Search tips
Search criteria

Results 1-25 (1048448)

Clipboard (0)

Related Articles

1.  Association of TNFA Promoter Region Haplotype in Behçet's Disease 
Journal of Korean Medical Science  2006;21(4):596-601.
Although the etiology of Behçet's Disease (BD; MIM 109650) remains to be clearly elucidated, levels of tumor necrosis factor alpha (TNF-α) have been reported to be significantly elevated in BD patients, and TNF-α blockers have been demonstrated to exhibit some degree of therapeutic efficacy for a certain subset of BD sufferers. In this study, we have conducted an analysis of the TNFA haplotypes in the promoter response element that affect the binding affinity of specific transcription factors, in order to characterize their association with the clinical features of BD. Six polymorphisms in the promoter region of TNFA were genotyped in 254 BD patients and 344 control subjects, via the PCR-RFLP technique. TNFA -1031*C, -863*A and -308*G alleles were associated with an increased risk of BD (p=0.030, OR=1.4; p=0.008, OR=1.5; p=0.010, OR=1.8, respectively). The sole TNFA haplotype -1031C-863A-857C-376G-308G-238G, was associated with a 1.6 fold increase in the risk of BD, whereas the TNFA haplotype -1031T-863C-857C-376G-308A-238G was associated with a 0.6 decreased risk of BD. The TNFA -1031*C, -863*A, -857*C and -308*G alleles were significantly associated with BD. The findings of this study, collectively, indicate that TNFA haplotypes in the promoter response elements may exert significant influence on susceptibility to BD.
PMCID: PMC2729877  PMID: 16891799
Tumor Necrosis Factor-alpha; Behcet Syndrome; Haplotypes; Polymorphisms, Single Nucleotide
2.  Identification of Novel Single Nucleotide Polymorphisms in Inflammatory Genes as Risk Factors Associated with Trachomatous Trichiasis 
PLoS ONE  2008;3(10):e3600.
Trachoma is the leading preventable cause of global blindness. A balanced Th1/Th2/Th3 immune response is critical for resolving Chlamydia trachomatis infection, the primary cause of trachoma. Despite control programs that include mass antibiotic treatment, reinfection and recurrence of trachoma are common after treatment cessation. Furthermore, a subset of infected individuals develop inflammation and are at greater risk for developing the severe sequela of trachoma known as trachomatous trichiasis (TT). While there are a number of environmental and behavioral risk factors for trachoma, genetic factors that influence inflammation and TT risk remain ill defined.
We identified single nucleotide polymorphisms (SNP) in 36 candidate inflammatory genes and interactions among these SNPs that likely play a role in the overall risk for TT. We conducted a case control study of 538 individuals of Tharu ethnicity residing in an endemic region of Nepal. Trachoma was graded according to World Health Organization guidelines. A linear array was used to genotype 51 biallelic SNPs in the 36 genes. Analyses were performed using logic regression modeling, which controls for multiple comparisons. We present, to our knowledge, the first significant association of TNFA (-308GA), LTA (252A), VCAM1 (-1594TC), and IL9 (T113M) polymorphisms, synergistic SNPs and risk of TT. TT risk decreased 5 times [odds ratio = 0.2 (95% confidence interval 0.11.–0.33), p = 0.001] with the combination of TNFA (-308A), LTA (252A), VCAM1 (-1594C), SCYA 11 (23T) minor allele, and the combination of TNFA (-308A), IL9 (113M), IL1B (5′UTR-T), and VCAM1 (-1594C). However, TT risk increased 13.5 times [odds ratio = 13.5 (95% confidence interval 3.3–22), p = 0.001] with the combination of TNFA (-308G), VDR (intron G), IL4R (50V), and ICAM1 (56M) minor allele.
Evaluating genetic risk factors for trachoma will advance our understanding of disease pathogenesis, and should be considered in the context of designing global control programs.
PMCID: PMC2572999  PMID: 18974840
3.  Meta-analysis confirms association between TNFA-G238A variant and JIA, and between PTPN22-C1858T variant and oligoarticular, RF-polyarticular and RF-positive polyarticular JIA 
Although more than 100 non-HLA variants have been tested for associations with juvenile idiopathic arthritis (JIA) in candidate gene studies, only a few have been replicated. We sought to replicate reported associations of single nucleotide polymorphisms (SNPs) in the PTPN22, TNFA and MIF genes in a well-characterized cohort of children with JIA.
We genotyped and analyzed 4 SNPs in 3 genes: PTPN22 C1858T (rs2476601), TNFA G-308A, G-238A (rs1800629, rs361525) and MIF G-173C (rs755622) in 647 JIA cases and 751 healthy controls. We tested for association between each variant and JIA as well as JIA subtypes. We adjusted for multiple testing using permutation procedures. We also performed a meta-analysis that combined our results with published results from JIA association studies.
While the PTPN22 variant showed only modest association with JIA (OR = 1.29, p = 0.0309), it demonstrated a stronger association with the RF-positive polyarticular JIA subtype (OR = 2.12, p = 0.0041). The MIF variant was not associated with the JIA as a whole or with any subtype. The TNFA-238A variant was associated with JIA as a whole (OR 0.66, p = 0.0265), and demonstrated a stronger association with oligoarticular JIA (OR 0.33, p = 0.0006) that was significant after correction for multiple testing. TNFA-308A was not associated with JIA, but was nominally associated with systemic JIA (OR = 0.33, p = 0.0089) and enthesitis-related JIA (OR = 0.40, p = 0.0144). Meta-analyses confirmed significant associations between JIA and PTPN22 (OR 1.44, p <0.0001) and TNFA-238A (OR 0.69, p < 0.0086) variants. Subtype meta-analyses of the PTPN22 variant revealed associations between RF-positive, RF-negative, and oligoarticular JIA, that remained significant after multiple hypothesis correction (p < 0.0005, p = 0.0007, and p < 0.0005, respectively).
We have confirmed associations between JIA and PTPN22 and TNFA G-308A. By performing subtype analyses, we discovered a statistically-significant association between the TNFA-238A variant and oligoarticular JIA. Our meta-analyses confirm the associations between TNFA-238A and JIA, and show that PTPN22 C1858T is associated with JIA as well as with RF-positive, RF-negative and oligoarticular JIA.
