PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (952836)

Clipboard (0)
None

Related Articles

1.  Impulse control disorders in Parkinson’s disease: recent advances 
Current opinion in neurology  2011;24(4):324-330.
Purpose of review
To review the recent advances in the epidemiology and pathophysiology of impulse control disorders (ICD) in Parkinson’s disease (PD).
Recent findings
Large cross-sectional and case-control multicentre studies show that ICDs in PD are common with a frequency of 13.6%. These behaviours are associated with impaired functioning and with depressive, anxiety and obsessive symptoms, novelty seeking and impulsivity. Behavioural subtypes demonstrate differences in novelty seeking and impulsivity suggesting pathophysiological differences. Observational and neurophysiological studies point towards a potential mechanistic overlap between the behavioural (ICDs) and motor (dyskinesias) dopaminergic sequelae. Converging data suggest dopamine agonists in ICDs appear to enhance learning from rewarding outcomes and impulsive choice. ICD patients also have enhanced risk preference and impaired working memory. Neuroimaging data points towards enhanced bottom-up ventral striatal dopamine release to incentive cues, gambling tasks and reward prediction, and possibly inhibition of top-down orbitofrontal influences. Dopamine agonist-related ventral striatal hypoactivity to risk is consistent with impaired risk evaluation.
Summary
Recent large scale studies and converging findings are beginning to provide an understanding of mechanisms underlying ICDs in PD which can guide prevention of these behaviours and optimize therapeutic approaches.
doi:10.1097/WCO.0b013e3283489687
PMCID: PMC3154756  PMID: 21725242
Impulse control disorders; Parkinson’s disease; dopamine agonists; pathological gambling; impulsivity
2.  Ventral Striatal Dopamine Synthesis Capacity Predicts Financial Extravagance in Parkinson’s Disease 
Impulse control disorders (ICDs), including disordered gambling, can occur in a significant number of patients with Parkinson’s disease (PD) receiving dopaminergic therapy. The neurobiology underlying susceptibility to such problems is unclear, but risk likely results from an interaction between dopaminergic medication and a pre-existing trait vulnerability. Impulse control and addictive disorders form part of a broader psychopathological spectrum of disorders, which share a common underlying genetic vulnerability, referred to as externalizing. The broad externalizing risk factor is a continuously varying trait reflecting vulnerability to various impulse control problems, manifested at the overt level by disinhibitory symptoms and at the personality level by antecedent traits such as impulsivity and novelty/sensation seeking. Trait “disinhibition” is thus a core endophenotype of ICDs, and a key target for neurobiological investigation. The ventral striatal dopamine system has been hypothesized to underlie individual variation in behavioral disinhibition. Here, we examined whether individual differences in ventral striatal dopamine synthesis capacity predicted individual variation in disinhibitory temperament traits in individuals with PD. Eighteen early-stage male PD patients underwent 6-[18F]Fluoro-l-DOPA (FDOPA) positron emission tomography scanning to measure striatal dopamine synthesis capacity, and completed a measure of disinhibited personality. Consistent with our predictions, we found that levels of ventral, but not dorsal, striatal dopamine synthesis capacity predicted disinhibited personality, particularly a propensity for financial extravagance. Our results are consistent with recent preclinical models of vulnerability to behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of potential vulnerability to impulse control problems in PD and other disorders.
doi:10.3389/fpsyg.2013.00090
PMCID: PMC3583186  PMID: 23450713
dopa decarboxylase; dopamine; disordered gambling; externalizing; impulse control disorders; impulsivity; reward; ventral striatum
3.  Prospective Cohort Study of Impulse Control Disorders in Parkinson’s Disease 
Impulse control disorders (ICDs) are potentially serious side effects of dopamine agonist therapy in Parkinson’s disease (PD), but prospective data are lacking about their incidence, time course, and risk factors. This work was a 4-year, prospective cohort study of outpatients with PD and no previous ICDs (N = 164). All subjects treated with a dopamine agonist during the study were followed longitudinally for new-onset ICDs. Baseline characteristics were compared in groups with (ICD+) and without (ICD−) subsequent ICDs. Forty-six subjects were treated with a dopamine agonist, including 25 who were newly treated and 21 who received ongoing dopamine agonist therapy. Of these 46 subjects, 18 (39.1%) developed new-onset ICDs. The timing of ICD onset varied from 3.0 to 114.0 months (median, 23.0) after initiation of dopamine agonist therapy. Baseline demographic characteristics were similar in ICD+ and ICD− groups. At baseline, ICD+ subjects had a greater prevalence of motor complications (61.1% versus 25.0%; P = 0.01) than ICD− subjects, despite comparable total dopaminergic medication usage in both groups (median, 150.0 versus 150.0 levodopa equivalents; P = 0.61). Compared with ICD− subjects, ICD+ subjects had a greater baseline prevalence of caffeine use (100% versus 66.7%; P = 0.007) and higher lifetime prevalence of cigarette smoking (44.4% versus 14.3%; P = 0.04). Peak dopamine agonist doses were higher in ICD+ than ICD− subjects (median 300.0 versus 165.0 L-dopa equivalents; P = 0.03), but cumulative dopamine agonist exposure was similar in both groups. In summary, the timing of new-onset ICDs in PD is highly variable. Risk factors include cigarette smoking, caffeine use, motor complications, and higher peak dopamine agonist dosage.
