Search tips
Search criteria

Results 1-25 (640278)

Clipboard (0)

Related Articles

1.  Synthesis, magnetic and optical properties of core/shell Co1-xZnxFe2O4/SiO2 nanoparticles 
Nanoscale Research Letters  2011;6(1):460.
The optical properties of multi-functionalized cobalt ferrite (CoFe2O4), cobalt zinc ferrite (Co0.5Zn0.5Fe2O4), and zinc ferrite (ZnFe2O4) nanoparticles have been enhanced by coating them with silica shell using a modified Stöber method. The ferrites nanoparticles were prepared by a modified citrate gel technique. These core/shell ferrites nanoparticles have been fired at temperatures: 400°C, 600°C and 800°C, respectively, for 2 h. The composition, phase, and morphology of the prepared core/shell ferrites nanoparticles were determined by X-ray diffraction and transmission electron microscopy, respectively. The diffuse reflectance and magnetic properties of the core/shell ferrites nanoparticles at room temperature were investigated using UV/VIS double-beam spectrophotometer and vibrating sample magnetometer, respectively. It was found that, by increasing the firing temperature from 400°C to 800°C, the average crystallite size of the core/shell ferrites nanoparticles increases. The cobalt ferrite nanoparticles fired at temperature 800°C; show the highest saturation magnetization while the zinc ferrite nanoparticles coated with silica shell shows the highest diffuse reflectance. On the other hand, core/shell zinc ferrite/silica nanoparticles fired at 400°C show a ferromagnetic behavior and high diffuse reflectance when compared with all the uncoated or coated ferrites nanoparticles. These characteristics of core/shell zinc ferrite/silica nanostructures make them promising candidates for magneto-optical nanodevice applications.
PMCID: PMC3211881  PMID: 21774807
nanostructures; oxides; cobalt ferrite; cobalt zinc ferrite; zinc ferrite; magnetic properties; diffuse reflectance.
2.  Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures 
Accounts of chemical research  2012;45(8):1215-1226.
Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned.
The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities.
This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades by organizing the position of the components using DNA nanoscaffolds in vitro, or by utilizing RNA matrices in vivo. These structures display enhanced efficiency compared to the corresponding unstructured enzyme mixtures. Such systems are designed to mimic cellular function, where substrate diffusion between enzymes is facilitated and reactions are catalyzed with high efficiency and specificity. In addition, researchers have assembled multiple choromophores into arrays using a DNA nanoscaffold that optimizes the relative distance between the dyes and their spatial organization. The resulting artificial light harvesting system exhibits efficient cascading energy transfers. Finally, DNA nanostructures have been used as assembly templates to construct nanodevices that execute rationally-designed behaviors, including cargo loading, transportation and route control.
PMCID: PMC3654852  PMID: 22642503
3.  Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces 
Background: Magnetic nanostructures and nanoparticles often show novel magnetic phenomena not known from the respective bulk materials. In the past, several methods to prepare such structures have been developed – ranging from wet chemistry-based to physical-based methods such as self-organization or cluster growth. The preparation method has a significant influence on the resulting properties of the generated nanostructures. Taking chemical approaches, this influence may arise from the chemical environment, reaction kinetics and the preparation route. Taking physical approaches, the thermodynamics and the kinetics of the growth mode or – when depositing preformed clusters/nanoparticles on a surface – the landing kinetics and subsequent relaxation processes have a strong impact and thus need to be considered when attempting to control magnetic and structural properties of supported clusters or nanoparticles.
Results: In this contribution we focus on mass-filtered Fe nanoparticles in a size range from 4 nm to 10 nm that are generated in a cluster source and subsequently deposited onto two single crystalline substrates: fcc Ni(111)/W(110) and bcc W(110). We use a combined approach of X-ray magnetic circular dichroism (XMCD), reflection high energy electron diffraction (RHEED) and scanning tunneling microscopy (STM) to shed light on the complex and size-dependent relation between magnetic properties, crystallographic structure, orientation and morphology. In particular XMCD reveals that Fe particles on Ni(111)/W(110) have a significantly lower (higher) magnetic spin (orbital) moment compared to bulk iron. The reduced spin moments are attributed to the random particle orientation being confirmed by RHEED together with a competition of magnetic exchange energy at the interface and magnetic anisotropy energy in the particles. The RHEED data also show that the Fe particles on W(110) – despite of the large lattice mismatch between iron and tungsten – are not strained. Thus, strain is most likely not the origin of the enhanced orbital moments as supposed before. Moreover, RHEED uncovers the existence of a spontaneous process for epitaxial alignment of particles below a critical size of about 4 nm. STM basically confirms the shape conservation of the larger particles but shows first indications for an unexpected reshaping occurring at the onset of self-alignment.