PMCID: PMC3874734  PMID: 24160187
Genetics; Juvenile idiopathic arthritis; Association; Replication
4.  Associations between Cytokine/Cytokine Receptor SNPs and Humoral Immunity to Measles, Mumps and Rubella in a Somali Population 
Tissue antigens  2008;72(3):211-220.
We genotyped a Somali population (n=85; age ≤ 30 years) for 617 cytokine and cytokine receptor SNPs using Illumina GoldenGate genotyping to determine associations with measles, mumps and rubella immunity. Overall, sixty-one significant associations (p≤0.01) were found between SNPs belonging to cytokine receptor genes regulating Th1 (IL12RB2, IL2RA and B) and Th2 (IL4R, IL10RB) immunity, and cytokine (IL1B, TNFA, IL6 and IFNB1) and cytokine receptor (IL1RA, IFNAR2, IL18R1, TNFRSF1A and B) genes regulating innate immunity, and variations in antibody levels to measles, mumps or rubella. SNPs within two major inflammatory cytokine genes, TNFA and IL6, demonstrated associations with measles-specific antibodies. Specifically, the minor allele variant of rs1799964 (TNFA -1211 C>T) was associated with primarily seronegative values (median EIA index values ≤0.87; p=0.002; q=0.23) in response to measles disease and/or vaccination. A heterozygous variant CT for rs2069849 (IL6 +4272C>T; Phe201Phe) was also associated with seronegative values and a lower median level of antibody response to measles disease and/or vaccination (p=0.004; q=0.36) or measles vaccination alone (p=0.008). Several SNPs within the coding and regulatory regions of cytokine and cytokine receptor genes demonstrated associations with mumps and rubella antibody levels, but were less informative as strong LD patterns and lower frequencies for minor alleles were observed among these SNPs. Our study identifies specific SNPs in innate immune response genes that may play a role in modulating antibody responses to measles vaccination and/or infection in Somali subjects.
PMCID: PMC2595143  PMID: 18715339
Polymorphisms; Cytokine; Cytokine receptors; Antibodies; MMR; Immunity
5.  Polymorphisms in the TNFA and IL6 Genes Represent Risk Factors for Autoimmune Thyroid Disease 
PLoS ONE  2014;9(8):e105492.
Autoimmune thyroid disease (AITD) comprises diseases including Hashimoto's thyroiditis and Graves' disease, both characterized by reactivity to autoantigens causing, respectively, inflammatory destruction and autoimmune stimulation of the thyroid-stimulating hormone receptor. AITD is the most common thyroid disease and the leading form of autoimmune disease in women. Cytokines are key regulators of the immune and inflammatory responses; therefore, genetic variants at cytokine-encoding genes are potential risk factors for AITD.
Polymorphisms in the IL6-174 G/C (rs1800795), TNFA-308 G/A (rs1800629), IL1B-511 C/T (rs16944), and IFNGR1-56 T/C (rs2234711) genes were assessed in a case-control study comprising 420 Hashimoto's thyroiditis patients, 111 Graves' disease patients and 735 unrelated controls from Portugal. Genetic variants were discriminated by real-time PCR using TaqMan SNP genotyping assays.
A significant association was found between the allele A in TNFA-308 G/A and Hashimoto's thyroiditis, both in the dominant (OR = 1.82, CI = 1.37–2.43, p-value = 4.4×10−5) and log-additive (OR = 1.64, CI = 1.28–2.10, p-value = 8.2×10−5) models. The allele C in IL6-174 G/C is also associated with Hashimoto's thyroiditis, however, only retained significance after multiple testing correction in the log-additive model (OR = 1.28, CI = 1.06–1.54, p-value = 8.9×10−3). The group with Graves' disease also registered a higher frequency of the allele A in TNFA-308 G/A compared with controls both in the dominant (OR = 1.85, CI = 1.19–2.87, p-value = 7.0×10−3) and log-additive (OR = 1.69, CI = 1.17–2.44, p-value = 6.6×10−3) models. The risk for Hashimoto's thyroiditis and Graves' disease increases with the number of risk alleles (OR for two risk alleles is, respectively, 2.27 and 2.59).
This study reports significant associations of genetic variants in TNFA and IL6 with the risk for AITD, highlighting the relevance of polymorphisms in inflammation-related genes in the etiopathogenesis of AITD.
PMCID: PMC4134306  PMID: 25127106
6.  Association of the TNFa13 microsatellite with systemic sclerosis in Japanese patients 
Annals of the Rheumatic Diseases  2000;59(4):293-296.
OBJECTIVES—To elucidate the contribution of microsatellite polymorphisms of TNFa and TNFb alleles to the pathogenesis of systemic sclerosis (SSc) by comparing the allele distribution among populations with different HLA susceptibility genes in SSc.
METHODS—TNFa and TNFb microsatellite polymorphisms were determined by PCR in 54 Japanese and 50 German SSc patients and in normal controls. HLA-DR genotyping was carried out by PCR-SSCP.
RESULTS—The frequency of TNFa13 was significantly increased in Japanese SSc (p=0.011, OR=8.53, 95% confidence intervals (95%CI)=2.46, 32.51, and p<1.0 × 10E-5, OR=10.35, 95%CI=4.88, 22.09) and SSc with antitopoisomerase I antibody (a-Scl-70) (p=0.021, OR=33.25, 95%CI=3.39, 800.76, and p<1.0 × 10E-5, OR=24.42, 95%CI=8.40, 72.83), compared with the German patient group and German controls, respectively. This increase was not only attributable to a higher prevalence of TNFa13 in Japanese compared with Germans (p=0.005, OR=3.55, 95%CI=1.60, 7.85) but was also caused by an increase in SSc, especially in the a-Scl-70 positive patients (p=0.028, OR=6.88, 95%CI=1.16, 22.60) compared with Japanese controls. TNFa13 was positively in linkage disequilibrium with HLA-DRB1*1502 (LD=0.053, t=2.69). Association analysis indicated that both TNFa13 and DRB1*1502 might have comparable probabilities of being susceptibility factors for SSc with a-Scl-70 in Japanese. Prevalences of TNFa6 and 13 were significantly increased and prevalences of TNFa2, and 7 were significantly decreased in Japanese controls as compared with German controls.