doi:10.1002/mds.25291
PMCID: PMC3894820  PMID: 23283708
dopamine agonist; dopamine agonist withdrawal syndrome; impulse control disorder; prospective; Parkinson’s disease
4.  Identifying the Basal Ganglia Network Model Markers for Medication-Induced Impulsivity in Parkinson's Disease Patients 
PLoS ONE  2015;10(6):e0127542.
Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's disease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-ICD), and OFF medication PD patients (PD-OFF). A neural network model of the Basal Ganglia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning, and its impairment in PD. The results presented here not only show that computational modelling can be used as a valuable tool for understanding and interpreting clinical data, but they also show that computational modeling has the potential to become an invaluable tool to predict the onset of behavioral changes during disease progression.
doi:10.1371/journal.pone.0127542
PMCID: PMC4456385  PMID: 26042675
5.  Impulse control disorders and related behaviours (ICD-RBs) in Parkinson's disease patients: Assessment using “Questionnaire for impulsive-compulsive disorders in Parkinson's disease” (QUIP) 
Background:
There is limited data on the prevalence of impulse control disorder and related behaviors (ICD-RBs) in Indian patients with Parkinson's Disease (PD). In the context of potential genetic and environmental factors affecting the expression of ICD-RBs, studying other multiethnic populations may bring in-sights into the mechanisms of these disorders.
Objectives:
To ascertain point prevalence estimate of ICD-RBs in Indian PD patients, using the validated “Questionnaire for Impulsive-Compulsive Disorders in Parkinson's disease (QUIP)” and to examine their association with Dopamine replacement therapy (DRT).
Materials and Methods:
This was a hospital based observational cross-sectional study. After taking informed consent, patients and their informants (spouse, or primary caregiver) were made to complete the QUIP, and were instructed to answer questions based on behaviors that occurred anytime during PD that lasted at least four consecutive weeks.
Results:
Total of 299 patients participated in the study. At least one ICD-RB was present in 128 (42.8%), at least one Impulse control disorder (ICD) was present in 74 (24.75%) and at least one Impulse control related compulsive behaviour (ICRB) was present in 93 (31.1%) patients. Punding was the most frequent (12.4%) followed by hyper sexuality (11.04%), compulsive hobbyism (9.4%), compulsive shopping (8.4%), compulsive medication use (7.7%), compulsive eating (5.35%), walkabout (4%) and pathological gambling (3.3%). ≥ 2 ICD-RBs were observed in 15.7% of patients. After multivariate analysis, younger age of onset, being unmarried were specifically associated with presence of ICD. Longer disease duration was specifically associated with presence of ICRB. Whereas smoking and higher dopamine levodopa equivalent daily doses (DA LEDD) were associated with both presence of ICD and ICRB. Higher LD LEDD was specifically associated with presence of ICD-RB.
Conclusions:
Our study revealed a relatively higher frequency of ICD-RBs, probably because of the use of screening instrument and because we combined both ICDs and ICRBs. Also high proportion of DA use (81.6%) among our patients might be responsible. The role of genetic factors that might increase the risk of developing ICD-RBs in this population needs further exploration.
doi:10.4103/0972-2327.144311
PMCID: PMC4350214  PMID: 25745311
Impulse control disorders; impulse control disorder related compulsive behaviour disorders; Parkinson's disease; QUIP
6.  Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study 
Brain : a journal of neurology  2009;132(Pt 5):1376-1385.
Pathological gambling is an impulse control disorder reported in association with dopamine agonists used to treat Parkinson’s disease. Although impulse control disorders are conceptualized as lying within the spectrum of addictions, little neurobiological evidence exists to support this belief. Functional imaging studies have consistently demonstrated abnormalities of dopaminergic function in patients with drug addictions, but to date no study has specifically evaluated dopaminergic function in Parkinson’s disease patients with impulse control disorders. We describe results of a [11C] raclopride positron emission tomography (PET) study comparing dopaminergic function during gambling in Parkinson’s disease patients, with and without pathological gambling, following dopamine agonists. Patients with pathological gambling demonstrated greater decreases in binding potential in the ventral striatum during gambling (13.9%) than control patients (8.1%), likely reflecting greater dopaminergic release. Ventral striatal bindings at baseline during control task were also lower in patients with pathological gambling. Although prior imaging studies suggest that abnormality in dopaminergic binding and dopamine release may be markers of vulnerability to addiction, this study presents the first evidence of these phenomena in pathological gambling. The emergence of pathological gambling in a number of Parkinson’s disease patients may provide a model into the pathophysiology of this disorder.