Conclusion: The magnetic and structural properties of nanoparticles are strongly affected by the deposition kinetics even when soft landing conditions are provided. The orientation of the deposited particles and thus their interface with the substrate strongly depend on the particle size with consequences regarding particularly the magnetic behavior. Spontaneous and epitaxial self-alignment can occur below a certain critical size. This may enable the obtainment of samples with controlled, uniform interfaces and crystallographic orientations even in a random deposition process. However, such a reorientation process might be accompanied by a complex reshaping of the particles.
PMCID: PMC3045938  PMID: 21977415
epitaxy; iron; magnetic nanoparticles; Ni(111); RHEED; spontaneous self-alignment; STM; W(110); XMCD
4.  Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review 
Sensors (Basel, Switzerland)  2012;12(6):7207-7258.
Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.
PMCID: PMC3435973  PMID: 22969344
gas sensor; one dimensional nanostructures; metal-oxides
5.  Morphological evolution, growth mechanism, and magneto-transport properties of silver telluride one-dimensional nanostructures 
Nanoscale Research Letters  2013;8(1):356.
Single crystalline one-dimensional (1D) nanostructures of silver telluride (Ag2Te) with well-controlled shapes and sizes were synthesized via the hydrothermal reduction of sodium tellurite (Na2TeO3) in a mixed solution. The morphological evolution of various 1D nanostructures was mainly determined by properly controlling the nucleation and growth process of Ag2Te in different reaction times. Based on the transmission electron microscopy and scanning electron microscopy studies, the formation mechanism for these 1D nanostructures was rationally interpreted. In addition, the current–voltage (I-V) characteristics as a function of magnetic field of the highly single crystal Ag2Te nanowires were systematically measured. From the investigation of I-V characteristics, we have observed a rapid change of the current in low magnetic field, which can be used as the magnetic field sensor. The magneto-resistance behavior of the Ag2Te nanowires with monoclinic structure was also investigated. Comparing to the bulk and thin film materials, we found that there is generally a larger change in R (T) as the sample size is reduced, which indicates that the size of the sample has a certain impact on magneto-transport properties. Simultaneously, some possible reasons resulting in the observed large positive magneto-resistance behavior are discussed.
PMCID: PMC3765103  PMID: 23958372
Silver telluride; One-dimensional nanostructures; Morphological evolution; Growth mechanism; Magneto-transport properties
6.  Dynamic Nanoparticles Assemblies 
Accounts of chemical research  2012;45(11):1916-1926.
Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies.
Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions in the field may include different size dimensionalities: discrete assemblies (artificial molecules), one-dimensional (spaced chains) and two-dimensional (sheets) and three-dimensional (superlattices, twisted structures) assemblies. Notably, these dimensional attributes must be regarded as primarily topological in nature because all of these superstructures can acquire complex three-dimensional shapes.
We discuss three primary strategies used to prepare NP superstructures: (1) anisotropy-based assemblies utilizing either intrinsic force field anisotropy around NPs or external anisotropy associated with templates and/or applied fields; (2) assembly methods utilizing uniform NPs with isotropic interactions; and (3) methods based on mutual recognition of biomolecules, such as DNA and antigen-antibody interactions.
We consider optical, electronic, and magnetic properties of dynamic superstructures, focusing primarily on multiparticle effects in NP superstructures as represented by surface plasmon resonance, NP-NP charge transport, and multibody magnetization. Unique properties of NP superstructures are being applied to biosensing, drug delivery, and nanoelectronics. For both Class 1 and Class 2 dynamic assemblies, biosensing is the most dominant and well-developed area of dynamic nanostructures being successfully transitioned into practice. We can foresee the rapid development of dynamic NP assemblies toward applications in harvesting of dissipated energy, photonics, and electronics. The final part of the review is devoted to the fundamental questions facing dynamic assemblies of NPs in the future.