CONCLUSION—TNFa13 is a genetic marker for SSc with a-Scl-70 in Japanese patients. Various differences in the prevalences of TNFa alleles between Japanese and German controls were established.

PMCID: PMC1753116  PMID: 10733477
7.  Genetic Polymorphisms Modifying Oxidative Stress Are Associated with Disease Activity in Rheumatoid Arthritis Patients 
Disease markers  2009;26(1):41-48.
Reactive oxygen and nitrogen species are involved in the pathology of rheumatoid arthritis (RA). Polymorphisms in genes coding for superoxide dismutases (SOD2 and SOD3), catalase (CAT), tumor necrosis factor-alpha (TNFA) and inducible NO synthase (NOS2A) may influence RA activity. We determined SOD2 Ala-9Val, SOD3 Arg213Gly, CAT C-262T, TNFA G-308A, TNFA C-857T and NOS2A (CCTTT)n polymorphisms in 327 RA patients. Carriers of CAT -262T and TNFA -308A allele had lower mean disease activity score of 28 joint count (DAS28) values than patients with CAT -262CC and TNFA -308GG genotypes (p = 0.014 and p = 0.046, respectively). Patients with the combination of CAT -262T and TNFA -308A allele had lower mean DAS28 values and a higher probability for low disease activity than non-carriers (p = 0.003, OR = 3.585, 95% CI = 1.538–8.357). Our results suggest that CAT and TNFA polymorphisms alone and in combination influence the activity of RA.
PMCID: PMC3833245  PMID: 19242068
Reactive oxygen species; rheumatoid arthritis; genetic polymorphism; disease activity
8.  Genetic polymorphisms of innate immunity-related inflammatory pathways and their association with factors related to type 2 diabetes 
BMC Medical Genetics  2011;12:95.
Type 2 diabetes mellitus (T2DM) has been linked to a state of pre-clinical chronic inflammation resulting from abnormalities in the innate immune pathway. Serum levels of pro-inflammatory cytokines and acute-phase proteins, collectively known as 'inflammatory network', are elevated in the pre-, or early, stages of T2DM and increase with disease progression. Genetic variation can affect the innate immune response to certain environmental factors, and may, therefore, determine an individual's lifetime risk of disease.
We conducted a cross-sectional study in 6,720 subjects from the TwinsUK Registry to evaluate the association between 18 single nucleotide polymorphisms (SNPs) in five genes (TLR4, IL1A, IL6, TNFA, and CRP) along the innate immunity-related inflammatory pathway and biomarkers of predisposition to T2DM [fasting insulin and glucose, HDL- and LDL- cholesterols, triglycerides (TGs), amyloid-A, sensitive C-reactive protein (sCRP) and vitamin D binding protein (VDBP) and body mass index (BMI)].
Of 18 the SNPs examined for their association with nine metabolic phenotypes of interest, six were significantly associated with five metabolic phenotypes (Bonferroni correction, P ≤ 0.0027). Fasting insulin was associated with SNPs in IL6 and TNFA, serum HDL-C with variants of TNFA and CRP and serum sCRP level with SNPs in CRP. Cross-correlation analysis among the different metabolic factors related to risk of T2DM showed several significant associations. For example, BMI was directly correlated with glucose (r = 0.11), insulin (r = 0.15), sCRP (r = 0.23), LDL-C (r = 0.067) and TGs (r = 0.18) but inversely with HDL-C (r = -0.14). sCRP was also positively correlated (P < 0.0001) with insulin (r = 0.17), amyloid-A (r = 0.39), TGs (r = 0.26), and VDBP (r = 0.36) but inversely with HDL-C (r = -0.12).
Genetic variants in the innate immunity pathway and its related inflammatory cascade is associated with some metabolic risk factors for T2DM; an observation that may provide a rationale for further studying their role as biomarkers for disease early risk prediction.
PMCID: PMC3161932  PMID: 21756351
9.  A disintegrin and metalloprotease 33 and chronic obstructive pulmonary disease pathophysiology 
Thorax  2006;62(3):242-247.
Chronic obstructive pulmonary disease (COPD) is a respiratory disorder with increasing prevalence and mortality. It is associated with airway obstruction, increased airway hyper‐responsiveness (AHR), and ongoing airway and lung inflammation dominated by CD8 lymphocytes and neutrophils. Single‐nucleotide polymorphisms (SNPs) in a disintegrin and metalloprotease 33 (ADAM33) gene have been associated with AHR and COPD.
To assess whether SNPs in ADAM33 are associated with the severity of AHR and airway inflammation in COPD.
Eight SNPs in ADAM33 (F+1, Q‐1, S_1, S_2, ST+5, T_1, T_2, V_4) were genotyped in 111 patients with COPD (96 males, 69 current smokers, mean (standard deviation (SD)), aged 62 (8) years, median pack‐years 42 (IQR 31–55), mean postbronchodilator forced expiratory volume in 1 s (FEV1)% predicted 63 (9). Provocative concentration of methacholine causing a decrease in FEV1 of 20% (PC20 methacholine), sputum and bronchial biopsies were collected.
Patients with the ST+5 AA genotype had more severe AHR, higher numbers of sputum inflammatory cells and CD8 cells in bronchial biopsies than patients with the GG genotype (p = 0.03, 0.05 and 0.01, respectively). CD8 cell numbers were lower in patients carrying the minor allele of SNP T_1 and T_2, and homozygotic minor variants of SNP S_2 compared with the wild type (p = 0.02, 0.01 and 0.02, respectively).
This is the first study revealing that SNPs in a gene that confers susceptibility to COPD in the general population—that is, ADAM33—are associated with AHR and airway inflammation in COPD. These findings constitute an important step forward in linking gene polymorphisms with COPD pathophysiology, thereby possibly contributing to better treatments for this progressive and disabling disease in the future.
PMCID: PMC2117167  PMID: 17090574
10.  TNFA and IL10 Gene Polymorphisms are not Associated with Periodontitis in Brazilians 
The Open Dentistry Journal  2009;3:184-190.