doi:10.1093/brain/awp054
PMCID: PMC3479148  PMID: 19346328 CAMSID: cams2369
Parkinson’s disease; dopamine; impulse control disorders; pathological gambling; PET; functional imaging
7.  Impulsive and Compulsive Behaviors in Parkinson’s Disease 
Background: Impulsive and compulsive behaviors (ICBs) are a heterogeneous group of conditions that may be caused by long-term dopaminergic replacement therapy (DRT) of Parkinson’s disease (PD). The spectrum of ICBs includes dopamine dysregulation syndrome (DDS), punding, and impulse control disorders (ICDs).
Contents: We made a detailed review regarding the epidemiology, pathology, clinical characteristics, risk factors, diagnosis as well as treatment of ICBs.
Results: The prevalence of ICBs in PD patients is approximately 3–4% for DDS, 0.34–4.2% for punding, and 6–14% for ICDs, with higher prevalence in Western populations than in Asian. Those who take high dose of levodopa are more prone to have DDS, whereas, ICDs are markedly associated with dopamine agonists. Different subtypes of ICBs share many risk factors such as male gender, higher levodopa equivalent daily dose, younger age at PD onset, history of alcoholism, impulsive, or novelty-seeking personality. The Questionnaire for Impulsive–Compulsive Disorder in Parkinson’s Disease-Rating Scale seems to be a rather efficacious instrument to obtain relevant information from patients and caregivers. Treatment of ICBs is still a great challenge for clinicians. Readjustment of DRT remains the primary method. Atypical antipsychotics, antidepressants, amantadine, and psychosocial interventions are also prescribed in controlling episodes of psychosis caused by compulsive DRT, but attention should be drawn to balance ICBs symptoms and motor disorders. Moreover, deep brain stimulation of the subthalamic nucleus might be a potential method in controlling ICBs.
Conclusion: The exact pathophysiological mechanisms of ICBs in PD remains poorly understood. Further researches are needed not only to study the pathogenesis, prevalence, features, and risk factors of ICBs, but to find efficacious therapy for patients with these devastating consequences.
doi:10.3389/fnagi.2014.00318
PMCID: PMC4231987  PMID: 25452726
Parkinson disease; impulsive control disorders; dopamine dysregulation syndrome; review; dopaminergic replacement therapy
8.  Maladaptive Reward-Learning and Impulse Control Disorders in Patients with Parkinson’s Disease: A Clinical Overview and Pathophysiology Update 
Journal of Movement Disorders  2014;7(2):67-76.
Impulse control disorders (ICD) in Parkinson’s disease (PD) are a disabling non-motor symptom with frequencies of 13–35% among patients receiving dopamine replacement therapy. ICD in PD is strongly associated with dopaminergic drug use, especially non-ergot dopamine agonists (DA). However, individual susceptibility and disease-related neural changes are also important contributors to the development of ICD. Discrepancies between nigrostriatal and mesolimbic dopaminergic degeneration and non-physiological administration of dopaminergic drugs may induce abnormal ’hyperstimulation’ of the mesolimbic system, which alters reward-learning behaviors in PD patients. In addition, DA can make patients more impulsive during decision-making and seek risk-taking behaviors. DA intake is also related to the biased representation of rewards. Ultimately, loss of negative feedback control due to dysfunctional frontostriatal connections is necessary for the establishment of ICD in PD. The subsequent behavioral and neural changes are affected by PD treatment and disease progression; thus, proper treatment guidelines for physicians are needed to prevent the development of ICD. Future studies aimed at producing novel therapeutics to control the risk factors for ICD or treat ICD behaviors in PD are warranted. This review summarizes recent advances from epidemiological and pathophysiological studies on ICD in PD. Management principles and limitations of current therapeutics are briefly discussed.
doi:10.14802/jmd.14010
PMCID: PMC4213534  PMID: 25360230
Impulse control disorder; Parkinson’s disease; Dopamine agonist; Reward-learning; Impulsivity; Addiction
9.  Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson’s patients with medication-induced pathological gambling: A [11C] FLB-457 and PET study 
Neurobiology of disease  2012;48(3):519-525.
