PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1737046)

Clipboard (0)
None

Related Articles

1.  Concurrent chemoradiotherapy in adjuvant treatment of breast cancer 
Background
The optimal sequencing of chemotherapy and radiotherapy after breast surgery was largely studied but remains controversial. Concurrent chemo-radiotherapy is a valuable method for adjuvant treatment of breast cancer which is under ongoing research program in our hospital. We are evaluating the feasibility of the concomitant use of chemotherapy retrospectively.
Methods
Two hundred forty four women having breast cancer were investigated in a retrospective study. All patients were either treated by radical surgery or breast conservative surgery. The study compares two adjuvant treatments associating concomitant chemotherapy and radiotherapy. In the first group (group A) the patients were treated by chemotherapy and radiotherapy in concomitant way using anthracycline (n = 110). In the second group (group B) the patients were treated by chemotherapy and radiotherapy in concomitant way using CMF treatment (n = 134). Chemotherapy was administered in six cycles, one each 3 weeks. Radiotherapy delivered a radiation dose of 50 Gy on the whole breast (or on the external wall) and/or on the lymphatic region. The Kaplan-Meier method was used to estimate the rates of disease free survival, loco-regional recurrence-free survival and overall survival. The Pearson Khi2 test was used to analyse the homogeneity between the two groups. The log-rank test was used to evaluate the differences between the two groups A and B.
Results
After 76.4 months median follow-up (65.3 months mean follow up), only one patient relapsed to loco-regional breast cancer when the treatment was based on anthracycline. However, 8 patients relapsed to loco-regional breast cancer when the treatment was based on CMF. In the anthracycline group, the disease free survival after 5 years, was 80.4% compared to 76.4% in the CMF group (Log-rank test: p = 0.136). The overall survival after 5 years was 82.5% and 81.1% in the anthracycline and CMF groups respectively (Log-rank test: p = 0.428). The loco-regional free survival at 5 years was equal to 98.6% in group A and 94% in group B (Log-rank test: p = 0,033). The rate of grade II and grade III anaemia was 13.9% and 6.7% in anthracycline group and CMF group respectively (Khi2-test: p = 0.009). The rate of grade II and grade III skin dermatitis toxicity was 4.5% in the group A and 0% in the group B (Khi2-test: p = 0.013).
Conclusion
From the 5 years retrospective investigation we showed similar disease free survival and overall survival in the two concurrent chemo-radiotherapy treatments based on anthracycline and CMF. However in the loco-regional breast cancer the treatment based on anthracycline was significantly better than that of the treatment based on CMF. There was more haematological and skin dermatitis toxicity in the anthracycline group.
doi:10.1186/1748-717X-4-12
PMCID: PMC2679760  PMID: 19351405
2.  Sequencing chemotherapy and radiotherapy in locoregional advanced breast cancer patients after mastectomy – a retrospective analysis 
BMC Cancer  2008;8:114.
Background
Combined chemo- and radiotherapy are established in breast cancer treatment. Chemotherapy is recommended prior to radiotherapy but decisive data on the optimal sequence are rare. This retrospective analysis aimed to assess the role of sequencing in patients after mastectomy because of advanced locoregional disease.
Methods
A total of 212 eligible patients had a stage III breast cancer and had adjuvant chemotherapy and radiotherapy after mastectomy and axillary dissection between 1996 and 2004. According to concerted multi-modality treatment strategies 86 patients were treated sequentially (chemotherapy followed by radiotherapy) (SEQgroup), 70 patients had a sandwich treatment (SW-group) and 56 patients had simultaneous chemoradiation (SIM-group) during that time period. Radiotherapy comprised the thoracic wall and/or regional lymph nodes. The total dose was 45–50.4 Gray. As simultaneous chemoradiation CMF was given in 95.4% of patients while in sequential or sandwich application in 86% and 87.1% of patients an anthracycline-based chemotherapy was given.
Results
Concerning the parameters nodal involvement, lymphovascular invasion, extracapsular spread and extension of the irradiated region the three treatment groups were significantly imbalanced. The other parameters, e.g. age, pathological tumor stage, grading and receptor status were homogeneously distributed. Looking on those two groups with an equally effective chemotherapy (EC, FEC), the SEQ- and SW-group, the sole imbalance was the extension of LVI (57.1 vs. 25.6%, p < 0.0001).
5-year overall- and disease free survival were 53.2%/56%, 38.1%/32% and 64.2%/50%, for the sequential, sandwich and simultaneous regime, respectively, which differed significantly in the univariate analysis (p = 0.04 and p = 0.03, log-rank test). Also the 5-year locoregional or distant recurrence free survival showed no significant differences according to the sequence of chemo- and radiotherapy. In the multivariate analyses the sequence had no independent impact on overall survival (p = 0.2) or disease free survival (p = 0.4). The toxicity, whether acute nor late, showed no significant differences in the three groups. The grade III/IV acute side effects were 3.6%, 0% and 3.5% for the SIM-, SW- and SEQ-group. By tendency the SIM regime had more late side effects.
Conclusion
No clear advantage can be stated for any radio- and chemotherapy sequence in breast cancer therapy so far. This could be confirmed in our retrospective analysis in high-risk patients after mastectomy. The sequential approach is recommended according to current guidelines considering a lower toxicity.
doi:10.1186/1471-2407-8-114
PMCID: PMC2377278  PMID: 18433485
3.  Hypofractionated radiotherapy and adjuvant chemotherapy do not increase radiation-induced dermatitis in breast cancer patients 
Current Oncology  2010;17(5):22-27.
Purpose
Radiation-induced dermatitis is a common side effect of breast irradiation, with hypofractionation being a well-known risk factor. In the context of the widespread adoption of hypofractionated breast radiotherapy, we evaluated the effect of hypofractionated radiotherapy on the incidence of skin toxicity in patients receiving adjuvant chemotherapy.
Patients and Methods
We retrospectively reviewed the records of patients with breast cancer treated from 2004 to 2006 at a single institution. Patients undergoing lumpectomy with or without adjuvant chemotherapy followed by hypofractionated radiotherapy consisting of 42.4 Gy in 16 fractions were included in the study. Using cosmetic and skin toxicity scales, all patients were evaluated weekly during treatment and at scheduled follow-up visits with the radiation oncologist.