IL-10 and TNF-α are cytokines that have complex and opposing roles in the inflammatory responses. G/A polymorphisms at position –1082 of IL10 and –308 of TNFA genes have been reported to influence the expression of IL-10 and TNF-α, respectively. The aim of this study was to investigate the association between the IL10 (-1082) and TNFA (- 308) gene polymorphisms with different clinical forms or severity of periodontitis in a sample of Brazilian individuals. DNA was obtained from oral swabs of 165 Brazilian individuals, which were divided into three groups: individuals with chronic periodontitis, aggressive periodontitis and individuals without clinical evidence of periodontitis. Evaluation of IL10 and TNFA polymorphisms was performed by RFLP analysis. Statistical analysis of data was performed using the χ2 likelihood ratio and Fisher`s exact test. No significant differences in the genotype and allele distribution of either IL10 or TNFA were observed among individuals with different clinical forms or with different degrees of severity of periodontitis. Moreover, combined analysis of IL10 and TNFA polymorphisms did not show any association with periodontal status. As conclusion, the IL10 and TNFA gene promoter polymorphisms investigated are not associated with different clinical forms of periodontitis or with severity of the disease in the Brazilian population polymorphisms.
PMCID: PMC2745565  PMID: 19771178
IL-10; TNF-alpha; periodontitis; polymorphism.
11.  Genetic Predictors of Fatigue in Prostate Cancer Patients Treated with Androgen Deprivation Therapy: Preliminary Findings 
Brain, behavior, and immunity  2012;26(7):1030-1036.
Fatigue is a common and distressing side effect of androgen deprivation therapy (ADT) for prostate cancer. The goal of the current study was to examine the relationship between changes in fatigue following initiation of ADT and single nucleotide polymorphisms (SNPs) in three pro-inflammatory cytokine genes: interleukin-1 beta (IL1B), interleukin-6 (IL6), and tumor necrosis factor alpha (TNFA).
As part of a larger study, men with prostate cancer (n=53) were recruited prior to initiation of ADT. Fatigue was assessed at recruitment and six months after initiation of ADT. DNA was extracted from blood drawn at baseline.
Patients with the IL6-174 (rs1800795) G/C or C/C genotype displayed greater increases in fatigue intrusiveness, frequency, and duration than the G/G genotype (p values≤0.05), although inclusion of age, race, and baseline depressive symptomatology in the model attenuated these relationships (p values≤0.09). Patients with the TNFA-308 (rs1800629) G/A genotype showed greater increases in fatigue severity than the G/G genotype (p=0.02). IL1B-511 (rs16944) genotype did not significantly predict changes in fatigue (p values>0.46). Patients with higher numbers of variants displayed greater increases in fatigue duration and interference (p values≤0.02) than patients with lower numbers of variants.
Prostate cancer patients treated with ADT who carry variant alleles of the IL6 and TNFA genes are susceptible to heightened fatigue. These preliminary data lend support for the role of genetic variation in the development of cancer-related fatigue secondary to ADT. Findings are relevant to attempts to develop personalized approaches to cancer treatment.
PMCID: PMC3399038  PMID: 22475653
prostatic neoplasms; fatigue; polymorphism; single nucleotide
12.  Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease 
PLoS ONE  2011;6(9):e24395.
Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.
PMCID: PMC3174957  PMID: 21949713
COPD  2010;7(4):262-268.
Superoxide dismutase-3 (SOD3) is a major extracellular antioxidant enzyme, and previous studies have indicated a possible role of this gene in chronic obstructive pulmonary disease (COPD). We hypothesized that polymorphisms in the SOD3 gene would be associated with COPD and COPD-related phenotypes.
We genotyped three SOD3 polymorphisms (rs8192287 (E1), rs8192288 (I1) and rs1799895 (R213G)) in a case-control cohort, with severe COPD cases from the National Emphysema Treatment Trial (NETT, n=389) and smoking controls from the Normative Aging Study (NAS, n=472). We examined whether the SNPs were associated with COPD status, lung function variables, and quantitative CT measurements of emphysema and airway wall thickness. Further, we tried to replicate our initial findings in two family-based studies, the International COPD Genetics Network (ICGN, n=3061) and the Boston Early-Onset COPD Study (EOCOPD, n=949).
In NETT COPD cases, the minor alleles of SNPs E1 and I1 were associated with a higher percentage of emphysema (%LAA950) on chest CT scan (p=0.029 and p=0.0058). The association with E1 was replicated in the ICGN family study, where the minor allele was associated with more emphysema (p=0.048). Airway wall thickness was positively associated with the E1 SNP in ICGN; however, this finding was not confirmed in NETT. Quantitative CT data were not available in EOCOPD. The SNPs were not associated with lung function variables or COPD status in any of the populations.
In conclusion, polymorphisms in the SOD3 gene were associated with CT emphysema but not COPD susceptibility, highlighting the importance of phenotype definition in COPD genetics studies.
PMCID: PMC2923920  PMID: 20673035
14.  A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci 
PLoS Genetics  2009;5(3):e1000421.
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10−10, (rs8034191) and 5.74×10−10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.
Author Summary
There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD), which is a heritable multi-factorial trait. Identifying the genetic determinants of COPD risk will have tremendous public health importance. This study describes the first genome-wide association study (GWAS) in COPD. We conducted a GWAS in a homogenous case-control cohort from Norway and evaluated the top 100 single nucleotide polymorphisms in the family-based International COPD Genetics Network. The polymorphisms that showed replication were further evaluated in subjects from the US National Emphysema Treatment Trial and controls from the Normative Aging Study and then in a fourth cohort of extended pedigrees from the Boston Early-Onset COPD population. Two polymorphisms in the α-nicotinic acetylcholine receptor 3/5 locus on chromosome 15 showed unambiguous evidence of association with COPD. This locus has previously been implicated in both smoking behavior and risk of lung cancer, suggesting the possibility of multiple functional polymorphisms in the region or a single polymorphism with wide phenotypic consequences. The hedgehog interacting protein (HHIP) locus on chromosome 4, which is associated with COPD, is also a significant risk locus for COPD.
PMCID: PMC2650282  PMID: 19300482
15.  Meta-analysis identified the TNFA -308G > A promoter polymorphism as a risk factor for disease severity in patients with rheumatoid arthritis 
Arthritis Research & Therapy  2012;14(6):R264.