Impulse control disorders such as pathological gambling (PG) are a serious and common adverse effect of dopamine (DA) replacement medication in Parkinson’s disease (PD). Patients with PG have increased impulsivity and abnormalities in striatal DA, in common with behavioural and substance addictions in the non-PD population. To date, no studies have investigated the role of extrastriatal dopaminergic abnormalities in PD patients with PG. We used the PET radiotracer, [11C] FLB-457, with high-affinity for extrastriatal DA D2/3 receptors. 14 PD patients on DA agonists were imaged while they performed a gambling task involving real monetary reward and a control task. Trait impulsivity was measured with the Barratt Impulsivity Scale (BIS). Seven of the patients had a history of PG that developed subsequent to DA agonist medication. Change in [11C] FLB-457 binding potential (BP) during gambling was reduced in PD with PG patients in the midbrain, where D2/D3 receptors are dominated by autoreceptors. The degree of change in [11C] FLB-457 binding in this region correlated with impulsivity. In the cortex, [11C] FLB-457 BP was significantly greater in the anterior cingulate cortex (ACC) in PD patients with PG during the control task, and binding in this region was also correlated with impulsivity. Our findings provide the first evidence that PD patients with PG have dysfunctional activation of DA autoreceptors in the midbrain and low DA tone in the ACC. Thus, altered striatal and cortical DA homeostasis may incur vulnerability for the development of PG in PD, linked with the impulsive personality trait.
doi:10.1016/j.nbd.2012.06.021
PMCID: PMC3465363  PMID: 22766031 CAMSID: cams2373
Parkinson’s disease; Dopamine agonists; Pathological gambling; Impulsivity
10.  Dopamine agonists and risk: impulse control disorders in Parkinson's; disease 
Brain  2011;134(5):1438-1446.
Impulse control disorders are common in Parkinson's; disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's; disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a ‘Sure’ choice and a ‘Gamble’ choice of moderate risk. To commence each trial, in the ‘Gain’ condition, individuals started at $0 and in the ‘Loss’ condition individuals started at −$50 below the ‘Sure’ amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk (‘Gamble Risk’). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's; disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the ‘Gain’ relative to the ‘Loss’ condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's; disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's; disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals.
doi:10.1093/brain/awr080
PMCID: PMC3097893  PMID: 21596771
Parkinson's; disease; dopamine; gambling; decision making; risk
11.  Proficient Motor Impulse Control in Parkinson Disease patients with Impulsive and Compulsive Behaviors 
Background
Parkinson Disease (PD) patients treated with Dopamine Agonist therapy can develop maladaptive reward-driven behaviors, known as Impulse Control Disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity.
Methods
We used the stop-signal task in a cohort of patients with and without active symptoms of ICD to evaluate motor-impulsivity. Of those with PD, 12 were diagnosed with ICD symptoms (PD-ICD) and were assessed before clinical reduction of Dopamine Agonist medication; 12 were without symptoms of ICD [PD-control] and taking equivalent dosages of Dopamine Agonist. Levodopa, if present, was maintained in both settings. Groups were similar in age, duration, and severity of motor symptoms, levodopa co-therapy, and total levodopa daily dose. All were tested in the Dopamine Agonist medicated and acutely withdrawn (24 hours) state, in a counterbalanced manner. Primary outcome measures were mean reaction time to correct go trials (Go Reaction Time), and mean stop-signal reaction time (SSRT).
Results
ICD patients produce faster SSRT than both Healthy Controls, and PD Controls. Faster SSRT in ICD patients is apparent in both Dopamine Agonist medication states. Also, we show unique dopamine medication effects on GoRT. In Dopamine Agonist monotherapy patients, Dopamine Agonist administration speeds Go Reaction Time. Conversely, in those with levodopa co-therapy, Dopamine Agonist administration slows Go Reaction Time.
Discussion
PD patients with active ICD symptoms are significantly faster at stopping initiated motor actions, and this is not altered by acute Dopamine Agonist withdrawal. In addition, the effect of Dopamine Agonist on Go Reaction Time is strongly influenced by the presence or absence of levodopa, even though levodopa co-therapy does not appear to influence SSRT. We discuss these findings as they pertain to the multifaceted definition of ‘impulsivity,’ the lack of evidence for motor-impulsivity in PD-ICD, and dopamine effects on motor-control in PD.
doi:10.1016/j.pbb.2014.11.017
PMCID: PMC4300241  PMID: 25459105
Dopamine Agonist; Parkinson Disease; Impulse Control Disorder; Inhibition; Motor impulsivity; Reaction Time
12.  Pharmacogenetics of Antipsychotic-Induced Movement Disorders as a Resource for Better Understanding Parkinson’s Disease Modifier Genes 
Antipsychotic-induced movement disorders are major side effects of antipsychotic drugs among schizophrenia patients, and include antipsychotic-induced parkinsonism (AIP) and tardive dyskinesia (TD). Substantial pharmacogenetic work has been done in this field, and several susceptibility variants have been suggested. In this paper, the genetics of antipsychotic-induced movement disorders is considered in a broader context. We hypothesize that genetic variants that are risk factors for AIP and TD may provide insights into the pathophysiology of motor symptoms in Parkinson’s disease (PD). Since loss of dopaminergic stimulation (albeit pharmacological in AIP and degenerative in PD) is shared by the two clinical entities, genes associated with susceptibility to AIP may be modifier genes that influence clinical expression of PD motor sub-phenotypes, such as age at onset, disease severity, or rate of progression. This is due to their possible functional influence on compensatory mechanisms for striatal dopamine loss. Better compensatory potential might be beneficial at the early and later stages of the PD course. AIP vulnerability variants could also be related to latent impairment in the nigrostriatal pathway, affecting its functionality, and leading to subclinical dopaminergic deficits in the striatum. Susceptibility of PD patients to early development of l-DOPA induced dyskinesia (LID) is an additional relevant sub-phenotype. LID might share a common genetic background with TD, with which it shares clinical features. Genetic risk variants may predispose to both phenotypes, exerting a pleiotropic effect. According to this hypothesis, elucidating the genetics of antipsychotic-induced movement disorders may advance our understanding of multiple aspects of PD and it clinical course, rendering this a potentially rewarding field of study.
