAT3 to total STAT3 with western blot analysis of retinal lysates from pups raised in RA or from the rat OIR model at P18. Semiquantitative assessment of the density of NOX4 colabeling with lectin-stained retinal ECs was determined by immunolabeling of retinal cryosections from P18 pups in OIR or in RA. In hRMVECs transfected with NOX4 siRNA and treated with VEGF or control, 1) ROS generation was measured using the 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester fluorescence assay and 2) phosphorylated VEGF receptor 2 and STAT3, and total VEGFR2 and STAT3 were measured in western blot analyses. VEGF-stimulated hRMVEC proliferation was measured following transfection with NOX4 siRNA or STAT3 siRNA, or respective controls.
NOX4 was the most prevalent isoform of NADPH oxidase in vascular ECs. NOX4 expression in retinal lysates was significantly decreased during development in RA. Compared to RA, the expression of retinal NOX4 increased at P18. At p18 OIR, semiquantitative assessment of the density of lectin and NOX4 colabeling in retinal vascular ECs was greater in retinal cryosections and activated STAT3 was greater in retinal lysates when compared to the RA-raised pups. In cultured hRMVECs, knockdown of NOX4 by siRNA transfection inhibited VEGF-induced ROS generation. VEGF induced a physical interaction of phosphorylated-VEGFR2 and NOX4. Knockdown of NOX4: 1) reduced VEGFR2 activation but did not abolish it and 2) abolished STAT3 activation in response to VEGF. Knockdown of either NOX4 or STAT3 inhibited VEGF-induced EC proliferation.
Our data suggest that in a model representative of human retinopathy of prematurity, NOX4 was increased at a time point when IVNV developed. VEGF-activated NOX4 led to an interaction between VEGF-activated VEGFR2 and NOX4 that mediated EC proliferation via activation of STAT3. Altogether, our results suggest that NOX4 may regulate VEGFR2-mediated IVNV through activated STAT3.
PMCID: PMC3945806  PMID: 24623966
8.  The Involvement of the Tyrosine Kinase c-Src in the Regulation of Reactive Oxygen Species Generation Mediated by NADPH Oxidase-1 
Molecular Biology of the Cell  2008;19(7):2984-2994.
NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been shown to function as second messenger molecules. To date, seven members of this family have been reported, including Nox1-5 and Duox1 and -2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and it requires two cytosolic regulators, NoxO1 and NoxA1, as well as the binding of Rac1 GTPase, for its activity. In this study, we investigate the role of the tyrosine kinase c-Src in the regulation of ROS formation by Nox1. We show that c-Src induces Nox1-mediated ROS generation in the HT29 human colon carcinoma cell line through a Rac-dependent mechanism. Treatment of HT29 cells with the Src inhibitor PP2, expression of a kinase-inactive form of c-Src, and c-Src depletion by small interfering RNA (siRNA) reduce both ROS generation and the levels of active Rac1. This is associated with decreased Src-mediated phosphorylation and activation of the Rac1-guanine nucleotide exchange factor Vav2. Consistent with this, Vav2 siRNA that specifically reduces endogenous Vav2 protein is able to dramatically decrease Nox1-dependent ROS generation and abolish c-Src-induced Nox1 activity. Together, these results establish c-Src as an important regulator of Nox1 activity, and they may provide insight into the mechanisms of tumor formation in colon cancers.
PMCID: PMC2441655  PMID: 18463161
9.  NOX4 promotes non-small cell lung cancer cell proliferation and metastasis through positive feedback regulation of PI3K/Akt signaling 
Oncotarget  2014;5(12):4392-4405.
NADPH oxidase 4 (NOX4) is deregulated in various cancers and involved in cancer proliferation and metastasis. However, what the role of NOX4 plays during malignant progression of non-small cell lung cancer (NSCLC) remains unknown. Our results show that NOX4 was upregulated in NSCLC cell lines and samples from patients, compared with controls; NOX4 protein levels were closely correlated with clinical disease stage and survival time. Overexpression of NOX4 in A549 and H460 NSCLC cells enhanced cell proliferation and invasion in vitro, and produced larger tumors, shorter survival time, and more lung metastasis in nude mice than control cells. On the contrary, NOX4 depletion inhibited NSCLC cell aggressiveness. Inhibition of PI3K/Akt pathway could sufficiently block the cellular effects of NOX4 overexpression in NSCLC cells both in vitro and in vivo. Specifically, we demonstrated that PI3K/Akt pathway also positively regulated NOX4 expression via NF-κB-mediated manner. Therefore, there existed a mutual positive regulation between NOX4 and PI3K/Akt signaling in NSCLC cells, and NOX4 was confirmed to functionally interplay with PI3K/Akt signaling to promote NSCLC cell proliferation and invasion. In conclusion, the positive feedback loop between NOX4 and PI3K/Akt signaling contributes to NSCLC progression.