PMCID: PMC3479329  PMID: 22449243
7.  Synthesis and Characterization of Magnetic Metal-encapsulated Multi-walled Carbon Nanobeads 
Nanoscale Research Letters  2008;3(2):76-81.
A novel, cost-effective, easy and single-step process for the synthesis of large quantities of magnetic metal-encapsulated multi-walled carbon nanobeads (MWNB) and multi-walled carbon nanotubes (MWNT) using catalytic chemical vapour deposition of methane over Mischmetal-based AB3alloy hydride catalyst is presented. The growth mechanism of metal-encapsulated MWNB and MWNT has been discussed based on the catalytically controlled root-growth mode. These carbon nanostructures have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM and HRTEM), energy dispersive analysis of X-ray (EDAX) and thermogravimetric analysis (TGA). Magnetic properties of metal-filled nanobeads have been studied using PAR vibrating sample magnetometer up to a magnetic field of 10 kOe, and the results have been compared with those of metal-filled MWNT.
PMCID: PMC3244788
Magnetic metal-filled multi-walled carbon nanobeads (MWNB); Alloy hydride catalyst; Chemical vapour deposition; Magnetization
8.  Synthesis of High Coercivity Core–Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties 
Nanoscale Research Letters  2009;5(1):164-168.
Hybrid magnetic nanostructures with high coercivity have immense application potential in various fields. Nickel (Ni) electrodeposited inside Cobalt (Co) nanotubes (a new system named Ni @ Co nanorods) were fabricated using a two-step potentiostatic electrodeposition method. Ni @ Co nanorods were crystalline, and they have an average diameter of 150 nm and length of ~15 μm. The X-ray diffraction studies revealed the existence of two separate phases corresponding to Ni and Co. Ni @ Co nanorods exhibited a very high longitudinal coercivity. The general mobility-assisted growth mechanism proposed for the growth of one-dimensional nanostructures inside nano porous alumina during potentiostatic electrodeposition is found to be valid in this case too.
PMCID: PMC2893701  PMID: 20651915
Magnetic nanowires; Nanorods; Hybrid nanostructures; Core–shell nanostructures; Mobility-assisted growth mechanism
9.  Synthesis of High Coercivity Core–Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties 
Nanoscale Research Letters  2009;5(1):164-168.
Hybrid magnetic nanostructures with high coercivity have immense application potential in various fields. Nickel (Ni) electrodeposited inside Cobalt (Co) nanotubes (a new system named Ni @ Co nanorods) were fabricated using a two-step potentiostatic electrodeposition method. Ni @ Co nanorods were crystalline, and they have an average diameter of 150 nm and length of ~15 μm. The X-ray diffraction studies revealed the existence of two separate phases corresponding to Ni and Co. Ni @ Co nanorods exhibited a very high longitudinal coercivity. The general mobility-assisted growth mechanism proposed for the growth of one-dimensional nanostructures inside nano porous alumina during potentiostatic electrodeposition is found to be valid in this case too.
PMCID: PMC2893701  PMID: 20651915
Magnetic nanowires; Nanorods; Hybrid nanostructures; Core–shell nanostructures; Mobility-assisted growth mechanism
10.  Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation 
Cobalt ferrite magnetic nanostructures were synthesized via a high temperature solution phase method. Spherical nanostructures of various sizes were synthesized with the help of seed mediated growth of the nanostructures in organic phase, while faceted irregular (FI) cobalt ferrite nanostructures were synthesized via the same method but in the presence of a magnetic field. Magnetic properties were characterized by SQUID magnetometry, relaxivity measurements and thermal activation under RF field, as a function of size and shape. The results show that the saturation magnetization of the nanostructures increases with an increase in size, and the FI nanostructures exhibit lower saturation magnetization than their spherical counterparts. The relaxivity coefficient of cobalt ferrite nanostructures increases with increase in size; while FI nanostructures show a higher relaxivity coefficient than spherical nanostructures with respect to their saturation magnetization. In the case of RF thermal activation, the specific absorption rate (SAR) of nanostructures increases with increase in the size. The contribution sheds light on the role of size and shape on important magnetic properties of the nanostructures in relation to their biomedical applications.