doi:10.3389/fneur.2015.00027
PMCID: PMC4335175  PMID: 25750634
Parkinson’s disease; schizophrenia; antipsychotic-induced parkinsonism; tardive dyskinesia; l-DOPA induced dyskinesia
13.  Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers 
Brain  2014;137(9):2480-2492.
Mutations in the gene encoding the dopamine-synthetic enzyme GTP cyclohydrolase-1 (GCH1) cause DOPA-responsive dystonia (DRD). Mencacci et al. demonstrate that GCH1 variants are associated with an increased risk of Parkinson's disease in both DRD pedigrees and in patients with Parkinson's disease but without a family history of DRD.
GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson’s disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson’s disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson’s disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher’s exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4–25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson’s disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson’s disease.
doi:10.1093/brain/awu179
PMCID: PMC4132650  PMID: 24993959
GCH1; DOPA-responsive-dystonia; Parkinson’s disease; dopamine; exome sequencing
14.  Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels 
Objective
Impulse control disorders are commonly associated with dopaminergic therapy in Parkinson's disease (PD). PD patients with impulse control disorders demonstrate enhanced dopamine release to conditioned cues and a gambling task on [11C]raclopride positron emission tomography (PET) imaging and enhanced ventral striatal activity to reward on functional MRI. We compared PD patients with impulse control disorders and age-matched and gender-matched controls without impulse control disorders using [123I]FP-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT), to assess striatal dopamine transporter (DAT) density.
Methods
The [123I]FP-CIT binding data in the striatum were compared between 15 PD patients with and 15 without impulse control disorders using independent t tests.
Results
Those with impulse control disorders showed significantly lower DAT binding in the right striatum with a trend in the left (right: F(1,24)=5.93, p=0.02; left: F(1,24)=3.75, p=0.07) compared to controls.
Conclusions
Our findings suggest that greater dopaminergic striatal activity in PD patients with impulse control disorders may be partly related to decreased uptake and clearance of dopamine from the synaptic cleft. Whether these findings are related to state or trait effects is not known. These findings dovetail with reports of lower DAT levels secondary to the effects of methamphetamine and alcohol. Although any regulation of DAT by antiparkinsonian medication appears to be modest, PD patients with impulse control disorders may be differentially sensitive to regulatory mechanisms of DAT expression by dopaminergic medications.
doi:10.1136/jnnp-2013-305395
PMCID: PMC4031642  PMID: 23899625
BEHAVIOURAL DISORDER; FUNCTIONAL IMAGING; NEUROPSYCHIATRY; SPECT; MOVEMENT DISORDERS
15.  Dopamine Agonist Use is Associated with Impulse Control Disorders in Parkinson’s Disease 
Archives of neurology  2006;63(7):969-973.
Objective
To determine the frequency and correlates of impulse control disorders (ICDs) in Parkinson’s disease (PD).
Design
An unstructured screening interview for ICDs (compulsive gambling, buying, and sexual behavior) followed by a telephone-administered structured interview for screen-positive patients.
Setting
Two university-affiliated movement disorders centers.
Participants
A convenience sample of 272 patients with idiopathic PD who were screened for psychiatric complications.
Main Outcome Measures
Presence of compulsive gambling, buying, or sexual behavior as assessed by the Minnesota Impulsive Disorders Interview.
Results
Eighteen (6.6%) PD patients met criteria for an ICD at some point during the course of PD, including 11 (4.0%) with an active ICD. Compulsive gambling and compulsive sexual behavior were equally common. In a multivariate model, treatment with a dopamine agonist (P = .01) and a history of ICD symptomatology prior to PD onset (P = .02) predicted current ICD. There were no differences between the dopamine agonists in their association with ICDs (P = .21), and daily doses of dopamine agonists were higher in patients with an ICD than in dopamine agonist-treated patients without an ICD (P < .001).