PMCID: PMC4147332  PMID: 24946933
NOX4; non-small cell lung cancer; proliferation; metastasis; PI3K/Akt signaling
10.  Regulation of NADPH Oxidase 5 by Protein Kinase C Isoforms 
PLoS ONE  2014;9(2):e88405.
NADPH oxidase5 (Nox5) is a novel Nox isoform which has recently been recognized as having important roles in the pathogenesis of coronary artery disease, acute myocardial infarction, fetal ventricular septal defect and cancer. The activity of Nox5 and production of reactive oxygen species is regulated by intracellular calcium levels and phosphorylation. However, the kinases that phosphorylate Nox5 remain poorly understood. Previous studies have shown that the phosphorylation of Nox5 is PKC dependent, but this contention was based on the use of pharmacological inhibitors and the isoforms of PKC involved remain unknown. Thus, the major goals of this study were to determine whether PKC can directly regulate Nox5 phosphorylation and activity, to identify which isoforms are involved in the process, and to understand the functional significance of this pathway in disease. We found that a relatively specific PKCα inhibitor, Ro-32-0432, dose-dependently inhibited PMA-induced superoxide production from Nox5. PMA-stimulated Nox5 activity was significantly reduced in cells with genetic silencing of PKCα and PKCε, enhanced by loss of PKCδ and the silencing of PKCθ expression was without effect. A constitutively active form of PKCα robustly increased basal and PMA-stimulated Nox5 activity and promoted the phosphorylation of Nox5 on Ser490, Thr494, and Ser498. In contrast, constitutively active PKCε potently inhibited both basal and PMA-dependent Nox5 activity. Co-IP and in vitro kinase assay experiments demonstrated that PKCα directly binds to Nox5 and modifies Nox5 phosphorylation and activity. Exposure of endothelial cells to high glucose significantly increased PKCα activation, and enhanced Nox5 derived superoxide in a manner that was in prevented by a PKCα inhibitor, Go 6976. In summary, our study reveals that PKCα is the primary isoform mediating the activation of Nox5 and this maybe of significance in our understanding of the vascular complications of diabetes and other diseases with increased ROS production.
PMCID: PMC3914983  PMID: 24505490
11.  A pilot study of urinary microRNA as a biomarker for urothelial cancer 
MicroRNAs (miRNAs) are part of a class of small ribonucleic acid (RNAs). They are important regulatory molecules, involved in several cell processes, such as developmental timing, stem cell division and apoptosis. Dysregulated miRNAs have been identified in several human malignancies, including bladder cancer tissue samples, and may confer a “tumour signature” that can be exploited for diagnostic purposes. We report on a prospective pilot study investigating the diagnostic capability of miRNAs in the urine of patients with urothelial cancer.
Voided urine samples were collected from patients with urothelial carcinoma just prior to bladder tumour resection, as well as age-matched healthy control patients. Pathology demonstrated both low- and high-grade cancer. Total RNA was isolated and quantitative reverse transcriptase-polymerase chain reaction was performed on the RNA extracts using primers for 4 miRNAs shown previously to be dysregulated in solid urothelial carcinomas with RNU6B as the endogenous control. Standard urine cytology was performed on all samples in a blinded fashion.
Two miRNAs of interest were dysregulated in the urine from cancer patients with miR-125b showing an average 10.42-fold decrease (p < 0.01) and miR-126 showing an average 2.70-fold increase (p = 0.30) in the cancer samples compared to the normal controls. The sensitivity and specificity of the cytology on the same urine samples were 50% and 80%, respectively. Using these 2 miRNAs only, a decision-tree prediction model was generated for a validation cohort of patients yielding a specificity of 100% and a sensitivity of 80%.