PMCID: PMC3156095  PMID: 21850276
Cobalt ferrite; shape; size; thermal activation; MRI contrast agent
11.  β-Phase Morphology in Ordered Poly(9,9-dioctylfluorene) Nanopillars by Template Wetting Method 
An efficient method based in template wetting is applied for fabrication of ordered Poly(9,9-dioctylfluorene) (PFO) nanopillars with β-phase morphology. In this process, nanoporous alumina obtained by anodization process is used as template. PFO nanostructures are prepared under ambient conditions via infiltration of the polymeric solution into the pores of the alumina with an average pore diameter of 225 nm and a pore depth of 500 nm. The geometric features of the resulting structures are characterized with environmental scanning electron microscopy (ESEM), luminescence fluorimeter (PL) and micro μ-X-ray diffractometer (μ-XRD). The characterization demonstrates the β-phase of the PFO in the nanopillars fabricated. Furthermore, the PFO nanopillars are characterized by Raman spectroscopy to study the polymer conformation. These ordered nanostructures can be used in optoelectronic applications such as polymer light-emitting diodes, sensors and organic solar cells.
PMCID: PMC3211439
Template wetting; Nanoporous alumina; PFO; Nanopillars; Luminescence; Raman spectroscopy
12.  A catalyst-free growth of aluminum-doped ZnO nanorods by thermal evaporation 
Nanoscale Research Letters  2014;9(1):256.
The growth of Al:ZnO nanorods on a silicon substrate using a low-temperature thermal evaporation method is reported. The samples were fabricated within a horizontal quartz tube under controlled supply of O2 gas where Zn and Al powders were previously mixed and heated at 700°C. This allows the reactant vapors to deposit onto the substrate placed vertically above the source materials. Both the undoped and doped samples were characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) measurements. It was observed that randomly oriented nanowires were formed with varying nanostructures as the dopant concentrations were increased from 0.6 at.% to 11.3 at.% with the appearance of ‘pencil-like’ shape at 2.4 at.%, measuring between 260 to 350 nm and 720 nm in diameter and length, respectively. The HRTEM images revealed nanorods fringes of 0.46 nm wide, an equivalent to the lattice constant of ZnO and correspond to the (0001) fringes with regard to the growth direction. The as-prepared Al:ZnO samples exhibited a strong UV emission band located at approximately 389 nm (E g  = 3.19 eV) with multiple other low intensity peaks appeared at wavelengths greater than 400 nm contributed by oxygen vacancies. The results showed the importance of Al doping that played an important role on the morphology and optical properties of ZnO nanostructures. This may led to potential nanodevices in sensor and biological applications.
PMCID: PMC4050990  PMID: 24948885
Al:ZnO nanowires; Thermal evaporation; Catalyst-free
13.  Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors 
Nanoscale Research Letters  2014;9(1):638.
TeO2-nanostructured sensors are seldom reported compared to other metal oxide semiconductor materials such as ZnO, In2O3, TiO2, Ga2O3, etc. TeO2/CuO core-shell nanorods were fabricated by thermal evaporation of Te powder followed by sputter deposition of CuO. Scanning electron microscopy and X-ray diffraction showed that each nanorod consisted of a single crystal TeO2 core and a polycrystalline CuO shell with a thickness of approximately 7 nm. The TeO2/CuO core-shell one-dimensional (1D) nanostructures exhibited a bamboo leaf-like morphology. The core-shell nanorods were 100 to 300 nm in diameter and up to 30 μm in length. The multiple networked TeO2/CuO core-shell nanorod sensor showed responses of 142% to 425% to 0.5- to 10-ppm NO2 at 150°C. These responses were stronger than or comparable to those of many other metal oxide nanostructures, suggesting that TeO2 is also a promising sensor material. The responses of the core-shell nanorods were 1.2 to 2.1 times higher than those of pristine TeO2 nanorods over the same NO2 concentration range. The underlying mechanism for the enhanced NO2 sensing properties of the core-shell nanorod sensor can be explained by the potential barrier-controlled carrier transport mechanism.
61.46. + w; 07.07.Df; 73.22.-f
PMCID: PMC4256961  PMID: 25489289
TeO2 nanorods; CuO shells; Gas sensors; Response; NO2
14.  Magnetically interacting low dimensional Ni-nanostructures within porous silicon 
Microelectronic Engineering  2012;90(C):83-87.