The goal of this study is to investigate whether the -308G > A promoter polymorphism in the tumor necrosis factor alpha (TNFA) gene is associated with disease severity and radiologic joint damage in a large cohort of patients with rheumatoid arthritis (RA).
A long-term observational early RA inception cohort (n = 208) with detailed information about disease activity and radiologic damage after 3, 6 and 9 years of disease was genotyped for the TNFA -308G > A promoter polymorphism (rs1800629). A longitudinal regression analysis was performed to assess the effect of genotype on RA disease severity and joint damage. Subsequently, a meta-analysis, including all publically available data, was performed to further test the association between joint erosions and the TNFA polymorphism. To learn more about the mechanism behind the effect of the polymorphism, RNA isolated from peripheral blood from RA patients (n = 66) was used for TNFA gene expression analysis by quantitative PCR.
Longitudinal regression analysis with correction for gender and disease activity showed a significant difference in total joint damage between GG and GA+AA genotype groups (P = 0.002), which was stable over time. The meta-analysis, which included 2,053 patients, confirmed an association of the genetic variant with the development of erosions (odds ratio 0.78, 95% CI 0.62, 0.98). No significant differences in TNFA gene expression were observed for the different genotypes, confirming earlier findings in healthy individuals.
Our data confirm that the TNFA -308G > A promoter polymorphism is associated with joint damage in patients with RA. This is not mediated by differences in TNFA gene expression between genotypes.
PMCID: PMC3674610  PMID: 23217265
16.  Genome-Wide Association Analysis of Blood Biomarkers in Chronic Obstructive Pulmonary Disease 
Rationale: A genome-wide association study (GWAS) for circulating chronic obstructive pulmonary disease (COPD) biomarkers could identify genetic determinants of biomarker levels and COPD susceptibility.
Objectives: To identify genetic variants of circulating protein biomarkers and novel genetic determinants of COPD.
Methods: GWAS was performed for two pneumoproteins, Clara cell secretory protein (CC16) and surfactant protein D (SP-D), and five systemic inflammatory markers (C-reactive protein, fibrinogen, IL-6, IL-8, and tumor necrosis factor-α) in 1,951 subjects with COPD. For genome-wide significant single nucleotide polymorphisms (SNPs) (P < 1 × 10−8), association with COPD susceptibility was tested in 2,939 cases with COPD and 1,380 smoking control subjects. The association of candidate SNPs with mRNA expression in induced sputum was also elucidated.
Measurements and Main Results: Genome-wide significant susceptibility loci affecting biomarker levels were found only for the two pneumoproteins. Two discrete loci affecting CC16, one region near the CC16 coding gene (SCGB1A1) on chromosome 11 and another locus approximately 25 Mb away from SCGB1A1, were identified, whereas multiple SNPs on chromosomes 6 and 16, in addition to SNPs near SFTPD, had genome-wide significant associations with SP-D levels. Several SNPs affecting circulating CC16 levels were significantly associated with sputum mRNA expression of SCGB1A1 (P = 0.009–0.03). Several SNPs highly associated with CC16 or SP-D levels were nominally associated with COPD in a collaborative GWAS (P = 0.001–0.049), although these COPD associations were not replicated in two additional cohorts.
Conclusions: Distant genetic loci and biomarker-coding genes affect circulating levels of COPD-related pneumoproteins. A subset of these protein quantitative trait loci may influence their gene expression in the lung and/or COPD susceptibility.
Clinical trial registered with (NCT 00292552).
PMCID: PMC3622441  PMID: 23144326
biomarker; chronic obstructive pulmonary disease; genome-wide association study
17.  Prognostic Role of Host Cyclooxygenase and Cytokine Genotypes in a Caucasian Cohort of Patients with Gastric Adenocarcinoma 
PLoS ONE  2012;7(9):e46179.
Genetic factors influencing the prognosis of gastric adenocarcinoma (GAC) are not well known. Given the relevance of cytokines and other pro-inflammatory mediators in cancer progression and invasiveness, we aimed to assess the prognostic role of several functional cytokine and cyclooxygenase gene polymorphisms in patients with GAC.
Genomic DNA from 380 Spanish Caucasian patients with primary GAC was genotyped for 23 polymorphisms in pro-inflammatory (IL1B, TNFA, LTA, IL6, IL12p40), anti-inflammatory (IL4, IL1RN, IL10, TGFB1) cytokine, and cyclooxygenase (PTGS1 and PTGS2) genes by PCR, RFLP and TaqMan assays. Clinical and histological information was collected prospectively. Survival curves were estimated by the Kaplan-Meier method and compared using the log rank test. Outcome was determined by analysis of Cox proportional hazards, adjusting for confounding factors.
The median follow-up period and median overall survival (OS) time were 9.9 months (range 0.4–120.3) and 10.9 months (95% CI: 8.9–14.1), respectively. Multivariate analysis identified tumor stages III (HR, 3.23; 95% CI:2–5.22) and IV (HR, 5.5; 95% CI: 3.51–8.63) as independent factors associated with a significantly reduced OS, whereas surgical treatment (HR: 0.44; 95%CI: 0.3–0.6) was related to a better prognosis of the disease. Concerning genetic factors, none of the 23 polymorphisms evaluated in the current study did influence survival. Moreover, no gene-environment interactions on GAC prognosis were observed.
Our results show that, in our population, the panel of selected pro- and anti-inflammatory cytokine, and cyclooxygenase gene polymorphisms are not relevant in determining the prognosis of gastric adenocarcinoma.
PMCID: PMC3460851  PMID: 23029430
18.  Genetic Variations in ADIPOQ Gene Are Associated with Chronic Obstructive Pulmonary Disease 
PLoS ONE  2012;7(11):e50848.
Adiponectin is reported to be related to the development of chronic obstructive pulmonary disease (COPD). Genetic variants in the gene encoding adiponectin (ADIPOQ) have been reported to be associated with adiponectin level in several genome–wide linkage and association studies. However, relatively little is known about the effects of ADIPOQ gene variants on COPD susceptibility. We determined the frequencies of single-nucleotide polymorphisms (SNPs) in ADIPOQ in a Chinese Han population and their possible association with COPD susceptibility.