Results
During the study period, 162 patients underwent radiotherapy, and 30% of those (n = 48) received chemotherapy. Radiotherapy boost to the tumour bed was more common in the chemotherapy group [n = 20 (42%)] than in the radiotherapy-alone group [n = 30 (26%)]. We observed no statistically significant difference between the groups with regard to acute skin toxicity of grade 3 or higher (2.1% in the chemotherapy group vs. 4.4% in the radiation-alone group, p = 0.67) or of grades 1–2 toxicity (62.5% vs. 51.7% respectively, p = 0.23). There was also no significant difference in late grade 3 or higher skin toxicity between the groups (2.1% vs. 0% respectively, p = 0.30) or in grades 1–2 toxicity (20.8% vs. 25.5% respectively, p = 0.69). Similarly, excellent or good cosmetic result scores were similar in both groups (p = 0.80)
Conclusions
In our single-institution review, we observed no adverse effects of chemotherapy in combination with hypofractionated whole-breast irradiation. Further investigations are necessary to better elucidate the effects of chemotherapy on skin toxicity in the context of hypofractionated irradiation.
PMCID: PMC2949365  PMID: 20975875
Breast cancer; hypofractionated radiotherapy; chemotherapy; skin toxicity
4.  Clinical practice guidelines for the care and treatment of breast cancer: 15. Treatment for women with stage III or locally advanced breast cancer 
Objective
To define the optimal treatment for women with stage III or locally advanced breast cancer (LABC).
Evidence
Systematic review of English-language literature retrieved from MEDLINE (1984 to June 2002) and CANCERLIT (1983 to June 2002). A nonsystematic review of the literature was continued through December 2003.
Recommendations
· The management of LABC requires a combined modality treatment approach involving surgery, radiotherapy and systemic therapy.
Systemic therapy: chemotherapy
Operable tumours
· Patients with operable stage IIIA disease should be offered chemotherapy. They should receive adjuvant chemotherapy following surgery, or primary chemotherapy followed by locoregional management.
· Chemotherapy should contain an anthracycline. Acceptable regimens are 6 cycles of FAC, CAF, CEF or FEC. Taxanes are under intense investigation.
Inoperable tumours
· Patients with stage IIIB or IIIC disease, including those with inflammatory breast cancer and those with isolated ipsilateral internal mammary or supraclavicular lymph-node involvement, should be treated with primary anthracycline-based chemotherapy.
· Acceptable chemotherapy regimens are FAC, CAF, CEF or FEC. Taxanes are under intense investigation.
· Patients with stage IIIB or IIIC disease who respond to primary chemotherapy should be treated until the response plateaus or to a maximum of 6 cycles (minimum 4 cycles). Patients with stage IIIB disease should then undergo definitive surgery and irradiation. The locoregional management of patients with stage IIIC disease who respond to chemotherapy should be individualized. In patients with stage IIIB or IIIC disease who achieve maximum response with fewer than 6 cycles, further adjuvant chemotherapy can be given following surgery and irradiation. Patients whose tumours do not respond to primary chemotherapy can be treated with taxane chemotherapy or can proceed directly to irradiation followed by modified radical mastectomy, if feasible.
Systemic therapy: hormonal therapy
Operable and inoperable tumours
· Tamoxifen for 5 years should be recommended to pre- and postmenopausal women whose tumours are hormone responsive.
Locoregional management
Operable tumours
· Patients with stage IIIA disease should receive both modified radical mastectomy (MRM) and locoregional radiotherapy if feasible. They may be managed with MRM followed by chemotherapy and locoregional radiotherapy, or chemotherapy first followed by MRM and locoregional radiotherapy. Breast-conserving surgery is currently not a standard approach.
· Locoregional radiotherapy should be delivered to the chest wall and to the supraclavicular and axillary nodes. The role of internal mammary irradiation is unclear.
Inoperable tumours
· Patients with stage IIIB disease who respond to chemotherapy should receive surgery plus locoregional radiotherapy.
· The locoregional management of patients with stage IIIC disease who respond to chemotherapy is unclear and should be individualized.
· Patients whose disease remains inoperable following chemotherapy should receive locoregional radiotherapy with subsequent surgery, if feasible.
Validation
The authors' original text was revised by members of the Steering Committee on Clinical Practice Guidelines for the Care and Treatment of Breast Cancer. Subsequently, feedback was provided by 9 oncologists from across Canada. The final document was approved by the steering committee.
Sponsor
The Steering Committee on Clinical Practice Guidelines for the Care and Treatment of Breast Cancer was convened by Health Canada.
Completion date
December 2003.
doi:10.1503/cmaj.1030944
PMCID: PMC359433  PMID: 15023926
5.  The combination of radiotherapy, adjuvant chemotherapy (cyclophosphamide-doxorubicin-ftorafur) and tamoxifen in stage II breast cancer. Long-term follow-up results of a randomised trial. 
British Journal of Cancer  1992;66(6):1171-1176.
Two hundred patients with node positive stage II breast cancer were randomised to four groups after radical mastectomy and axillary evacuation: (1) Postoperative radiotherapy, (2) Adjuvant chemotherapy with eight courses of CAFt (cyclophosphamide 500 mg m-2 + doxorubicin 40 mg/m-2 + ftorafur 20 mg kg-1 orally day 1-14) every fourth week, (3) Postoperative radiotherapy and adjuvant chemotherapy and (4) postoperative radiation, adjuvant chemotherapy and tamoxifen 40 mg daily for 2 years. Thirty-two per cent of the patients discontinued treatment due to GI-toxicity, while 26% required dose reductions due to leukopenia. Radiation pneumonitis was more frequent after the combination of postoperative radiotherapy with chemotherapy. There was a better relapse-free survival in the groups receiving chemotherapy compared to radiotherapy alone (P = 0.05), which was highly significant in a multivariate Cox analysis (P = 0.004). No significant survival differences were seen. Tamoxifen had no clear overall effect but there were better relapse-free (P = 0.04) and overall (P = 0.004) survival with tamoxifen in estrogen receptor positive patients, while estrogen receptor negative patients had a somewhat poorer survival (P = 0.07) after tamoxifen. Local control was better (NS) after the combination (93%) radiotherapy and chemotherapy compared to either treatment alone (76% with radiotherapy and 74% with chemotherapy at 5 years).
PMCID: PMC1978025  PMID: 1457360
6.  High-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in locally advanced non-small-cell lung cancer: a feasibility study 
Background
Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC.
Methods
Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP.
Results
A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur.