Graphical abstract
Electrodeposition of ferromagnetic metals, a common method to fabricate magnetic nanostructures, is used for the incorporation of Ni structures into the pores of porous silicon templates. The porous silicon is fabricated in various morphologies with average pore-diameters between 40 and 95 nm and concomitant pore-distances between 60 and 40 nm. The metal nanostructures are deposited with different geometries as spheres, ellipsoids or wires influenced by the deposition process parameters. Furthermore small Ni-particles with diameters between 3 and 6 nm can be deposited on the walls of the porous silicon template forming a metal tube. Analysis of this tube-like arrangement by transmission electron microscopy (TEM) shows that the distribution of the Ni-particles is quite narrow, which means that the distance between the particles is smaller than 10 nm. Such a close arrangement of the Ni-particles assures magnetic interactions between them. Due to their size these small Ni-particles are superparamagnetic but dipolar coupling between them results in a ferromagnetic behavior of the whole system. Thus a semiconducting/ferromagnetic hybrid material with a broad range of magnetic properties can be fabricated. Furthermore this composite is an interesting candidate for silicon based applications and the compatibility with today’s process technology.
PMCID: PMC3242907  PMID: 22308049
Porous silicon; Electrodeposition; Magnetic nanostructures; Ferromagnetism
15.  Pulsed Laser Deposition of Nanoporous Cobalt Thin Films 
Nanoporous cobalt thin films were deposited on anodized aluminum oxide (AAO) membranes at room temperature using pulsed laser deposition. Scanning electron microscopy demonstrated that the nanoporous cobalt thin films retained the monodisperse pore size and high porosity of the anodized aluminum oxide substrates. Temperature- and field-dependent magnetic data obtained between 10 K and 350 K showed large hysteresis behavior in these materials. The increase of coercivity values was larger for nanoporous cobalt thin films than for multilayered cobalt/alumina thin films. The average diameter of the cobalt nanograins in the nanoporous cobalt thin films was estimated to be ~5 nm for blocking temperatures near room temperature. These results suggest that pulsed laser deposition may be used to fabricate nanoporous magnetic materials with unusual properties for biosensing, drug delivery, data storage, and other technological applications.
PMCID: PMC3690133  PMID: 19198344
A. Magnetization curves; B. Epitaxial films; C. Magnetic nano-networks
16.  Tailoring self-organized nanostructured morphologies in kilometer-long polymer fiber 
Scientific Reports  2014;4:4864.
While nanowires and nanospheres have been utilized in the design of a diverse array of nanoscale devices, recent schemes frequently require nanoscale architectures of higher complexity. However, conventional techniques are largely unsatisfactory for the production of more intricate nanoscale shapes and patterns, and even successful fabrication methods are incompatible with large-scale production efforts. Novel top-down, iterative size reduction (ISR)-mediated approaches have recently been shown to be promising for the production of high-throughput cylindrical and spherical nanostructures, though more complex architectures have yet to be created using this process. Here we report the presence of a hitherto-undescribed transitory region between nanowire and nanosphere transformation, where a diverse array of complex quasi one-dimensional nanostructures is produced by Rayleigh-Plateau instability-mediated deformation during the progress of a combined ISR/thermal instability technique. Temperature-based tailoring of architecturally diverse, indefinitely long, globally parallel, complex nanostructure arrays with high uniformity and low size variation facilitates the development of in-fiber or free-standing nanodevices with significant advantages over on-chip devices.
PMCID: PMC4010931  PMID: 24796730
17.  Programmable nanoengineering templates for fabrication of three-dimensional nanophotonic structures 
Nanoscale Research Letters  2013;8(1):268.
Porous anodic alumina membranes (AAMs) have attracted great amount of attention due to their potential application as templates for nanoengineering. Template-guided fabrication and assembly of nanomaterials based on AAMs are cost-effective and scalable methods to program and engineer the shape and morphology of nanostructures and nanomaterials. In this work, perfectly ordered AAMs with the record large pitch up to 3 μm have been fabricated by properly controlling the anodization conditions and utilization of nanoimprint technique. Due to the capability of programmable structural design and fabrication, a variety of nanostructures, including nanopillar arrays, nanotower arrays, and nanocone arrays, have been successfully fabricated using nanoengineered AAM templates. Particularly, amorphous Si nanocones have been fabricated as three-dimensional nanophotonic structures with the characterization of their intriguing optical anti-reflection property. These results directly indicate the potential application of the reported approach for photonics and optoelectronics.