This preliminary study of candidate urinary miRNA in patients with low- and high-grade urothelial cancer demonstrated a significantly improved diagnostic accuracy over cytology. These results provide rationale for further studies on discovery and validation of candidate miRNAs in voided urine and may potentially lead to the development of a non-invasive and sensitive test for bladder cancer diagnosis and prognosis.
PMCID: PMC3650814  PMID: 22630336
12.  Direct interaction between Tks proteins and the N-terminal Proline Rich Region (PRR) of NoxA1 mediates Nox1-dependent ROS generation 
European journal of cell biology  2010;90(2-3):164-171.
NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date 7 members of this family have been reported, including Nox1–5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47phox-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior.
Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67phox, which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5.
Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.
PMCID: PMC3013238  PMID: 20609497
NADPH oxidase; Nox1; NoxA1; p67phox; Reactive Oxygen Species (ROS); Tks proteins; Invadopodia; Cancer
13.  Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-mesenchymal transition and migration of breast epithelial cells 
Free radical biology & medicine  2012;53(7):1489-1499.
The epithelial-to-mesenchymal transition (EMT) is the development of increased cell plasticity that occurs normally during wound healing and embryonic development and can be coopted for cancer invasion and metastasis. TGF-beta induces EMT but the mechanism is unclear. Our studies suggest Nox4, a member of the NADPH oxidase (Nox) family, is a source of reactive oxygen species (ROS) affecting cell migration and fibronectin expression, an EMT marker, in normal and metastatic breast epithelial cells. We found TGF-beta induces Nox4 expression (mRNA and protein) and ROS generation in normal (MCF10A) and metastatic (MDA-MB-231) human breast epithelial cells. Conversely, cells expressing a dominant-negative form of Nox4 or Nox4-targeted shRNA showed significantly lower ROS production upon TGF-beta treatment. Expression of a constitutively active TGF-beta receptor type I significantly increased Nox4 promoter activity, mRNA and protein expression, and ROS generation. Nox4 transcriptional regulation by TGF-beta was SMAD3-dependent based on the effect of constitutively active SMAD3 increasing Nox4 promoter activity, whereas dominant-negative SMAD3 or SIS3, a SMAD3-specific inhibitor, had the opposite effect. Furthermore, Nox4 knockdown, dominant-negative Nox4 or SMAD3, or SIS3 blunted TGF-beta induced wound healing and cell migration, whereas cell proliferation was not effected. Our experiments further indicate Nox4 plays a role in TGF-beta regulation of fibronectin mRNA expression, based on the effects of dominant-negative Nox4 in reducing fibronectin mRNA in TGF-beta treated MDA-MB-231and MCF10A cells. Collectively, these data indicate Nox4 contributes to NADPH oxidase-dependent ROS production that may be critical for progression of the EMT in breast epithelial cells, and thereby has therapeutic implications.
PMCID: PMC3448829  PMID: 22728268
NADPH oxidase 4 (Nox4); Cell Migration; TGF-beta signaling; Epithelial-to-Mesenchymal Transition (EMT)
14.  Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury 
Brain injury results in an increase in the activity of the reactive oxygen species generating NADPH oxidase (NOX) enzymes. Preliminary studies have shown that NOX2, NOX3, and NOX4 are the most prominently expressed NOX isotypes in the brain. However, the cellular and temporal expression profile of these isotypes in the injured and non-injured brain is currently unclear.
Double immunofluorescence for NOX isotypes and brain cell types was performed at acute (24 hours), sub-acute (7 days), and chronic (28 days) time points after controlled cortical impact-induced brain injury or sham-injury in rats.
NOX2, NOX3, and NOX4 isotypes were found to be expressed in neurons, astrocytes, and microglia, and this expression was dependent on both cellular source and post-injury time. NOX4 was found in all cell types assessed, while NOX3 was positively identified in neurons only, and NOX2 was identified in microglia and neurons. NOX2 was the most responsive to injury, increasing primarily in microglia in response to injury. Quantitation of this isotype showed a significant increase in NOX2 expression at 24 hours, with reduced expression at 7 days and 28 days post-injury, although expression remained above sham levels at later time points. Cellular confirmation using purified primary or cell line culture demonstrated similar patterns in microglia, astrocytes, and neurons. Further, inhibition of NOX, and more specifically NOX2, reduced pro-inflammatory activity in microglia, demonstrating that NOX is not only up-regulated after stimulation, but may also play a significant role in post-injury neuroinflammation.