Conclusion
High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy.
doi:10.1186/1748-717X-8-198
PMCID: PMC3751137  PMID: 23937855
Non-small-cell lung cancer; Accelerated hypofractionated radiotherapy; Concurrent chemoradiotherapy; Three-dimensional conformal radiotherapy; Vinorelbine; Carboplatin
7.  Cancer Screening with Digital Mammography for Women at Average Risk for Breast Cancer, Magnetic Resonance Imaging (MRI) for Women at High Risk 
Executive Summary
Objective
The purpose of this review is to determine the effectiveness of 2 separate modalities, digital mammography (DM) and magnetic resonance imaging (MRI), relative to film mammography (FM), in the screening of women asymptomatic for breast cancer. A third analysis assesses the effectiveness and safety of the combination of MRI plus mammography (MRI plus FM) in screening of women at high risk. An economic analysis was also conducted.
Research Questions
How does the sensitivity and specificity of DM compare to FM?
How does the sensitivity and specificity of MRI compare to FM?
How do the recall rates compare among these screening modalities, and what effect might this have on radiation exposure? What are the risks associated with radiation exposure?
How does the sensitivity and specificity of the combination of MRI plus FM compare to either MRI or FM alone?
What are the economic considerations?
Clinical Need
The effectiveness of FM with respect to breast cancer mortality in the screening of asymptomatic average- risk women over the age of 50 has been established. However, based on a Medical Advisory Secretariat review completed in March 2006, screening is not recommended for women between the ages of 40 and 49 years. Guidelines published by the Canadian Task Force on Preventive Care recommend mammography screening every 1 to 2 years for women aged 50 years and over, hence, the inclusion of such women in organized breast cancer screening programs. In addition to the uncertainty of the effectiveness of mammography screening from the age of 40 years, there is concern over the risks associated with mammographic screening for the 10 years between the ages of 40 and 49 years.
The lack of effectiveness of mammography screening starting at the age of 40 years (with respect to breast cancer mortality) is based on the assumption that the ability to detect cancer decreases with increased breast tissue density. As breast density is highest in the premenopausal years (approximately 23% of postmenopausal and 53% of premenopausal women having at least 50% of the breast occupied by high density), mammography screening is not promoted in Canada nor in many other countries for women under the age of 50 at average risk for breast cancer. It is important to note, however, that screening of premenopausal women (i.e., younger than 50 years of age) at high risk for breast cancer by virtue of a family history of cancer or a known genetic predisposition (e.g., having tested positive for the breast cancer genes BRCA1 and/or BRCA2) is appropriate. Thus, this review will assess the effectiveness of breast cancer screening with modalities other than film mammography, specifically DM and MRI, for both pre/perimenopausal and postmenopausal age groups.
International estimates of the epidemiology of breast cancer show that the incidence of breast cancer is increasing for all ages combined whereas mortality is decreasing, though at a slower rate. The observed decreases in mortality rates may be attributable to screening, in addition to advances in breast cancer therapy over time. Decreases in mortality attributable to screening may be a result of the earlier detection and treatment of invasive cancers, in addition to the increased detection of ductal carcinoma in situ (DCIS), of which certain subpathologies are less lethal. Evidence from the Surveillance, Epidemiology and End Results (better known as SEER) cancer registry in the United States, indicates that the age-adjusted incidence of DCIS has increased almost 10-fold over a 20 year period, from 2.7 to 25 per 100,000.
There is a 4-fold lower incidence of breast cancer in the 40 to 49 year age group than in the 50 to 69 year age group (approximately 140 per 100,000 versus 500 per 100,000 women, respectively). The sensitivity of FM is also lower among younger women (approximately 75%) than for women aged over 50 years (approximately 85%). Specificity is approximately 80% for younger women versus 90% for women over 50 years. The increased density of breast tissue in younger women is likely responsible for the decreased accuracy of FM.
Treatment options for breast cancer vary with the stage of disease (based on tumor size, involvement of surrounding tissue, and number of affected axillary lymph nodes) and its pathology, and may include a combination of surgery, chemotherapy and/or radiotherapy. Surgery is the first-line intervention for biopsy-confirmed tumors. The subsequent use of radiation, chemotherapy or hormonal treatments is dependent on the histopathologic characteristics of the tumor and the type of surgery. There is controversy regarding the optimal treatment of DCIS, which is considered a noninvasive tumour.
Women at high risk for breast cancer are defined as genetic carriers of the more commonly known breast cancer genes (BRCA1, BRCA2 TP53), first degree relatives of carriers, women with varying degrees of high risk family histories, and/or women with greater than 20% lifetime risk for breast cancer based on existing risk models. Genetic carriers for this disease, primarily women with BRCA1 or BRCA2 mutations, have a lifetime probability of approximately 85% of developing breast cancer. Preventive options for these women include surgical interventions such as prophylactic mastectomy and/or oophorectomy, i.e., removal of the breasts and/or ovaries. Therefore, it is important to evaluate the benefits and risks of different screening modalities, to identify additional options for these women.
This Medical Advisory Secretariat review is the second of 2 parts on breast cancer screening, and concentrates on the evaluation of both DM and MRI relative to FM, the standard of care. Part I of this review (March 2006) addressed the effectiveness of screening mammography in 40 to 49 year old average-risk women. The overall objective of the present review is to determine the optimal screening modality based on the evidence.
Evidence Review Strategy
The Medical Advisory Secretariat followed its standard procedures and searched the following electronic databases: Ovid MEDLINE, EMBASE, Ovid MEDLINE In-Process & Other Non-Indexed Citations, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews and The International Network of Agencies for Health Technology Assessment database. The subject headings and keywords searched included breast cancer, breast neoplasms, mass screening, digital mammography, magnetic resonance imaging. The detailed search strategies can be viewed in Appendix 1.
Included in this review are articles specific to screening and do not include evidence on diagnostic mammography. The search was further restricted to English-language articles published between January 1996 and April 2006. Excluded were case reports, comments, editorials, nonsystematic reviews, and letters.
Digital Mammography: In total, 224 articles specific to DM screening were identified. These were examined against the inclusion/exclusion criteria described below, resulting in the selection and review of 5 health technology assessments (HTAs) (plus 1 update) and 4 articles specific to screening with DM.
Magnetic Resonance Imaging: In total, 193 articles specific to MRI were identified. These were examined against the inclusion/exclusion criteria described below, resulting in the selection and review of 2 HTAs and 7 articles specific to screening with MRI.
The evaluation of the addition of FM to MRI in the screening of women at high risk for breast cancer was also conducted within the context of standard search procedures of the Medical Advisory Secretariat. as outlined above. The subject headings and keywords searched included the concepts of breast cancer, magnetic resonance imaging, mass screening, and high risk/predisposition to breast cancer. The search was further restricted to English-language articles published between September 2007 and January 15, 2010. Case reports, comments, editorials, nonsystematic reviews, and letters were not excluded.