PMCID: PMC3685551  PMID: 23742170
Large-pitch anodic alumina membranes; Programmable nanoengineering templates; Nanocones; Three-dimensional nanophotonic structures
18.  Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching 
Nanoscale Research Letters  2012;7(1):557.
A template-free fabrication method for silicon nanostructures, such as silicon micropillar (MP)/nanowire (NW) composite structure is presented. Utilizing an improved metal-assisted electroless etching (MAEE) of silicon in KMnO4/AgNO3/HF solution and silicon composite nanostructure of the long MPs erected in the short NWs arrays were generated on the silicon substrate. The morphology evolution of the MP/NW composite nanostructure and the role of self-growing K2SiF6 particles as the templates during the MAEE process were investigated in detail. Meanwhile, a fabrication mechanism based on the etching of silver nanoparticles (catalyzed) and the masking of K2SiF6 particles is proposed, which gives guidance for fabricating different silicon nanostructures, such as NW and MP arrays. This one-step method provides a simple and cost-effective way to fabricate silicon nanostructures.
PMCID: PMC3502600  PMID: 23043719
Micropillars; Nanowires; Metal-assisted electroless etching; K2SiF6
19.  “Re-growth Etching” to Large-sized Porous Gold Nanostructures 
Scientific Reports  2013;3:2377.
A new method, named “re-growth etching”, which introduces a unique etchant “AuI”, has been developed to fabricate large-sized porous gold nanostructures. The size of nanostructures and the number of pores can be regulated by the molar ratio of Ag and Au in the precursor. We have evaluated their performance by a model reaction of the reduction of 4-nitrophenol. The catalytic property of porous Au from Ag67.6Au32.4 (Sample 3) is higher than those of other obtained products, which are mainly attributed to its hollows-interior, porous-exterior, and the large amount of Au. The method for the large-sized porous metal nanostructures has been established for the first time and shows the potential of this route to expand the scope of fabricating porous metal nanostructures.
PMCID: PMC3736174  PMID: 23921558
20.  Nanoscale Morphology, Dimensional Control and Electrical Properties of Oligoanilines 
Journal of the American Chemical Society  2010;132(30):10365-10373.
While nanostructures of organic conductors have generated great interest in recent years, their nanoscale size and shape control remains a significant challenge. Here we report a general method for producing a variety of oligoaniline nanostructures with well-defined morphologies and dimensionalities. 1-D nanowires, 2-D nanoribbons, and 3-D rectangular nanoplates and nanoflowers of tetraaniline are produced by a solvent exchange process in which the dopant acid can be used to tune the oligomer morphology. The process appears to be a general route for producing nanostructures for a variety of other aniline oligomers such as the phenyl-capped tetramer. X-ray diffraction of the tetraniline nanostructures reveals that they possess different packing arrangements, which results in different nanoscale morphologies with different electrical properties for the structures. The conductivity of a single tetraaniline nanostructure is up to two orders of magnitude higher than the highest previously reported value and rivals that of pressed pellets of conventional polyaniline doped with acid. Furthermore, these oligomer nanostructures can be easily processed by a number of methods in order to create thin films composed of aligned nanostructures over a macroscopic area.
PMCID: PMC2917110  PMID: 20662516
21.  Tetrathiafulvalene-Supported Triple-Decker Phthalocyaninato Dysprosium(III) Complex: Synthesis, Properties and Surface Assembly 
Scientific Reports  2014;4:5928.
Self-assembly of functional compounds into a prerequisite nanostructure with desirable dimension and morphology by controlling and optimizing intermolecular interaction attracts an extensive research interest for chemists and material scientist. In this work, a new triple-decker sandwich-type lanthanide complex with phthalocyanine and redox-active Schiff base ligand including tetrathiafulvalene (TTF) units has been synthesized, and characterized by single crystal X-ray diffraction analysis, absorption spectra, electrochemical and magnetic measurements. Interestingly, the non-centrosymmetric target complex displays a bias dependent selective adsorption on a solid surface, as observed by scanning tunneling microscopy (STM) at the single molecule level. Density function theory (DFT) calculations are utilized to reveal the formation mechanism of the molecular assemblies, and show that such electrical field dependent selective adsorption is regulated by the interaction between the external electric field and intrinsic molecular properties. Our results suggest that this type of multi-decker complex involving TTF units shows intriguing multifunctional properties from the viewpoint of structure, electric and magnetic behaviors, and fabrication through self-assembly.