This study illustrates the expression profiles of NOX isotypes in the brain after injury, and demonstrates that NOX2, and to a lesser extent, NOX4, may be responsible for the majority of oxidative stress observed acutely after traumatic brain injury. These data may provide insight into the design of future therapeutic approaches.
PMCID: PMC3878417  PMID: 24344836
Animal studies; Models of injury; Oxidative stress; Traumatic brain injury
15.  Up-regulation of BLT2 is critical for the survival of bladder cancer cells 
Experimental & Molecular Medicine  2011;43(3):129-137.
The incidence rates of urinary bladder cancer continue to rise yearly, and thus new therapeutic approaches and early diagnostic markers for bladder cancer are urgently needed. Thus, identifying the key mediators and molecular mechanisms responsible for the survival of bladder cancer has valuable implications for the development of therapy. In this study, the role of BLT2, a receptor for leukotriene B4 (LTB4) and 12(S)-hydroxyeicosatetraenoic acid (HETE), in the survival of bladder cancer 253J-BV cells was investigated. We found that the expression of BLT2 is highly elevated in bladder cancer cells. Also, we observed that blockade of BLT2 with an antagonist or BLT2 siRNA resulted in cell cycle arrest and apoptotic cell death, suggesting a role of BLT2 in the survival of human bladder cancer 253J-BV cells. Further experiments aimed at elucidating the mechanism by which BLT2 mediates survival revealed that enhanced level of reactive oxygen species (ROS) are generated via a BLT2-dependent up-regulation of NADPH oxidase members NOX1 and NOX4. Additionally, we observed that inhibition of ROS generation by either NOX1/4 siRNAs or treatment with an ROS-scavenging agent results in apoptotic cell death in 253J-BV bladder cancer cells. These results demonstrated that a 'BLT2-NOX1/4-ROS' cascade plays a role in the survival of this aggressive bladder cancer cells, thus pointing to BLT2 as a potential target for anti-bladder cancer therapy.
PMCID: PMC3068295  PMID: 21252614
biological markers; cell survival; LTB4R2 protein, human; NADPH oxidase; reactive oxygen species; urinary bladder neoplasms
16.  Effects of Iodonium-Class Flavin Dehydrogenase Inhibitors on Growth, Reactive Oxygen Production, Cell Cycle Progression, NADPH Oxidase 1 Levels, and Gene Expression in Human Colon Cancer Cells and Xenografts 
Iodonium-class flavoprotein dehydrogenase inhibitors have been demonstrated to possess antiproliferative potential and to inhibit reactive oxygen production in human tumor cells, although the mechanism(s) that explain the relationship between altered cell growth and the generation of reactive oxygen species (ROS) remain an area of active investigation. Because of the ability of these compounds to inhibit the activity of flavoprotein-containing epithelial NADPH oxidases, we chose to examine the effects of several iodonium-class flavoprotein inhibitors on human colon cancer cell lines that express high, functional levels of a single such oxidase (NADPH oxidase 1 [Nox1]). We found that diphenylene iodonium (DPI), di-2-thienyliodonium (DTI), and iodoniumdiphenyl inhibited the growth of Caco2, HT-29, and LS-174T colon cancer cells at concentrations (10–250 nM for DPI, 0.5–2.5 μM for DTI, and 155 nM to 10 μM for iodoniumdiphenyl) substantially lower than for DU145 human prostate cancer cells that do not possess functional NADPH oxidase activity. Drug treatment was associated with decreased H2O2 production and diminished intracellular ROS levels, lasting up to 24 hr, following short-term (1-hr) exposure to the iodonium analogs. Decreased tumor cell proliferation was caused, in part, by a profound block in cell cycle progression at the G1/S interface in both LS-174T and HT-29 cells exposed to either DPI or DTI; and the G1 block was produced, for LS-174T cells, by upregulation of p27 and a drug concentration-related decrease in the expression of cyclins D1, A, and E that was partially prevented by exogenous H2O2. Not only did DPI and DTI decrease intracellular ROS, they both also significantly decreased the mRNA expression levels of Nox1, potentially contributing to the prolonged reduction in tumor cell reactive oxygen levels. We also found that DPI and DTI significantly decreased the growth of both HT-29 and LS-174T human tumor xenografts, at dose levels that produced peak plasma concentrations similar to those utilized for our in vitro experiments. These findings suggest that iodonium analogs have therapeutic potential for NADPH oxidase-containing human colon cancers in vivo, and that at least part of their antineoplastic mechanism of action may be related to targeting Nox1.