Conclusions
PD patients treated with a dopamine agonist should be made aware of the risk of developing an ICD and monitored clinically. As dopamine agonists are increasing being used for other indications, future research should assess the dopamine agonist-associated risk for ICDs in other populations.
doi:10.1001/archneur.63.7.969
PMCID: PMC1761054  PMID: 16831966
16.  Impulse control disorders and compulsive behaviors associated with dopaminergic therapies in Parkinson disease 
Neurology. Clinical Practice  2012;2(4):267-274.
Summary
Impulse control disorders (ICD) (most commonly pathologic gambling, hypersexuality, and uncontrollable spending) and compulsive behaviors can be triggered by dopaminergic therapies in Parkinson disease (PD). ICD are especially prevalent in patients receiving a dopamine agonist as part of their treatment regimen for PD, and have also been reported when dopamine agonists are used for other indications (e.g., restless legs syndrome). Although these iatrogenic disorders are common, affecting 1 in 7 patients with PD on dopamine agonists, they often elude detection by the treating physician. ICD lead to serious consequences, causing significant financial loss and psychosocial morbidity for many patients and families. ICD can appear at any time during treatment with dopamine agonists, sometimes within the first few months, but most often after years of treatment, particularly when patients receive dopamine agonists and levodopa together. In most cases ICD resolve if the dopamine agonist is withdrawn, and PD motor symptoms are managed with levodopa monotherapy. Familiarity with the clinical aspects, risk factors, pathophysiology, and management of ICD is essential for physicians using dopaminergic therapies to treat PD and other disorders.
doi:10.1212/CPJ.0b013e318278be9b
PMCID: PMC3613210  PMID: 23634371
17.  Linking neuroscience with modern concepts of impulse control disorders in Parkinson’s disease 
Patients with Parkinson’s disease (PD) may experience impulse control disorders (ICDs) when on dopamine agonist therapy for their motor symptoms. In the last few years, there has been a rapid growth of interest for the recognition of these aberrant behaviors and their neurobiological correlates. Recent advances in neuroimaging are helping to identify the neuroanatomical networks responsible for these ICDs, and together with psychopharmacological assessments are providing new insights into the brain status of impulsive behavior. The genetic associations that may be unique to ICDs in PD are also being identified. Complementing human studies, electrophysiological and biochemical studies in animal models are providing insights into neuropathological mechanisms associated with these disorders. New animal models of ICDs in PD patients are being implemented that should provide critical means to identify efficacious therapies for PD-related motor deficits while avoiding ICD side effects. Here, we provide an overview of these recent advances, with a particular emphasis on the neurobiological correlates reported in animal models and patients along with their genetic underpinnings.
doi:10.1002/mds.26068
PMCID: PMC4318759  PMID: 25476402
Dopamine agonists; pramipexole; L-DOPA; 6-OHDA; imaging; PET; fMRI; basal ganglia; prefrontal cortex
18.  The Risky Business of Dopamine Agonists in Parkinson Disease and Impulse Control Disorders 
Behavioral neuroscience  2011;125(4):492-500.
Risk-taking behavior is characterized by pursuit of reward in spite of potential negative consequences. Dopamine neurotransmission along the mesocorticolimbic pathway is a potential modulator of risk behavior. In patients with Parkinson's Disease (PD), impulse control disorder (ICD) can result from dopaminergic medication use, particularly Dopamine Agonists (DAA). Behaviors associated with ICD include hypersexuality as well as compulsive gambling, shopping, and eating, and are potentially linked to alterations to risk processing. Using the Balloon Analogue Risk task, we assessed the role of agonist therapy on risk-taking behavior in PD patients with (n=22) and without (n=19) active ICD symptoms. Patients performed the task both ‘on’ and ‘off’ DAA. DAA increased risk-taking in PD patients with active ICD symptoms, but did not affect risk behavior of PD controls. DAA dose was also important in explaining risk behavior. Both groups similarly reduced their risk-taking in high compared to low risk conditions and following the occurrence of a negative consequence, suggesting that ICD patients do not necessarily differ in their ability to process and adjust to some aspects of negative consequences. Our findings suggest dopaminergic augmentation of risk-taking behavior as a potential contributing mechanism for the emergence of ICD in PD patients.
doi:10.1037/a0023795
PMCID: PMC3144294  PMID: 21604834
Impulse Control Disorders; Dopamine Agonists; Parkinson Disease; Risk behavior
19.  Impulsivity and apathy in Parkinson’s disease 
Journal of neuropsychology  2013;7(2):10.1111/jnp.12013.