MRI plus mammography: In total, 243 articles specific to MRI plus FM screening were identified. These were examined against the inclusion/exclusion criteria described below, resulting in the selection and review of 2 previous HTAs, and 1 systematic review of 11 paired design studies.
Inclusion Criteria
English-language articles, and English or French-language HTAs published from January 1996 to April 2006, inclusive.
Articles specific to screening of women with no personal history of breast cancer.
Studies in which DM or MRI were compared with FM, and where the specific outcomes of interest were reported.
Randomized controlled trials (RCTs) or paired studies only for assessment of DM.
Prospective, paired studies only for assessment of MRI.
Exclusion Criteria
Studies in which outcomes were not specific to those of interest in this report.
Studies in which women had been previously diagnosed with breast cancer.
Studies in which the intervention (DM or MRI) was not compared with FM.
Studies assessing DM with a sample size of less than 500.
Intervention
Digital mammography.
Magnetic resonance imaging.
Comparator
Screening with film mammography.
Outcomes of Interest
Breast cancer mortality (although no studies were found with such long follow-up).
Sensitivity.
Specificity.
Recall rates.
Summary of Findings
Digital Mammography
There is moderate quality evidence that DM is significantly more sensitive than FM in the screening of asymptomatic women aged less than 50 years, those who are premenopausal or perimenopausal, and those with heterogeneously or extremely dense breast tissue (regardless of age).
It is not known what effect these differences in sensitivity will have on the more important effectiveness outcome measure of breast cancer mortality, as there was no evidence of such an assessment.
Other factors have been set out to promote DM, for example, issues of recall rates and reading and examination times. Our analysis did not show that recall rates were necessarily improved in DM, though examination times were lower than for FM. Other factors including storage and retrieval of screens were not the subject of this analysis.
Magnetic Resonance Imaging
There is moderate quality evidence that the sensitivity of MRI is significantly higher than that of FM in the screening of women at high risk for breast cancer based on genetic or familial factors, regardless of age.
Radiation Risk Review
Cancer Care Ontario conducted a review of the evidence on radiation risk in screening with mammography women at high risk for breast cancer. From this review of recent literature and risk assessment that considered the potential impact of screening mammography in cohorts of women who start screening at an earlier age or who are at increased risk of developing breast cancer due to genetic susceptibility, the following conclusions can be drawn:
For women over 50 years of age, the benefits of mammography greatly outweigh the risk of radiation-induced breast cancer irrespective of the level of a woman’s inherent breast cancer risk.
Annual mammography for women aged 30 – 39 years who carry a breast cancer susceptibility gene or who have a strong family breast cancer history (defined as a first degree relative diagnosed in their thirties) has a favourable benefit:risk ratio. Mammography is estimated to detect 16 to 18 breast cancer cases for every one induced by radiation (Table 1). Initiation of screening at age 35 for this same group would increase the benefit:risk ratio to an even more favourable level of 34-50 cases detected for each one potentially induced.
Mammography for women under 30 years of age has an unfavourable benefit:risk ratio due to the challenges of detecting cancer in younger breasts, the aggressiveness of cancers at this age, the potential for radiation susceptibility at younger ages and a greater cumulative radiation exposure.
Mammography when used in combination with MRI for women who carry a strong breast cancer susceptibility (e.g., BRCA1/2 carriers), which if begun at age 35 and continued for 35 years, may confer greatly improved benefit:risk ratios which were estimated to be about 220 to one.
While there is considerable uncertainty in the risk of radiation-induced breast cancer, the risk expressed in published studies is almost certainly conservative as the radiation dose absorbed by women receiving mammography recently has been substantially reduced by newer technology.
A CCO update of the mammography radiation risk literature for 2008 and 2009 gave rise to one article by Barrington de Gonzales et al. published in 2009 (Barrington de Gonzales et al., 2009, JNCI, vol. 101: 205-209). This article focuses on estimating the risk of radiation-induced breast cancer for mammographic screening of young women at high risk for breast cancer (with BRCA gene mutations). Based on an assumption of a 15% to 25% or less reduction in mortality from mammography in these high risk women, the authors conclude that such a reduction is not substantially greater than the risk of radiation-induced breast cancer mortality when screening before the age of 34 years. That is, there would be no net benefit from annual mammographic screening of BRCA mutation carriers at ages 25-29 years; the net benefit would be zero or small if screening occurs in 30-34 year olds, and there would be some net benefit at age 35 years or older.
The Addition of Mammography to Magnetic Resonance Imaging
The effects of the addition of FM to MRI screening of high risk women was also assessed, with inclusion and exclusion criteria as follows:
Inclusion Criteria
English-language articles and English or French-language HTAs published from September 2007 to January 15, 2010.
Articles specific to screening of women at high risk for breast cancer, regardless of the definition of high risk.
Studies in which accuracy data for the combination of MRI plus FM are available to be compared to that of MRI and FM alone.
RCTs or prospective, paired studies only.
Studies in which women were previously diagnosed with breast cancer were also included.
Exclusion Criteria
Studies in which outcomes were not specific to those of interest in this report.
Studies in which there was insufficient data on the accuracy of MRI plus FM.
Intervention
Both MRI and FM.
Comparators
Screening with MRI alone and FM alone.
Outcomes of Interest
Sensitivity.
Specificity.
Summary of Findings
Magnetic Resonance Imaging Plus Mammography
Moderate GRADE Level Evidence that the sensitivity of MRI plus mammography is significantly higher than that of MRI or FM alone, although the specificity remains either unchanged or decreases in the screening of women at high risk for breast cancer based on genetic/familial factors, regardless of age.
These studies include women at high risk defined as BRCA1/2 or TP53 carriers, first degree relatives of carriers, women with varying degrees of high risk family histories, and/or >20% lifetime risk based on existing risk models. This definition of high risk accounts for approximately 2% of the female adult population in Ontario.
PMCID: PMC3377503  PMID: 23074406
8.  Retrospective Analysis of Efficacy and Toxicity of Hypo-fractionated Radiotherapy in Breast Carcinoma 
Introduction
The conventional dose fractionation of adjuvant radiotherapy (RT) to whole breast is 45–50 Gy in 25 fractions as 1.8–2.0-Gy per fraction. Lumpectomy cavity with a 1.5–2-cm margin receieves additional 10- 16 Gy doseas boost. Alternative dose fraction schedules used in various randomised trials have established the role of hypofractionated radiotherapy (HRT) in early breast cancer. HRT allows time and cost saving thus better patient compliance. However the efficacy and toxicity of HRT in locally advanced breast cancer is still under evaluation.