PMCID: PMC3594408  PMID: 23314043
NADPH oxidase; Nox1; diphenyleneiodonium; colon cancer; gene expression
17.  Distinct Roles of Nox1 and Nox4 in Basal and Angiotensin II-Stimulated Superoxide and Hydrogen Peroxide Production 
Free radical biology & medicine  2008;45(9):1340-1351.
NADPH oxidases are major sources of superoxide (O2∸) and hydrogen peroxide (H2O2) in vascular cells. Production of these reactive oxygen species (ROS) is essential for cell proliferation and differentiation, while ROS overproduction has been implicated in hypertension and atherosclerosis. It is known that the heme-containing catalytic subunits Nox1 and Nox4 are responsible for oxygen reduction in vascular smooth muscle cells from large arteries. However, the exact mechanism of ROS production by NADPH oxidases is not completely understood. We hypothesized that Nox1 and Nox4 play distinct roles in basal and angiotensin II (AngII)-stimulated production of O2∸ and H2O2. Nox1 and Nox4 expression in rat aortic smooth muscle cells (RASMCs) was selectively reduced by treatment with siNox4 or antisense Nox1 adenovirus. Production of O2∸ and H2O2 in intact RASMCs was analyzed by dihydroethidium and Amplex Red assay. Activity of NADPH oxidases was measured by NADPH-dependent O2∸ and H2O2 production using electron spin resonance (ESR) and 1-hydroxy-3-carboxy-pyrrolidine (CPH) in the membrane fraction in the absence of cytosolic superoxide dismutase. It was found that production of O2∸ by quiescent RASMC NADPH oxidases was five times less than H2O2 production. Stimulation of cells with AngII led to a 2-fold increase of O2∸ production by NADPH oxidases, with a small 15 to 30% increase in H2O2 formation. Depletion of Nox4 in RASMC led to diminished basal H2O2 production, but did not affect O2∸ or H2O2 production stimulated by AngII. In contrast, depletion of Nox1 in RASMC inhibited production of O2∸ and AngII-stimulated H2O2 in the membrane fraction and intact cells. Our data suggest that Nox4 produces mainly H2O2, while Nox1 generates mostly O2∸ that is later converted to H2O2. Therefore, Nox4 is responsible for basal H2O2 production, while O2∸ production in non-stimulated and AngII-stimulated cells depends on Nox1. The difference in the products generated by Nox1 and Nox4 may help to explain the distinct roles of these NADPH oxidases in cell signaling. These findings also provide important insight into the origin of H2O2 in vascular cells, and may partially account for the limited pharmacological effect of antioxidant treatments with O2∸ scavengers that do not affect H2O2.
PMCID: PMC2630771  PMID: 18760347
18.  Nitric Oxide reduces NADPH oxidase 5 (Nox5) activity by reversible S-nitrosylation 
Free radical biology & medicine  2012;52(9):1806-1819.
The NADPH oxidases (Nox) are a family of transmembrane oxidoreductases that produce superoxide and other reactive oxygen species (ROS). Nox5 was the last of the conventional Nox isoforms to be identified and is a calcium-dependent enzyme that does not depend on accessory subunits for activation. Recently, Nox5 was shown to be expressed in human blood vessels and therefore the goal of current study was to determine whether nitric oxide (NO) can modulate Nox5 activity. Endogenously produced NO potently inhibited basal and stimulated Nox5 activity and inhibition was reversible with chronic, but not acute exposure to L-NAME. Nox5 activity was reduced by NO donors, iNOS, eNOS and in endothelial cells and LPS-stimulated smooth muscle cells in a manner dependent on NO concentration. ROS production was diminished by NO in an isolated enzyme activity assay replete with surplus calcium and NADPH. There was no evidence for NO-dependent changes in tyrosine nitration, glutathiolation or phosphorylation of Nox5. In contrast, there was evidence for the increased nitrosylation of Nox5 as determined by the biotin-switch assay and mass spectrometry. Four S-nitrosylation sites were identified and of these, mutation of C694 dramatically lowered Nox5 activity, NO-sensitivity and biotin-labeling. Furthermore, co-expression of the denitrosylation enzymes thioredoxin (Trx1) and GSNO reductase (GSNOR) prevented NO-dependent inhibition of Nox5. The potency of NO against other Nox enzymes was Nox1≥Nox3>Nox5>Nox2 whereas Nox4 was refractory. Collectively, these results suggest that endogenously produced NO can directly S-nitrosylate and inhibit the activity of Nox5.