Impulse control disorders (ICDs) and apathy are recognized as two important neuropsychiatric syndromes associated with Parkinson’s disease (PD), but as yet we understand very little about the cognitive mechanisms underlying them. Here, we review emerging findings, from both human and animal studies, that suggest that impulsivity and apathy are opposite extremes of a dopamine-dependent spectrum of motivated decision making. We first argue that there is strong support for a hypodopaminergic state in PD patients with apathy, as well as for an association between dopamine therapy and development of ICDs. However, there is little evidence for a clear dose-response relationship, and great heterogeneity of findings. We argue that dopaminergic state on its own is an insufficient explanation, and suggest instead that there is now substantial evidence that both apathy and impulsivity are in fact multi-dimensional syndromes, with separate, dissociable mechanisms underlying their ‘surface’ manifestations. Some of these mechanisms might be dopamine-dependent. According to this view, individuals diagnosed as impulsive or apathetic may have very different mechanisms underlying their clinical states. We propose that impulsivity and apathy can arise from dissociable deficits in option generation, option selection, action initiation or inhibition and learning. Review of the behavioural and neurobiological evidence leads us to a new conceptual framework that might help understand the variety of functional deficits seen in PD.
doi:10.1111/jnp.12013
PMCID: PMC3836240  PMID: 23621377
20.  A survey of impulse control disorders in Parkinson’s disease patients in Shanghai area and literature review 
Background
Levodopa and dopamine agonists are the main treatments for Parkinson’s disease (PD) in recent years. Increased drug dosages are linked to some severe side effects, one of which is impulse control disorders (ICD). Many studies have reported the related risk factors of ICDs, such as dopamine agonist, male sex, younger age, earlier age of onset and so on. This study aims to investigate the incidence of ICD in Chinese PD patients from Shanghai area, explore the association of ICD with dopamine replacement therapy (DRT).
Methods
Two hundred seventeen PD patients were consecutively recruited from the Movement Disorder Clinic of Ruijin Hospital from March to October 2013. Minnesota Impulsive Disorders Interview was used to assess the PD patients. PD patients with possible ICD would undergo a further interview by a movement disorder specialist to confirm the diagnosis. Clinical information was also collected.
Results
Nine PD patients (4.15 %) showed ICD behaviors as follows: hypersexuality (4, 1.84 %), pathological gambling (3, 1.38 %), binge eating (1, 0.46 %), compulsive shopping (1, 0.46 %). Compared with the non-ICD PD group, ICD PD group took more dopamine agonists (LED 119.4 ± 86.4 mg/d vs 60.5 ± 80.5 mg/d, P = 0.019), had higher total levodopa equivalent dosage (TLED 912.81 ± 878.73 mg/d vs 503.78 ± 359.14 mg/d, P = 0.031), and had higher H&Y stage (2.33 ± 0.87 vs 1.41 ± 0.52, p = 0.013). However, logistic regression analysis didn’t reveal the above factors as independent risk factors of ICD behaviors in our study.
Conclusion
The incidence of ICDs behaviors in PD patients in our study is much lower than in western countries. ICD-PD group took higher dopamine agonists and higher total levodopa equivalent dosage, even though logistic regression analysis didn’t reveal them as independent risk factors.
doi:10.1186/s40035-016-0051-7
PMCID: PMC4758007  PMID: 26893825
Parkinson’s disease; ICD; Dopamine replacement therapy
21.  Dopamine and Impulse Control Disorders in Parkinson’s Disease 
Annals of neurology  2008;64(Suppl 2):S93-100.
There is an increasing awareness that impulse control disorders (ICDs), including compulsive gambling, buying, sexual behavior, and eating, can occur as a complication of Parkinson’s disease (PD). In addition, other impulsive or compulsive disorders have been reported to occur, including dopamine dysregulation syndrome (DDS) and punding. Case reporting and prospective studies have reported an association between ICDs and the use of dopamine agonists (DAs), particularly at greater dosages, whereas dopamine dysregulation syndrome has been associated with greater dosages of levodopa or short-acting DAs. Data suggest that risk factors for an ICD may include male sex, younger age or younger age at PD onset, a pre-PD history of ICD symptoms, personal or family history of substance abuse or bipolar disorder, and a personality style characterized by impulsiveness. Although psychiatric medications are used clinically in the treatment of ICDs, there is no empiric evidence supporting their use in PD. Therefore, management for clinically significant ICD symptoms should consist of modifications to dopamine replacement therapy, particularly DAs, and there is emerging evidence that such management is associated with an overall improvement in ICD symptomatology. It is important that PD patients be aware that DA use may lead to the development of an ICD, and that clinicians monitor patients as part of routine clinical care. As empirically validated treatments for ICDs are emerging, it will be important to examine their efficacy and tolerability in individuals with cooccurring PD and ICDs.
doi:10.1002/ana.21454
PMCID: PMC3530139  PMID: 19127573
22.  Impulsive choice and response in dopamine agonist-related impulse control behaviors 
Psychopharmacology  2009;207(4):645-659.
Rationale
Dopaminergic medication-related Impulse Control Disorders (ICDs) such as pathological gambling and compulsive shopping have been reported in Parkinson disease (PD).
Hypothesis
We hypothesized that dopamine agonists (DAs) would be associated with greater impulsive choice, or greater discounting of delayed rewards, in PD patients with ICDs (PDI).