Aim
To study the toxicity and efficacy of Hypofractionated Radiotherapy (HRT) as compared to Conventional Radiotherapy (CRT) in breast cancer at our centre.
Materials and Methods
A retrospective analysis of breast cancer patients treated between October 2012- September 2014 with adjuvant radiation therapy as CRT or HRT. The data of these patients was retrieved and analysed regarding demographic profile, stage at presentation, pathological type, extent of surgery, chemotherapy, efficacy and toxicity of HRT. The toxicity assessment was done as per RTOG toxicity criteria. The data were analysed using SPSS software version 20.0.
Results
A total of 100 patients with carcinoma breast who received radiotherapy over two years were analysed. Age ranged from 18-90 years, mean 49.15 ± 12.7 years. Fifty-five patients were post-menopausal, predominant clinical feature was painless lump in the breast (98%). Early stage (Stage I and II) constituted 41%, locally advanced disease in 59%. Modified radical mastectomy was done in 75%, breast conserving surgery in 25%. A 56 patients received HRT and 44 were treated with CRT. The most common acute toxicity was skin grade I. An 18% patients in HRT arm and 30% patients in conventional arm developed grade II skin toxicity (p=0.23). Dysphagia grade I was seen in 10% cases in CRT arm and 12% in HRT arm. The median follow-up period was 11.3 months with 2 loco-regional failures in each arm.
Conclusion
HRT seems to be equally efficacious and no more toxic than CRT in carcinoma breast even in unselected sub-group of patients.
doi:10.7860/JCDR/2016/20769.8350
PMCID: PMC5028454  PMID: 27656543
Altered fraction; Nodal irradiation
9.  Breast cancer (non-metastatic) 
BMJ Clinical Evidence  2011;2011:0102.
Introduction
Breast cancer affects at least 1 in 10 women in the UK, but most present with primary operable disease, which has an 80% 5-year survival rate overall.
Methods and outcomes
We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions after breast-conserving surgery for ductal carcinoma in situ? What are the effects of treatments for primary operable breast cancer? What are the effects of interventions in locally advanced breast cancer (stage 3B)? We searched: Medline, Embase, The Cochrane Library, and other important databases up to April 2009 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA).
Results
We found 83 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions.
Conclusions
In this systematic review we present information relating to the effectiveness and safety of the following interventions: adding chemotherapy (cyclophosphamide/methotrexate/fluorouracil and/or anthracycline and/or taxane-based regimens), or hormonal treatment to radiotherapy; adjuvant treatments (aromatase inhibitors, adjuvant anthracycline regimens, tamoxifen); axillary clearance; axillary dissection plus sentinel node dissection; axillary radiotherapy; axillary sampling; combined chemotherapy plus tamoxifen; chemotherapy plus monoclonal antibody (trastuzumab); extensive surgery; high-dose chemotherapy; hormonal treatment; less extensive mastectomy; less than whole-breast radiotherapy plus breast-conserving surgery; multimodal treatment; ovarian ablation; primary chemotherapy; prolonged adjuvant combination chemotherapy; radiotherapy (after breast-conserving surgery, after mastectomy, plus tamoxifen after breast-conserving surgery, to the internal mammary chain, and to the ipsilateral supraclavicular fossa, and total nodal radiotherapy); sentinel node biopsy; and standard chemotherapy regimens.
Key Points
Breast cancer affects at least 1 in 10 women in the UK, but most present with primary operable disease, which has an 80% 5-year survival rate overall.
In women with ductal carcinoma in situ (DCIS), radiotherapy reduces local recurrence and invasive carcinoma after breast-conserving surgery. The role of tamoxifen added to radiotherapy for DCIS remains unclear because of conflicting results.
In women with primary operable breast cancer, survival may be increased by full surgical excision, tamoxifen, chemotherapy, radiotherapy, ovarian ablation, or trastuzumab (in women who over-express HER2/neu oncogene). Incomplete excision may increase the risk of local recurrence, but less-extensive mastectomy that excises all local disease is as effective as radical mastectomy at prolonging survival, with better cosmetic results. Axillary clearance (removal of all axillary lymph nodes) achieves local disease control, but has not been shown to increase survival, and can cause arm lymphoedema. Sentinel lymph node biopsy or 4-node sampling may adequately stage the axilla with less morbidity compared with axillary clearance. Adjuvant tamoxifen reduces the risk of recurrence and death in women with oestrogen-positive tumours. Primary chemotherapy may facilitate successful breast-conserving surgery instead of mastectomy. Adjuvant combination chemotherapy improves survival compared with no chemotherapy, with greatest benefit likely with anthracycline-based regimens at standard doses for 4 to 6 months.Radiotherapy decreases recurrence and mortality after breast-conserving surgery. Post-mastectomy radiotherapy for women who are node-positive or at high risk of recurrence decreases recurrence and mortality. Adjuvant aromatase inhibitors improve disease-free survival compared with tamoxifen, but their effect on overall survival is unclear. Adjuvant taxane-based regimens may improve disease-free survival over standard anthracycline-based therapy.
In women with locally advanced breast cancer, radiotherapy may be as effective as surgery or tamoxifen at increasing survival and local disease control. Adding tamoxifen or ovarian ablation to radiotherapy increases survival compared with radiotherapy alone, but adding chemotherapy may not reduce recurrence or mortality compared with radiotherapy alone.We don't know if chemotherapy alone improves survival in women with locally advanced breast cancer as we found few trials.
PMCID: PMC3217212  PMID: 21718560
10.  Breast cancer (non-metastatic) 
BMJ Clinical Evidence  2007;2007:0102.
Introduction
Breast cancer affects at least 1 in 10 women in the UK, but most present with primary operable disease, which has an 80% 5-year survival rate overall.
Methods and outcomes
We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of interventions after breast-conserving surgery for ductal carcinoma in situ? What are the effects of treatments for primary operable breast cancer? What are the effects of interventions in locally advanced breast cancer (stage IIIB)? We searched: Medline, Embase, The Cochrane Library and other important databases up to February 2006 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA).
Results
We found 79 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions.
Conclusions
In this systematic review we present information relating to the effectiveness and safety of the following interventions: adding chemotherapy (cyclophosphamide/methotrexate/ fluorouracil and/or anthracycline and/or taxane-based regimens), or hormonal treatment to radiotherapy; adjuvant treatments (aromatase inhibitors, adjuvant anthracycline regimens, tamoxifen); axillary clearance; axillary dissection plus sentinel node dissection; axillary radiotherapy; axillary sampling; combined chemotherapy plus tamoxifen; chemotherapy plus monoclonal antibody (trastuzumab); extensive surgery; high-dose chemotherapy; hormonal treatment; less extensive mastectomy; less than whole breast radiotherapy plus breast conserving surgery; multimodal treatment; ovarian ablation; primary chemotherapy; prolonged adjuvant combination chemotherapy; radiotherapy (after breast-conserving surgery, after mastectomy, plus tamoxifen after breast-conserving surgery, to the internal mammary chain, and to the ipsilateral supraclavicular fossa, and total nodal radiotherapy); sentinel node biopsy; and standard chemotherapy regimens.