We conducted a case–control study of 279 COPD patients and 367 age- and gender-distribution-matched control subjects. Seven tagging SNPs in ADIPOQ, including rs710445, rs16861205, rs822396, rs7627128, rs1501299, rs3821799 and rs1063537 were genotyped by SNaPshot. Association analysis of genotypes/alleles and haplotypes constructed from these loci with COPD was conducted under different genetic models.
The alleles or genotypes of rs1501299 distributed significantly differently in COPD patients and controls (allele: P = 0.002, OR = 1.43 and 95%CI = 1.14–1.79; genotype: P = 0.008). The allele A at rs1501299 was potentially associated with an increased risk of COPD in all dominant model analysis (P = 0.009; OR: 1.54; 95%CI: 1.11–2.13), recessive model analyses (P = 0.015; OR: 1.75; 95% CI: 1.11–2.75) and additive model analyses (P = 0.003; OR: 2.11; 95% CI: 1.29–3.47). In haplotype analysis, we observed haplotypes AAAAACT and GGACCTC had protective effects, while haplotypes AGAACTC, AGGCCTC, GGAACTC, GGACACT and GGGCCTC were significantly associated with the increased risk of COPD.
We conducted the first investigation of the association between the SNPs in ADIPOQ and COPD risk. Our current findings suggest that ADIPOQ may be a potential risk gene for COPD. Further studies in larger groups are warranted to confirm our results.
PMCID: PMC3508992  PMID: 23209832
19.  Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at:
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients with Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at:
For more information on the economic analysis, please visit the PATH website:
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website:
The objective of this analysis was to compare hospital-at-home care with inpatient hospital care for patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) who present to the emergency department (ED).
Clinical Need: Condition and Target Population
Acute Exacerbations of Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease is a disease state characterized by airflow limitation that is not fully reversible. This airflow limitation is usually both progressive and associated with an abnormal inflammatory response of the lungs to noxious particles or gases. The natural history of COPD involves periods of acute-onset worsening of symptoms, particularly increased breathlessness, cough, and/or sputum, that go beyond normal day-to-day variations; these are known as acute exacerbations.
Two-thirds of COPD exacerbations are caused by an infection of the tracheobronchial tree or by air pollution; the cause in the remaining cases is unknown. On average, patients with moderate to severe COPD experience 2 or 3 exacerbations each year.
Exacerbations have an important impact on patients and on the health care system. For the patient, exacerbations result in decreased quality of life, potentially permanent losses of lung function, and an increased risk of mortality. For the health care system, exacerbations of COPD are a leading cause of ED visits and hospitalizations, particularly in winter.
Hospital-at-home programs offer an alternative for patients who present to the ED with an exacerbation of COPD and require hospital admission for their treatment. Hospital-at-home programs provide patients with visits in their home by medical professionals (typically specialist nurses) who monitor the patients, alter patients’ treatment plans if needed, and in some programs, provide additional care such as pulmonary rehabilitation, patient and caregiver education, and smoking cessation counselling.
There are 2 types of hospital-at-home programs: admission avoidance and early discharge hospital-at-home. In the former, admission avoidance hospital-at-home, after patients are assessed in the ED, they are prescribed the necessary medications and additional care needed (e.g., oxygen therapy) and then sent home where they receive regular visits from a medical professional. In early discharge hospital-at-home, after being assessed in the ED, patients are admitted to the hospital where they receive the initial phase of their treatment. These patients are discharged into a hospital-at-home program before the exacerbation has resolved. In both cases, once the exacerbation has resolved, the patient is discharged from the hospital-at-home program and no longer receives visits in his/her home.
In the models that exist to date, hospital-at-home programs differ from other home care programs because they deal with higher acuity patients who require higher acuity care, and because hospitals retain the medical and legal responsibility for patients. Furthermore, patients requiring home care services may require such services for long periods of time or indefinitely, whereas patients in hospital-at-home programs require and receive the services for a short period of time only.
Hospital-at-home care is not appropriate for all patients with acute exacerbations of COPD. Ineligible patients include: those with mild exacerbations that can be managed without admission to hospital; those who require admission to hospital; and those who cannot be safely treated in a hospital-at-home program either for medical reasons and/or because of a lack of, or poor, social support at home.
The proposed possible benefits of hospital-at-home for treatment of exacerbations of COPD include: decreased utilization of health care resources by avoiding hospital admission and/or reducing length of stay in hospital; decreased costs; increased health-related quality of life for patients and caregivers when treated at home; and reduced risk of hospital-acquired infections in this susceptible patient population.
Ontario Context
No hospital-at-home programs for the treatment of acute exacerbations of COPD were identified in Ontario. Patients requiring acute care for their exacerbations are treated in hospitals.
Research Question
What is the effectiveness, cost-effectiveness, and safety of hospital-at-home care compared with inpatient hospital care of acute exacerbations of COPD?
Research Methods
Literature Search
Search Strategy
A literature search was performed on August 5, 2010, using OVID MEDLINE, OVID MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Wiley Cochrane Library, and the Centre for Reviews and Dissemination database for studies published from January 1, 1990, to August 5, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists and health technology assessment websites were also examined for any additional relevant studies not identified through the systematic search.
Inclusion Criteria
English language full-text reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies including patients with COPD as well as patients with other conditions, if results are reported for COPD patients separately;
studies performed in patients with acute exacerbations of COPD who present to the ED;
studies published between January 1, 1990, and August 5, 2010;
studies comparing hospital-at-home and inpatient hospital care for patients with acute exacerbations of COPD;
studies that include at least 1 of the outcomes of interest (listed below).
Cochrane Collaboration reviews have defined hospital-at-home programs as those that provide patients with active treatment for their acute exacerbation in their home by medical professionals for a limited period of time (in this case, until the resolution of the exacerbation). If a hospital-at-home program had not been available, these patients would have been admitted to hospital for their treatment.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
Outcomes of Interest
Patient/clinical outcomes
lung function (forced expiratory volume in 1 second)
health-related quality of life
patient or caregiver preference
patient or caregiver satisfaction with care
Health system outcomes
hospital readmissions
length of stay in hospital and hospital-at-home
ED visits
transfer to long-term care
days to readmission
eligibility for hospital-at-home
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1; otherwise, results were summarized descriptively. Data from RCTs were analyzed using intention-to-treat protocols. In addition, a sensitivity analysis was done assigning all missing data/withdrawals to the event. P values less than 0.05 were considered significant. A priori subgroup analyses were planned for the acuity of hospital-at-home program, type of hospital-at-home program (early discharge or admission avoidance), and severity of the patients’ COPD. Additional subgroup analyses were conducted as needed based on the identified literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed, taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
Fourteen studies met the inclusion criteria and were included in this review: 1 health technology assessment, 5 systematic reviews, and 7 RCTs.