PMCID: PMC4120000  PMID: 25088605
22.  Porous silicon/Ni composites of high coercivity due to magnetic field-assisted etching 
Nanoscale Research Letters  2012;7(1):384.
Ferromagnetic nanostructures have been electrodeposited within the pores of porous silicon templates with average pore diameters between 25 and 60 nm. In this diameter regime, the pore formation in general is accompanied by dendritic growth resulting in rough pore walls, which involves metal deposits also offering a branched structure. These side branches influence the magnetic properties of the composite system not only due to modified and peculiar stray fields but also because of a reduced interpore spacing by the approaching of adjacent side pores. To improve the morphology of the porous silicon structures, a magnetic field up to 8 T has been applied during the formation process. The magnetic field etching results in smaller pore diameters with less dendritic side pores. Deposition of a ferromagnetic metal within these templates leads to less branched nanostructures and, thus, to an enhancement of the coercivity of the system and also to a significantly increased magnetic anisotropy. So magnetic field-assisted etching is an appropriate tool to improve the structure of the template concerning the decrease of the dendritic pore growth and to advance the magnetic properties of the composite material.
PMCID: PMC3460775  PMID: 22784792
Magnetic field-assisted anodization; Porous silicon; Magnetic nanostructures; 68.65.-k; 75.75.-c; 81.07.-b
23.  RNA Nanotechnology: Engineering, Assembly and Applications in Detection, Gene Delivery and Therapy 
Biological macromolecules including DNA, RNA, and proteins, have intrinsic features that make them potential building blocks for the bottom-up fabrication of nanodevices. RNA is unique in nanoscale fabrication due to its amazing diversity of function and structure. RNA molecules can be designed and manipulated with a level of simplicity characteristic of DNA while possessing versatility in structure and function similar to that of proteins. RNA molecules typically contain a large variety of single stranded loops suitable for inter- and intra-molecular interaction. These loops can serve as mounting dovetails obviating the need for external linking dowels in fabrication and assembly.
The self-assembly of nanoparticles from RNA involves cooperative interaction of individual RNA molecules that spontaneously assemble in a predefined manner to form a larger two- or three-dimensional structure. Within the realm of self-assembly there are two main categories, namely template and non-template. Template assembly involves interaction of RNA molecules under the influence of specific external sequence, forces, or spatial constraints such as RNA transcription, hybridization, replication, annealing, molding, or replicas. In contrast, non-template assembly involves formation of a larger structure by individual components without the influence of external forces. Examples of non-template assembly are ligation, chemical conjugation, covalent linkage, and loop/loop interaction of RNA, especially the formation of RNA multimeric complexes. The best characterized RNA multiplier and the first to be described in RNA nanotechnological application is the motor pRNA of bacteriophage phi29 which form dimers, trimers, and hexamers, via hand-in-hand interaction. phi29 pRNA can be redesigned to form a variety of structures and shapes including twins, tetramers, rods, triangles, and 3D arrays several microns in size via interaction of programmed helical regions and loops. 3D RNA array formation requires a defined nucleotide number for twisting and a palindromic sequence. Such arrays are unusually stable and resistant to a wide range of temperatures, salt concentrations, and pH. Both the therapeutic siRNA or ribozyme and a receptor-binding RNA aptamer or other ligands have been engineered into individual pRNAs. Individual chimeric RNA building blocks harboring siRNA or other therapeutic molecules have been fabricated subsequently into a trimer through hand-in-hand interaction of the engineered right and left interlocking RNA loops. The incubation of these particles containing the receptor-binding aptamer or other ligands results in the binding and co-entry of trivalent therapeutic particles into cells. Such particles were subsequently shown to modulate the apoptosis of cancer cells in both cell cultures and animal trials. The use of such antigen-free 20–40 nm particles holds promise for the repeated long-term treatment of chronic diseases. Other potentially useful RNA molecules that form multimers include HIV RNA that contain kissing loop to form dimers, tecto-RNA that forms a “jigsaw puzzle,” and the Drosophila bicoid mRNA that forms multimers via “hand-by-arm” interactions.