Key Points
Breast cancer affects at least 1 in 10 women in the UK, but most present with primary operable disease, which has an 80% 5-year survival rate overall.
In women with ductal carcinoma in situ, radiotherapy reduces local recurrence and invasive carcinoma after breast-conserving surgery, but may not improve survival.
In women with primary operable breast cancer, survival may be increased by full surgical excision, tamoxifen, chemotherapy, radiotherapy, ovarian ablation or trastuzumab (in women who overexpress HER2/neu oncogene). Incomplete excision may increase the risk of local recurrence, but less-extensive mastectomy that excises all local disease is as effective as radical mastectomy at prolonging survival, with better cosmetic results. Axillary clearance (removal of all axillary lymph nodes) achieves local disease control, but has not been shown to increase survival, and can cause arm lymphoedema. Sentinel lymph node biopsy or 4-node sampling may adequately stage the axilla with less morbidity compared with axillary clearance. Adjuvant tamoxifen reduces the risk of recurrence and death in women with oestrogen-positive tumours, but adverse effects begin to outweigh benefit after 5 years of treatment. Primary chemotherapy may facilitate successful breast-conserving surgery instead of mastectomy. Adjuvant combination chemotherapy improves survival compared with no chemotherapy, with greatest benefit likely with anthracycline-based regimens at standard doses for 4-6 months.Radiotherapy decreases recurrence and mortality after breast-conserving surgery. Post-mastectomy radiotherapy for women who are node-positive or at high risk of recurrence decreases recurrence and mortality, but may increase mortality in node-negative women. Adjuvant aromatase inhibitors improve disease-free survival compared with tamoxifen, but their effect on overall survival is unclear.Adjuvant taxoid regimens may improve disease-free survival over standard anthracycline-based therapy.
In women with locally advanced breast cancer, radiotherapy may be as effective as surgery or tamoxifen at increasing survival and local disease control. Adding tamoxifen or ovarian ablation to radiotherapy increases survival compared with radiotherapy alone, but adding chemotherapy may not reduce recurrence or mortality compared with radiotherapy alone.Chemotherapy alone, while widely used, does not improve survival in women with locally advanced breast cancer.
PMCID: PMC2943780  PMID: 19450345
11.  Adjuvant platinum-based chemotherapy for early stage cervical cancer 
Background
This is an updated version of the original Cochrane review published in The Cochrane Library 2009, Issue 3.
Most women with early cervical cancer (stages I to IIA) are cured with surgery or radiotherapy, or both. We performed this review originally because it was unclear whether cisplatin-based chemotherapy after surgery, radiotherapy or both, in women with early stage disease with risk factors for recurrence, was associated with additional survival benefits or risks.
Objectives
To evaluate the effectiveness and safety of platinum-based chemotherapy after radical hysterectomy, radiotherapy, or both in the treatment of early stage cervical cancer.
Search methods
For the original 2009 review, we searched the Cochrane Gynaecological Cancer Group Trials Register, The Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library 2009, Issue 1), MEDLINE, EMBASE, LILACS, BIOLOGICAL ABSTRACTS and CancerLit, the National Research Register and Clinical Trials register, with no language restriction. We handsearched abstracts of scientific meetings and other relevant publications. We extended the database searches to November 2011 for this update.
Selection criteria
Randomised controlled trials (RCTs) comparing adjuvant cisplatin-based chemotherapy (after radical surgery, radiotherapy or both) with no adjuvant chemotherapy, in women with early stage cervical cancer (stage IA2-IIA) with at least one risk factor for recurrence.
Data collection and analysis
Two review authors extracted data independently. Meta-analysis was performed using a random-effects model, with death and disease progression as outcomes.
Main results
For this updated version, we identified three additional ongoing trials but no new studies for inclusion. Three trials including 368 evaluable women with early cervical cancer were included in the meta-analyses. The median follow-up period in these trials ranged from 29 to 42 months. All women had undergone surgery first. Two trials compared chemotherapy combined with radiotherapy to radiotherapy alone; and one trial compared chemotherapy followed by radiotherapy to radiotherapy alone. It was not possible to perform subgroup analyses by stage or tumour size.
Compared with adjuvant radiotherapy, chemotherapy combined with radiotherapy significantly reduced the risk of death (two trials, 297 women; hazard ratio (HR) = 0.56, 95% confidence interval (CI): 0.36 to 0.87) and disease progression (two trials, 297 women; HR = 0.47, 95% CI 0.30 to 0.74), with no heterogeneity between trials (I2 = 0% for both meta-analyses). Acute grade 4 toxicity occurred significantly more frequently in the chemotherapy plus radiotherapy group than in the radiotherapy group (risk ratio (RR) 5.66, 95% CI 2.14 to 14.98). We considered this evidence to be of a moderate quality due to small numbers and limited follow-up in the included studies. In addition, it was not possible to separate data for bulky early stage disease.
In the one small trial that compared adjuvant chemotherapy followed by radiotherapy with adjuvant radiotherapy alone there was no significant difference in disease recurrence between the groups (HR = 1.34; 95% CI 0.24 to 7.66) and OS was not reported. We considered this evidence to be of a low quality.
No trials compared adjuvant platinum-based chemotherapy with no adjuvant chemotherapy after surgery for early cervical cancer with risk factors for recurrence.
Authors’ conclusions
The addition of platinum-based chemotherapy to adjuvant radiotherapy (chemoradiation) may improve survival in women with early stage cervical cancer (IA2-IIA) and risk factors for recurrence. Adjuvant chemoradiation is associated with an increased risk of severe acute toxicity, although it is not clear whether this toxicity is significant in the long-term due to a lack of long-term data. This evidence is limited by the small numbers and poor methodological quality of included studies. We await the results of three ongoing trials, that are likely to have an important impact on our confidence in this evidence.
doi:10.1002/14651858.CD005342.pub3
PMCID: PMC4164460  PMID: 22696349
Antineoplastic Combined Chemotherapy Protocols [*therapeutic use]; Chemotherapy, Adjuvant [methods]; Cisplatin [administration & dosage]; Fluorouracil [administration & dosage]; Hysterectomy; Neoplasm Staging; Platinum Compounds [*therapeutic use]; Radiotherapy, Adjuvant; Randomized Controlled Trials as Topic; Uterine Cervical Neoplasms [*drug therapy; pathology; radiotherapy; surgery]; Female; Humans
12.  Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study 
The Lancet. Oncology  2015;16(2):187-199.