The following conclusions are based on low to very low quality of evidence. The reviewed evidence was based on RCTs that were inadequately powered to observe differences between hospital-at-home and inpatient hospital care for most outcomes, so there is a strong possibility of type II error. Given the low to very low quality of evidence, these conclusions must be considered with caution.
Approximately 21% to 37% of patients with acute exacerbations of COPD who present to the ED may be eligible for hospital-at-home care.
Of the patients who are eligible for care, some may refuse to participate in hospital-at-home care.
Eligibility for hospital-at-home care may be increased depending on the design of the hospital-at-home program, such as the size of the geographical service area for hospital-at-home and the hours of operation for patient assessment and entry into hospital-at-home.
Hospital-at-home care for acute exacerbations of COPD was associated with a nonsignificant reduction in the risk of mortality and hospital readmissions compared with inpatient hospital care during 2- to 6-month follow-up.
Limited, very low quality evidence suggests that hospital readmissions are delayed in patients who received hospital-at-home care compared with those who received inpatient hospital care (mean additional days before readmission comparing hospital-at-home to inpatient hospital care ranged from 4 to 38 days).
There is insufficient evidence to determine whether hospital-at-home care, compared with inpatient hospital care, is associated with improved lung function.
The majority of studies did not find significant differences between hospital-at-home and inpatient hospital care for a variety of health-related quality of life measures at follow-up. However, follow-up may have been too late to observe an impact of hospital-at-home care on quality of life.
A conclusion about the impact of hospital-at-home care on length of stay for the initial exacerbation (defined as days in hospital or days in hospital plus hospital-at-home care for inpatient hospital and hospital-at-home, respectively) could not be determined because of limited and inconsistent evidence.
Patient and caregiver satisfaction with care is high for both hospital-at-home and inpatient hospital care.
PMCID: PMC3384361  PMID: 23074420
20.  Three allele combinations associated with Multiple Sclerosis 
BMC Medical Genetics  2006;7:63.
Multiple sclerosis (MS) is an immune-mediated disease of polygenic etiology. Dissection of its genetic background is a complex problem, because of the combinatorial possibilities of gene-gene interactions. As genotyping methods improve throughput, approaches that can explore multigene interactions appropriately should lead to improved understanding of MS.
286 unrelated patients with definite MS and 362 unrelated healthy controls of Russian descent were genotyped at polymorphic loci (including SNPs, repeat polymorphisms, and an insertion/deletion) of the DRB1, TNF, LT, TGFβ1, CCR5 and CTLA4 genes and TNFa and TNFb microsatellites. Each allele carriership in patients and controls was compared by Fisher's exact test, and disease-associated combinations of alleles in the data set were sought using a Bayesian Markov chain Monte Carlo-based method recently developed by our group.
We identified two previously unknown MS-associated tri-allelic combinations:
-509TGFβ1*C, DRB1*18(3), CTLA4*G and -238TNF*B1,-308TNF*A2, CTLA4*G, which perfectly separate MS cases from controls, at least in the present sample. The previously described DRB1*15(2) allele, the microsatellite TNFa9 allele and the biallelic combination CCR5Δ32, DRB1*04 were also reidentified as MS-associated.
These results represent an independent validation of MS association with DRB1*15(2) and TNFa9 in Russians and are the first to find the interplay of three loci in conferring susceptibility to MS. They demonstrate the efficacy of our approach for the identification of complex-disease-associated combinations of alleles.
PMCID: PMC1557481  PMID: 16872485
21.  Polymorphisms in Surfactant Protein–D Are Associated with Chronic Obstructive Pulmonary Disease 
Chronic obstructive pulmonary disease (COPD) is characterized by alveolar destruction and abnormal inflammatory responses to noxious stimuli. Surfactant protein–D (SFTPD) is immunomodulatory and essential to host defense. We hypothesized that polymorphisms in SFTPD could influence the susceptibility to COPD. We genotyped six single-nucleotide polymorphisms (SNPs) in surfactant protein D in 389 patients with COPD in the National Emphysema Treatment Trial (NETT) and 472 smoking control subjects from the Normative Aging Study (NAS). Case-control association analysis was performed using Cochran–Armitage trend tests and multivariate logistic regression. The replication of significant associations was attempted in the Boston Early-Onset COPD Study, the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Study, and the Bergen Cohort. We also correlated SFTPD genotypes with serum concentrations of surfactant protein–D (SP-D) in the ECLIPSE Study. In the NETT–NAS case-control analysis, four SFTPD SNPs were associated with susceptibility to COPD: rs2245121 (P = 0.01), rs911887 (P = 0.006), rs6413520 (P = 0.004), and rs721917 (P = 0.006). In the family-based analysis of the Boston Early-Onset COPD Study, rs911887 was associated with prebronchodilator and postbronchodilator FEV1 (P = 0.003 and P = 0.02, respectively). An intronic SNP in SFTPD, rs7078012, was associated with COPD in the ECLIPSE Study and the Bergen Cohort. Multiple SFTPD SNPs were associated with serum SP-D concentrations in the ECLIPSE Study. We demonstrated an association of polymorphisms in SFTPD with COPD in multiple populations. We demonstrated a correlation between SFTPD SNPs and SP-D protein concentrations. The SNPs associated with COPD and SP-D concentrations differed, suggesting distinct genetic influences on susceptibility to COPD and SP-D concentrations.