Applications of RNA molecules involving replication, molding, embossing, and other related techniques, have recently been described that allow the utilization of a variety of materials to enhance diversity and resolution of nanomaterials. It should eventually be possible to adapt RNA to facilitate construction of ordered, patterned, or pre-programmed arrays or superstructures. Given the potential for 3D fabrication, the chance to produce reversible self-assembly, and the ability of self-repair, editing and replication, RNA self-assembly will play an increasingly significant role in integrated biological nanofabrication. A random 100-nucleotide RNA library may exist in 1.6 × 1060 varieties with multifarious structure to serve as a vital system for efficient fabrication, with a complexity and diversity far exceeding that of any current nanoscale system.
This review covers the basic concepts of RNA structure and function, certain methods for the study of RNA structure, the approaches for engineering or fabricating RNA into nanoparticles or arrays, and special features of RNA molecules that form multimers. The most recent development in exploration of RNA nanoparticles for pathogen detection, drug/gene delivery, and therapeutic application is also introduced in this review.
PMCID: PMC2842999  PMID: 16430131
RNA; Nanotechnology; Self-Assembly; RNA Application; phi29 pRNA
24.  Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes 
Semiconductor doped nanostructure materials have attained considerable attention owing to their electronic, opto-electronic, para-magnetic, photo-catalysis, electro-chemical, mechanical behaviors and their potential applications in different research areas. Doped nanomaterials might be a promising owing to their high-specific surface-area, low-resistances, high-catalytic activity, attractive electro-chemical and optical properties. Nanomaterials are also scientifically significant transition metal-doped nanostructure materials owing to their extraordinary mechanical, optical, electrical, electronic, thermal, and magnetic characteristics. Recently, it has gained significant interest in manganese oxide doped-semiconductor materials in order to develop their physico-chemical behaviors and extend their efficient applications. It has not only investigated the basic of magnetism, but also has huge potential in scientific features such as magnetic materials, bio- & chemi-sensors, photo-catalysts, and absorbent nanomaterials.
The chemical sensor also displays the higher-sensitivity, reproducibility, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.977) over the 0.1 nM to 50.0 μM 4-nitrophenol concentration ranges. The sensitivity and detection limit is ~4.6667 μA cm-2 μM-1 and ~0.83 ± 0.2 nM (at a Signal-to-Noise-Ratio, SNR of 3) respectively. To best of our knowledge, this is the first report for detection of 4-nitrophenol chemical with doped Mn2O3-ZnO NPs using easy and reliable I-V technique in short response time.
As for the doped nanostructures, NPs are introduced a route to a new generation of toxic chemo-sensors, but a premeditate effort has to be applied for doped Mn2O3-ZnO NPs to be taken comprehensively for large-scale applications, and to achieve higher-potential density with accessible to individual chemo-sensors. In this report, it is also discussed the prospective utilization of Mn2O3-ZnO NPs on the basis of carcinogenic chemical sensing, which could also be applied for the detection of hazardous chemicals in ecological, environmental, and health care fields.
PMCID: PMC3630067  PMID: 23537000
Doped Mn2O3-ZnO nanoparticles; Wet-chemical method; Powder X-ray diffraction; 4-nitrophenol; I-V technique; X-ray photoelectron spectroscopy; Sensitivity
25.  Cobalt and Nickel Nanopillars on Aluminium Substrates by Direct Current Electrodeposition Process 
Nanoscale Research Letters  2009;4(9):1021-1028.
A fast and cost-effective technique is applied for fabricating cobalt and nickel nanopillars on aluminium substrates. By applying an electrochemical process, the aluminium oxide barrier layer is removed from the pore bottom tips of nanoporous anodic alumina templates. So, cobalt and nickel nanopillars are fabricated into these templates by DC electrodeposition. The resulting nanostructure remains on the aluminium substrate. In this way, this method could be used to fabricate a wide range of nanostructures which could be integrated in new nanodevices.
PMCID: PMC2894324  PMID: 20596338
Nanoporous anodic alumina membranes; Transfer mask; Metallic nanopillars; Electrodeposition

Results 1-25 (640278)