Summary
Background
We aimed to compare overall survival after standard-dose versus high-dose conformal radiotherapy with concurrent chemotherapy and the addition of cetuximab to concurrent chemoradiation for patients with inoperable stage III non-small-cell lung cancer.
Methods
In this open-label randomised, two-by-two factorial phase 3 study in 185 institutions in the USA and Canada, we enrolled patients (aged ≥ 18 years) with unresectable stage III non-small-cell lung cancer, a Zubrod performance status of 0–1, adequate pulmonary function, and no evidence of supraclavicular or contralateral hilar adenopathy. We randomly assigned (1:1:1:1) patients to receive either 60 Gy (standard dose), 74 Gy (high dose), 60 Gy plus cetuximab, or 74 Gy plus cetuximab. All patients also received concurrent chemotherapy with 45 mg/m2 paclitaxel and carboplatin once a week (AUC 2); 2 weeks after chemoradiation, two cycles of consolidation chemotherapy separated by 3 weeks were given consisting of paclitaxel (200 mg/m2) and carboplatin (AUC 6). Randomisation was done with permuted block randomisation methods, stratified by radiotherapy technique, Zubrod performance status, use of PET during staging, and histology; treatment group assignments were not masked. Radiation dose was prescribed to the planning target volume and was given in 2 Gy daily fractions with either intensity-modulated radiation therapy or three-dimensional conformal radiation therapy. The use of four-dimensional CT and image-guided radiation therapy were encouraged but not necessary. For patients assigned to receive cetuximab, 400 mg/m2 cetuximab was given on day 1 followed by weekly doses of 250 mg/m2, and was continued through consolidation therapy. The primary endpoint was overall survival. All analyses were done by modified intention-to-treat. The study is registered with ClinicalTrials.gov, number NCT00533949.
Findings
Between Nov 27, 2007, and Nov 22, 2011, 166 patients were randomly assigned to receive standard-dose chemoradiotherapy, 121 to high-dose chemoradiotherapy, 147 to standard-dose chemoradiotherapy and cetuximab, and 110 to high-dose chemoradiotherapy and cetuximab. Median follow-up for the radiotherapy comparison was 22·9 months (IQR 27·5–33·3). Median overall survival was 28·7 months (95% CI 24·1–36·9) for patients who received standard-dose radiotherapy and 20·3 months (17·7–25·0) for those who received high-dose radiotherapy (hazard ratio [HR] 1·38, 95% CI 1·09–1·76; p=0·004). Median follow-up for the cetuximab comparison was 21·3 months (IQR 23·5–29·8). Median overall survival in patients who received cetuximab was 25·0 months (95% CI 20·2–30·5) compared with 24·0 months (19·8–28·6) in those who did not (HR 1·07, 95% CI 0·84–1·35; p=0·29). Both the radiation-dose and cetuximab results crossed protocol-specified futility boundaries. We recorded no statistical differences in grade 3 or worse toxic effects between radiotherapy groups. By contrast, the use of cetuximab was associated with a higher rate of grade 3 or worse toxic effects (205 [86%] of 237 vs 160 [70%] of 228 patients; p<0·0001). There were more treatment-related deaths in the high-dose chemoradiotherapy and cetuximab groups (radiotherapy comparison: eight vs three patients; cetuximab comparison: ten vs five patients). There were no differences in severe pulmonary events between treatment groups. Severe oesophagitis was more common in patients who received high-dose chemoradiotherapy than in those who received standard-dose treatment (43 [21%] of 207 patients vs 16 [7%] of 217 patients; p<0·0001).
Interpretation
74 Gy radiation given in 2 Gy fractions with concurrent chemotherapy was not better than 60 Gy plus concurrent chemotherapy for patients with stage III non-small-cell lung cancer, and might be potentially harmful. Addition of cetuximab to concurrent chemoradiation and consolidation treatment provided no benefit in overall survival for these patients.
Funding
National Cancer Institute and Bristol-Myers Squibb.
doi:10.1016/S1470-2045(14)71207-0
PMCID: PMC4419359  PMID: 25601342
13.  Evaluation of Clinical Results and Complications of Structural Allograft Reconstruction after Bone Tumor Surgery 
Background:
Massive bone allograft is an option in cases of limb preservation and reconstruction after massive benign and malignant bone tumor resection. The purpose of this study was to analyze the outcome of these procedures at Imam Reza Hospital, Mashhad University of Medical Sciences.
Methods:
In this study, 113 cases have been presented. Eleven cases were excluded (patients has a traumatic defect or they passed away before the completion of the study’s two-year follow up period). Each patient completed a questionnaire, went through a physical examination and, if indicated, X-ray information was collected. The patients were divided into three groups: chemotherapy, chemotherapy plus radiation therapy, and no-adjuvant-therapy.
Results:
Fifty-four cases were male and the mean age was 24.5±5.39. The number of cases and indications for surgery were: 33 cases of aggressive benign tumors or low grade malignant bone tumors (large bone defects) including 16 germ cell tumors, eight aneurysmal bone cysts, five low grade osteosarcomas, and four chondrosarcomas. Another 69 cases were high-grade malignant bone tumors including 42 osteosarcomas, 21 Ewing’s sarcoma, and six other high grade osteosarcomas. Patients were divided into three groups: the first group received no adjuvant therapy, the second group received chemotherapy, and the third group received chemotherapy plus radiotherapy. The location of tumors were as follows: eight cases in the pelvic bone, 12 in the proximal femur, 18 in the femoral shaft, 36 in the distal femur, 12 in the proximal tibia, and 16 in the humeral bone. The 12 cases of proximal femoral defects were reconstructed by allograft composite prosthesis, 18 diaphyseal defects with intercalary allograft, and 36 distal femoral defects were reconstructed using osteoarticular allograft. The rate of deep infection was 7:8% (eight patients) and in this regard, we found a significant difference among the three groups, such that most cases of infection occurred in the adjuvant chemotherapy plus radiation therapy group. Allograft fracture occurred in six patients and prevalence was the same in all groups. Only in six cases of radio-chemotherapy nonunion occurred, so we used autogenous bone graft for union. Local recurrence was observed in six patients: three belonged to the adjuvant chemotherapy group and the other three were in the chemo-radiotherapy group; no significant difference was observed between these two groups. However, there was a significant difference between these two and the group that received no adjuvant therapy. Also, there were 11 cases of metastases and Restriction of knee joint motion occurred in 48 cases of osteo-cartilaginous grafts of the distal femur and proximal tibia.