PMCID: PMC3095932  PMID: 20448057
COPD; surfactant protein–D; single-nucleotide polymorphisms; genetics
22.  Impact of a functional polymorphism in the PAR-1 gene promoter in COPD and COPD exacerbations 
Proteinase-activated receptor-1 (PAR-1) plays a key role in mediating the interplay between coagulation and inflammation in response to injury. The aim of this study was to investigate the role of the promoter single-nucleotide polymorphism (SNP) rs2227744G>A in modulating PAR-1/F2R gene expression in the context of chronic obstructive pulmonary disease (COPD) and COPD exacerbations. The function of the rs2227744G>A SNP was investigated by using reporter gene assays. The frequency of the polymorphism in the UK population was assessed by genotyping 8,579 healthy individuals from the Whitehall II and English Longitudinal Study of Ageing cohorts. The rs2227744G>A SNP was genotyped in a carefully phenotyped cohort of 203 COPD cases and matched controls. The results were further replicated in two different COPD cohorts. The minor allele of the rs2227744G>A polymorphism was found to increase F2R expression by 2.6-fold (P < 0.001). The rs2227744G>A SNP was not significantly associated with COPD, or with lung function, in all cohorts. The minor allele of the SNP was found to be associated with protection from frequent exacerbations (P = 0.04) in the cohort of COPD patients for which exacerbation frequency was available. Considering exacerbations as a continuous variable, the presence of the minor allele was associated with a significantly lower COPD exacerbation rate (3.03 vs. 1.98 exacerbations/year, Mann-Whitney U-test P = 0.04). Taken together, these data do not support a role for the rs2227744G>A F2R polymorphism in the development of COPD but suggest a protective role for this polymorphism from frequent exacerbations. Studies in separate cohorts to replicate these findings are warranted.
PMCID: PMC4137163  PMID: 24973402
PAR-1; F2R; SNP; COPD; COPD exacerbation
23.  Nitric oxide synthase polymorphisms, gene expression and lung function in chronic obstructive pulmonary disease 
Due to the pleiotropic effects of nitric oxide (NO) within the lungs, it is likely that NO is a significant factor in the pathogenesis of chronic obstructive pulmonary disease (COPD). The aim of this study was to test for association between single nucleotide polymorphisms (SNPs) in three NO synthase (NOS) genes and lung function, as well as to examine gene expression and protein levels in relation to the genetic variation.
One SNP in each NOS gene (neuronal NOS (NOS1), inducible NOS (NOS2), and endothelial NOS (NOS3)) was genotyped in the Lung Health Study (LHS) and correlated with lung function. One SNP (rs1800779) was also analyzed for association with COPD and lung function in four COPD case–control populations. Lung tissue expression of NOS3 mRNA and protein was tested in individuals of known genotype for rs1800779. Immunohistochemistry of lung tissue was used to localize NOS3 expression.
For the NOS3 rs1800779 SNP, the baseline forced expiratory volume in one second in the LHS was significantly higher in the combined AG + GG genotypic groups compared with the AA genotypic group. Gene expression and protein levels in lung tissue were significantly lower in subjects with the AG + GG genotypes than in AA subjects. NOS3 protein was expressed in the airway epithelium and subjects with the AA genotype demonstrated higher NOS3 expression compared with AG and GG individuals. However, we were not able to replicate the associations with COPD or lung function in the other COPD study groups.
Variants in the NOS genes were not associated with lung function or COPD status. However, the G allele of rs1800779 resulted in a decrease of NOS3 gene expression and protein levels and this has implications for the numerous disease states that have been associated with this polymorphism.
PMCID: PMC3827989  PMID: 24192154
Chronic obstructive pulmonary disease; Nitric oxide synthase; Polymorphism; Gene expression
24.  The Relationship between Dietary Fatty Acids and Inflammatory Genes on the Obese Phenotype and Serum Lipids 
Nutrients  2013;5(5):1672-1705.
Obesity, a chronic low-grade inflammatory condition is associated with the development of many comorbidities including dyslipidemia. This review examines interactions between single nucleotide polymorphisms (SNP) in the inflammatory genes tumor necrosis alpha (TNFA) and interleukin-6 (IL-6) and dietary fatty acids, and their relationship with obesity and serum lipid levels. In summary, dietary fatty acids, in particular saturated fatty acids and the omega-3 and omega-6 polyunsaturated fatty acids, impact the expression of the cytokine genes TNFA and IL-6, and alter TNFα and IL-6 production. In addition, sequence variants in these genes have also been shown to alter their gene expression and plasma levels, and are associated with obesity, measures of adiposity and serum lipid concentrations. When interactions between dietary fatty acids and TNFA and IL-6 SNPs on obesity and serum lipid were analyzed, both the quantity and quality of dietary fatty acids modulated the relationship between TNFA and IL-6 SNPs on obesity and serum lipid profiles, thereby impacting the association between phenotype and genotype. Researching these diet–gene interactions more extensively, and understanding the role of ethnicity as a confounder in these relationships, may contribute to a better understanding of the inter-individual variability in the obese phenotype.
PMCID: PMC3708344  PMID: 23698162
adipose tissue; dyslipidemia; SNP; dietary fat; inflammation; ethnicity
25.  Cytokine Gene Polymorphisms and Outcome after Traumatic Brain Injury 
Journal of Neurotrauma  2013;30(20):1710-1716.
Clinical outcome after traumatic brain injury (TBI) is variable and cannot easily be predicted. There is increasing evidence to suggest that there may be genetic influences on outcome. Cytokines play an important role in mediating the inflammatory response provoked within the central nervous system after TBI. This study was designed to identify associations between cytokine gene polymorphisms and clinical outcome 6 months after head injury. A prospectively identified cohort of patients (n=1096, age range 0–93 years, mean age 37) was used. Clinical outcome at 6 months was assessed using the Glasgow Outcome Scale. In an initial screen of 11 cytokine gene single nucleotide polymorphisms (SNPs) previously associated with disease susceptibility or outcome (TNFA −238 and −308, IL6 −174, −572 and −597, IL1A −889, IL1B −31, −511 and +3953, and TGFB −509 and −800), TNFA −308 was identified as having a likely association. The TNFA −308 SNP was further evaluated, and a significant association was identified, with 39% of allele 2 carriers having an unfavorable outcome compared with 31% of non-carriers (adjusted odds ratio 1.67, confidence interval 1.19–2.35, p=0.003). These findings are consistent with experimental and clinical data suggesting that neuroinflammation has an impact on clinical outcome after TBI and that tumor necrosis factor alpha plays an important role in this process.
PMCID: PMC3796334  PMID: 23768161
cytokines; genetics; head injury; inflammation; traumatic brain injury

Results 1-25 (1048448)