PMCID: PMC3464050  PMID: 22387196
Nitric oxide; NADPH oxidase; S-nitrosylation; Reactive Oxygen Species; Nox5
19.  A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells 
ACS chemical biology  2010;5(10):981-993.
The NADPH oxidase (Nox) proteins catalyze the regulated formation of reactive oxygen species (ROS) which play key roles as signaling molecules in several physiological and pathophysiological processes. ROS generation by the Nox1 member of the Nox family is necessary for the formation of extracellular matrix (ECM)-degrading, actin-rich cellular structures known as invadopodia. Selective inhibition of Nox isoforms can provide reversible, mechanistic insights into these cellular processes in contrast to scavenging or inhibition of ROS production. Currently no specific Nox inhibitors have been described. Here, by high-throughput screening, we identify a sub-set of phenothiazines, 2-acetylphenothiazine (here referred to as ML171) (and its related 2-(trifluoromethyl)-phenothiazine) as nanomolar, cell-active and specific Nox1 inhibitors that potently block Nox1-dependent ROS generation, with only marginal activity on other cellular ROS-producing enzymes and receptors including the other Nox isoforms. ML171 also blocks the ROS-dependent formation of ECM-degrading invadopodia in colon cancer cells. Such effects can be reversed by overexpression of Nox1 protein, which is suggestive of a selective mechanism of inhibition of Nox1 by this compound. These results elucidate the relevance of Nox1-dependent ROS generation in mechanisms of cancer invasion, and define ML171 as a useful Nox1 chemical probe and a potential therapeutic agent for inhibition of cancer cell invasion.
PMCID: PMC2955773  PMID: 20715845
20.  NADPH Oxidase-4 Mediates Myofibroblast Activation and Fibrogenic Responses to Lung Injury 
Nature medicine  2009;15(9):1077-1081.
The NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to form reactive oxygen species (ROS), have increased in number during eukaryotic evolution1,2. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated3,4. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants5,6. The prototypical member of this family, NOX2 (gp91phox), is expressed in phagocytic cells and mediates microbicidal activities7,8. Here, we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX4 expression in lung mesenchymal cells by a SMAD3-dependent mechanism. NOX4-dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1-induced myofibroblast differentiation, extracellular matrix (ECM) production, and contractility. NOX4 is upregulated in lungs of mice subjected to non-infectious injury and in human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX4 abrogates fibrogenesis in two different murine models of lung injury. These studies support a novel function for NOX4 in tissue fibrogenesis and provide proof-of-concept for therapeutic targeting of NOX4 in recalcitrant fibrotic disorders.
PMCID: PMC2743335  PMID: 19701206
21.  Primary Involvement of NADPH Oxidase 4 in Hypoxia-Induced Generation of Reactive Oxygen Species in Adipose-Derived Stem Cells 
Stem Cells and Development  2011;21(12):2212-2221.
We have previously demonstrated that hypoxia stimulates adipose-derived stem cells (ASCs) through the generation of reactive oxygen species (ROS). However, the precise mechanism involved in the ROS generation by ASCs is not well understood. We sought to investigate in this work: (1) which subtype of NADPH oxidase (Nox) is primarily expressed in ASCs; (2) where Nox4 is localized in ASCs; and (3) whether silencing of Nox4 attenuates hypoxia-enhanced function of ASC. We used 2′,7′-dichlorofluorescin diacetate (DCF-DA) as an indicator of ROS generation and found that the fluorescence intensity of DCF-DA was significantly increased after hypoxia exposure (2% oxygen). In addition, hypoxia enhanced the proliferation and migration of ASCs and upregulated the mRNA expression of Oct4 and Rex1. Quantitative analysis of mRNA expression of Nox family in ASCs demonstrated that Nox4 is primarily expressed in ASCs, while immunofluorescence assay showed that Nox4 is mainly localized in the perinuclear region and overlaps with Mitotracker, a mitochondria marker. Silencing of Nox4 by siRNA treatment downregulated the RNA and protein expression of Nox4, which significantly reduced the ROS generation under hypoxia. In addition, Nox4 silencing significantly reduced the proliferation and migration of ASCs and downregulated the mRNA expression of Oct4 and Rex1. Phosphorylation of platelet-derived growth factor receptor-β, AKT, and ERK1/2 also diminished following Nox4 silencing. In a nutshell, these results suggest that Nox4 is primarily expressed in ASCs and plays a pivotal role in the hypoxia-enhanced stimulation of ASCs.