Methods
Fourteen PDI patients, 14 PD controls without ICDs and 16 medication-free matched normal controls were tested on (i) the Experiential Discounting Task (EDT), a feedback-based intertemporal choice task, (ii) spatial working memory and (iii) attentional set shifting. The EDT was used to assess impulsivity choice (hyperbolic K-value), reaction time (RT) and decision conflict RT (the RT difference between high conflict and low conflict choices). PDI patients and PD controls were tested on and off DA.
Results
On the EDT, there was a group by medication interaction effect [F(1,26)=5.62; p=0.03] with pairwise analyses demonstrating that DA status was associated with increased impulsive choice in PDI patients (p=0.02) but not in PD controls (p=0.37). PDI patients also had faster RT compared to PD controls F(1,26)=7.51 p=0.01]. DA status was associated with shorter RT [F(3,24)=8.39, p=0.001] and decision conflict RT [F(1,26)=6.16, p=0.02] in PDI patients but not in PD controls. There were no correlations between different measures of impulsivity. PDI patients on DA had greater spatial working memory impairments compared to PD controls on DA (t=2.13, df=26, p=0.04).
Conclusion
Greater impulsive choice, faster RT, faster decision conflict RT and executive dysfunction may contribute to ICDs in PD.
doi:10.1007/s00213-009-1697-y
PMCID: PMC3676926  PMID: 19838863
dopamine agonist; gambling; impulse control; Parkinson disease; delay discounting
23.  Selective serotonin reuptake inhibition modulates response inhibition in Parkinson’s disease 
Brain  2014;137(4):1145-1155.
Impulsivity is common in Parkinson’s disease. In a double-blind, placebo-controlled study with multi-modal imaging, Ye et al. reveal improved response inhibition in some patients receiving the SSRI citalopram, including those with advanced disease. Improvements correlated with preserved frontostriatal structural connectivity and drug-induced prefrontal activity, highlighting the need for patient stratification in trials.
Impulsivity is common in Parkinson’s disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic ‘overdose’ and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson’s disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson’s disease (46–76 years old, 11 male, Hoehn and Yahr stage 1.5–3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54–74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson’s disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson’s Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson’s disease.
doi:10.1093/brain/awu032
PMCID: PMC3959561  PMID: 24578545
Parkinson’s disease; response inhibition; serotonin; citalopram; functional MRI
24.  Diagnosis and treatment of impulse control disorders in patients with movement disorders 
Impulse control disorders are a psychiatric condition characterized by the failure to resist an impulsive act or behavior that may be harmful to self or others. In movement disorders, impulse control disorders are associated with dopaminergic treatment, notably dopamine agonists (DAs). Impulse control disorders have been studied extensively in Parkinson’s disease, but are also recognized in restless leg syndrome and atypical Parkinsonian syndromes. Epidemiological studies suggest younger age, male sex, greater novelty seeking, impulsivity, depression and premorbid impulse control disorders as the most consistent risk factors. Such patients may warrant special monitoring after starting treatment with a DA. Various individual screening tools are available for people without Parkinson’s disease. The Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease has been developed specifically for Parkinson’s disease. The best treatment for impulse control disorders is prevention. However, after the development of impulse control disorders, the mainstay intervention is to reduce or discontinue the offending anti-Parkinsonian medication. In refractory cases, other pharmacological interventions are available, including neuroleptics, antiepileptics, amantadine, antiandrogens, lithium and opioid antagonists. Unfortunately, their use is only supported by case reports, small case series or open-label clinical studies. Prospective, controlled studies are warranted. Ongoing investigations include naltrexone and nicotine.
doi:10.1177/1756285613476127
PMCID: PMC3625015  PMID: 23634190
Impulse control disorders; Parkinson’s disease; restless leg syndrome; parkinsonism; dopamine agonist; non-motor complication; neurobehavioural
25.  Pathological gambling from dopamine agonist and deep brain stimulation of the nucleus tegmenti pedunculopontine 
BMJ Case Reports  2010;2010:bcr0220102774.
In patients with Parkinson's disease, aberrant or excessive dopaminergic stimulation is commonly indicated as the trigger factor in unmasking impulse control disorders (ICDs) such as pathological gambling. We had the opportunity to follow a patient who experienced Parkinson's disease 7 years ago when he was using pramipexole and again, recently, when he was treated with levodopa (L-dopa) and low frequency stimulation of the nucleus of the pedunculopontine tegmentus (PPTg) but no dopamine agonists. The same patient had shown, when studied with fluorodeoxyglucose-positron emission tomography in the condition PPTg-ON, a peculiar increased activity in the left ventral striatum. This case report confirms that, in a predisposed personality, ICD may arise from the perturbation of endogenous pathways, which connect the brainstem to the basal ganglia.
doi:10.1136/bcr.02.2010.2774
PMCID: PMC3027559  PMID: 22798481

Results 1-25 (952836)