PMCID: PMC3411360  PMID: 22181007
22.  NADPH oxidase 4 is an oncoprotein localized to mitochondria 
Cancer Biology & Therapy  2010;10(3):223-231.
Reactive oxygen species (ROS) are known to be involved in many physiological and pathological processes. Initially ROS-producing NADPH oxidase (NOX) proteins were thought to be present in phagocytes. However, recent studies have demonstrated that NOX proteins are expressed in many other cell types and tissues. NOX family members' expression and function seems to vary from tissue to tissue. We determined the expression of the NOX family of proteins (NOX1-5) in normal breast tissue and breast tumors. Our study revealed that normal breast tissues express NOX1, 4 and 5 genes. Similar pattern of expression was revealed in a breast epithelial cell line. We found that NOX4 was overexpressed in the majority of breast cancer cell lines and primary breast tumors. NOX4 was also overexpressed in ovarian tumors. Overexpression of NOX4 in normal breast epithelial cells resulted in cellular senescence, resistance to apoptosis, and tumorigenic transformation. Overexpression of NOX4 in already transformed breast tumor cells also showed increased tumorigenicity. Strong evidence suggests that regulation of these processes occurs through NOX4 generation of ROS in the mitochondria. We demonstrate that the NOX4 protein contains a 73 amino acid long mitochondrial localization signal at the N-terminus that is capable of transporting a passenger protein GFP into the mitochondria. Treatment of NOX4 overexpressing cells with catalase resulted in decreased tumorigenic characteristics. Together, this study provides evidence for an oncogenic function for NOX4 protein localized to mitochondria and suggests that NOX4 is a novel source of ROS produced in the mitochondria. This study also identifies a possible treatment of NOX4-induced breast cancer by antioxidant treatment.
PMCID: PMC3040835  PMID: 20523116
NADPH oxidase 4; breast cancer; oncogenesis; catalase
23.  Expression of NADPH Oxidase (NOX) 5 in Rabbit Corneal Stromal Cells 
PLoS ONE  2012;7(4):e34440.
To determine whether NOX 5 is expressed in rabbit corneal stromal cells (RCSC). NADPH oxidases (NOXes) are enzymes that preferentially use NADPH as a substrate and generate superoxide. Several isoforms of NOXes function as multi-protein complexes while NOX5 and DUOXs do not require the accessory proteins for their activity and possess calcium binding EF hands.
Human NOX5 primers were used to amplify the rabbit NOX5 by RT-PCR. Amplified product was sequenced to confirm its identity. The protein encoded by the NOX5 was identified by western blot analysis. NOX5 siRNA was used to reduce transcript, protein, and calcium stimulated activity. In silico analyses were performed to establish the putative structure, functions, and evolution of rabbit NOX5.
NOX activity was measured in RCSC with NADPH rather than NADH as a substrate. RT-PCR with NOX5 primers amplified 288 bp product using RCSC cDNA, which, when sequenced, confirmed its identity to human NOX5 mRNA. This sequence was used to predict the rabbit (Oryctolagus cuniculus) NOX5 gene. NOX5 siRNA reduced amounts of NOX5 mRNA in RCSC and reduced ionomycin stimulated superoxide production. A protein of about 65 to 70 kDa encoded by the NOX5 was detected by western blot analysis. In silico analysis predicted a putative rabbit NOX5 protein containing 801 amino acids. Motif searches predicted the presence of at least 3 putative EF-hands in N-terminus and a NOX domain in C terminal region.
The data document that the NOX5 gene was expressed in cells of lagomorphs unlike rodents, making the rabbit an interesting model to study NOX5 functions. The activity of the rabbit NOX5 was calcium stimulated, a trait of NOX5 in general. NOX5 may also prove to be a useful genetic marker for studying the taxonomic position of lagomorphs and the Glires classification.
PMCID: PMC3325249  PMID: 22511941
24.  NOX2-derived reactive oxygen species are crucial for CD29-induced pro-survival signalling in cardiomyocytes 
Cardiovascular Research  2011;93(3):454-462.
The highly expressed cell adhesion receptor CD29 (β1-integrin) is essential for cardiomyocyte growth and survival, and its loss of function causes severe heart disease. However, CD29-induced signalling in cardiomyocytes is ill defined and may involve reactive oxygen species (ROS). A decisive source of cardiac ROS is the abundant NADPH oxidase (NOX) isoform NOX2. Because understanding of NOX-derived ROS in the heart is still poor, we sought to test the role of ROS and NOX in CD29-induced survival signalling in cardiomyocytes.
Methods and results
In neonatal rat ventricular myocytes, CD29 activation induced intracellular ROS formation (oxidative burst) as assessed by flow cytometry using the redox-sensitive fluorescent dye dichlorodihydrofluorescein diacetate. This burst was inhibited by apocynin and diphenylene iodonium. Further, activation of CD29 enhanced NOX activity (lucigenin-enhanced chemiluminescence) and activated the MEK/ERK and PI3K/Akt survival pathways. CD29 also induced phosphorylation of the inhibitory Ser9 on the pro-apoptotic kinase glycogen synthase kinase-3β in a PI3K/Akt- and MEK-dependent manner, and improved cardiomyocyte viability under conditions of oxidative stress. The ROS scavenger MnTMPyP or adenoviral co-overexpression of the antioxidant enzymes superoxide dismutase and catalase inhibited CD29-induced pro-survival signalling. Further, CD29-induced protective pathways were lost in mouse cardiomyocytes deficient for NOX2 or functional p47phox, a regulatory subunit of NOX.
p47phox-dependent, NOX2-derived ROS are mandatory for CD29-induced pro-survival signalling in cardiomyocytes. These findings go in line with a growing body of evidence suggesting that ROS can be beneficial to the cell and support a crucial role for NOX2-derived ROS in cell survival in the heart.
PMCID: PMC3282577  PMID: 22198504
NOX; Reactive oxygen species; β1-Integrin; Cardiomyocytes; Glycogen synthase kinase-3β
25.  Cyclooxygenase 2-dependent and independent activation of Akt through casein kinase 2α contributes to human bladder cancer cell survival 
BMC Urology  2011;11:8.
Survival rate for patients presenting muscle invasive bladder cancer is very low, and useful therapeutic target has not been identified yet. In the present study, new COX2 downstream signals involved in urothelial carcinoma cell survival were investigated in vitro and in vivo.
COX2 gene was silenced by siRNA transfection. Orthotopic implantation animal model and transurethral instillation of siRNA with atelocollagen was constructed to examine the effects of COX2 knockdown in vivo. Cell cycle was examined by flowcytoketry. Surgical specimens derived from patients with urinary bladder cancer (all were initially diagnosed cases) were used for immunohistochemical analysis of the indicated protein expression in urothelial carcinoma cells.
Treatment with the COX2 inhibitor or knockdown of COX2 reduced expression of casein kinase (CK) 2 α, a phophorylated Akt and urokinase type plasminogen activator (uPA), resulting in p27 induction, cell cycle arrest at G1 phase and cell growth suppression in human urothelial carcinoma cell lines expressing COX2. Silencing of CK2α exhibited the similar effects. Even in UMUC3 cells lacking the COX2 gene, COX2 inhibition also inhibited cell growth through down-regulation of the CK2α-Akt/uPA axis. The mouse orthotropic bladder cancer model demonstrated that the COX2 inhibitor, meloxicam significantly reduced CK2α, phosphorylated Akt and uPA expression, whereas induced p27 by which growth and invasiveness of bladder cancer cells were strongly inhibited. Immunohistochemically, high expression of COX2, CK2α and phosphorylated form of Akt was found in high-grade, invasive carcinomas as well as carcinoma in situ, but not in low-grade and noninvasive phenotypes.
COX2-dependent and independent activation of CK2α-Akt/uPA signal is mainly involved in urothelial carcinoma cell survival, moreover, not only COX2 but also CK2α could be direct targets of COX2 inhibitors.
PMCID: PMC3111585  PMID: 21592330
cyclooxygenase 2; urothelial carcinoma; casein kinase 2α; Akt

Results 1-25 (882009)