Conclusion:
Although structural allograft is an appropriate choice in limb reconstruction after massive resection of involved tissues in malignant and invasive bone tumors, the risk of complications such as nonunion and infection in massive allograft increases in cases of adjuvant (chemotherapy and radiotherapy) modalities of treatment. Whereas the rate of tumor recurrence, metastasis, and restrictions in range of motion during a short term follow up after implantation showed no significant difference among the evaluated groups. Consequently, further attention and constant periodic visits of the patients and checking for local recurrence and distant metastasis should be done after surgery.
PMCID: PMC4969370  PMID: 27517069
Allograft; Bone tumor; Chemotherapy; Limb-salvage; Radiotherapy
14.  Transurethral surgery and twice-daily radiation plus paclitaxel-cisplatin or fluorouracil-cisplatin with selective bladder preservation and adjuvant chemotherapy for patients with muscle invasive bladder cancer (RTOG 0233): a randomised multicentre phase 2 trial 
The lancet oncology  2013;14(9):863-872.
Summary
Background
We assessed effectiveness, safety, and tolerability of paclitaxel or fluorouracil when added to radiation plus cisplatin followed by adjuvant chemotherapy in a programme of selected bladder preservation for patients with muscle invasive bladder cancer.
Methods
In our randomised phase 2 trial, we enrolled patients with T2–4a transitional cell carcinoma of the bladder at 24 medical centres in the USA. We randomly allocated patients to receive paclitaxel plus cisplatin (paclitaxel group) or fluorouracil plus cisplatin (fluorouracil group) with twice-daily radiation in random block sizes per site on the basis of clinical T-stage (T2 vs T3–4). Patients and physicians were aware of treatment assignment. All patients had transurethral resection of bladder tumour and twice-daily radiotherapy to 40·3 Gy, along with allocated chemotherapy, followed by cystoscopic and biopsy assessment of response. Patients who had a tumour response with downstaging to T0, Tcis, or Ta received consolidation chemoradiotherapy to 64·3 Gy, with the same chemotherapy regimen as in the induction phase. Patients received adjuvant cisplatin-gemcitabine-paclitaxel after the end of chemoradiotherapy. If, after induction, persistent disease was graded as T1 or worse, we recommended patients undergo cystectomy and adjuvant chemotherapy. We assessed the primary endpoints of rates of treatment completion and toxic effects in all randomly allocated patients. This study is registered with ClinicalTrials.gov, number NCT00055601.
Findings
Between Dec 13, 2002, and Jan 11, 2008, we enrolled 97 patients, of whom 93 were eligible for analysis. Median follow-up was 5·0 years (IQR 5·0–6·2). Of 46 patients in the paclitaxel group, 45 (98%) completed induction (16 [35%] with grade 3–4 toxicity), 39 (85%) completed induction and consolidation (11 [24%] with grade 3–4 toxicity due to consolidation), and 31 (67%) completed the entire protocol with adjuvant chemotherapy. 34 (85%) of 40 assessable patients in the paclitaxel group had grade 3–4 toxicity during adjuvant chemotherapy. Of 47 patients in the fluorouracil group, 45 (96%) completed induction (nine [19%] with grade 3–4 toxicity), 39 (83%) completed induction and consolidation (12 [26%] had grade 3–4 toxicity due to consolidation), and 25 (53%) completed the entire protocol with adjuvant chemotherapy. 31 (76%) of 41 assessable patients in the fluorouracil group had grade 3–4 toxicity during adjuvant chemotherapy. Five (11%) patients treated with the paclitaxel regimen and three (6%) patients treated with the fluorouracil regimen developed late grade 3–4 radiotherapy toxicities. 11 (24%) patients treated with the paclitaxel regimen and 16 (34%) patients treated with the fluorouracil regimen developed late grade 3–4 toxicities unrelated to radiotherapy. One patient (in the fluorouracil group) died during follow-up. Six (13%) patients in the paclitaxel group and in three (6%) patients in the fluorouracil group discontinued due to treatment-related toxicity.
Interpretation
In the absence of phase 3 data, our findings could inform selection of a bladder-sparing trimodality chemotherapy regimen for patients with muscle invasive bladder cancer.
Funding
US National Cancer Institute.
doi:10.1016/S1470-2045(13)70255-9
PMCID: PMC3955198  PMID: 23823157
15.  Dose escalation of accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in unresectable stage III non-small-cell lung cancer: a phase I trial 
Background
Accelerated hypofractionated radiotherapy can shorten total treatment time and overcome the accelerated repopulation of tumour cells during radiotherapy. This therapeutic approach has demonstrated good efficacy in the treatment of locally advanced non-small-cell lung cancer (NSCLC). However, the optimal fractionation scheme remains uncertain. The purpose of this phase I trial was to explore the maximum tolerated dose (MTD) of accelerated hypofractionated three-dimensional conformal radiotherapy (3-DCRT) (at 3 Gy/fraction) administered in combination with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for unresectable stage III NSCLC.
Methods
Previously untreated cases of unresectable stage III NSCLC received accelerated hypofractionated 3-DCRT, delivered at 3 Gy per fraction, once daily, with five fractions per week. The starting dose was 66 Gy and an increment of 3 Gy was utilized. Higher doses continued to be tested in patient groups until the emergence of dose-limiting toxicity (DLT). The MTD was regarded as the dose that was one step below the dose at which DLT occurred. Patients received at least one cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP.
Results
A total of 13 patients were enrolled and progressed through three dose escalation groups: 66 Gy, 69 Gy, and 72 Gy. No treatment-related deaths occurred. The major adverse events included radiation oesophagitis, radiation pneumonitis, and neutropenia. Nausea, fatigue, and anorexia were commonly observed, although the magnitude of these events was typically relatively minor. Among the entire group, four instances of DLT were observed, including two cases of grade 3 radiation oesophagitis, one case of grade 3 radiation pneumonitis, and one case of grade 4 neutropenia. All of these cases of DLT occurred in the 72 Gy group. Therefore, 72 Gy was designated as the DLT dose level, and the lower dose of 69 Gy was regarded as the MTD.
Conclusions
For unresectable stage III NSCLC 69 Gy (at 3 Gy/fraction) was the MTD of accelerated hypofractionated 3-DCRT administered in combination with concurrent NVB and CBP chemotherapy. The toxicity of this chemoradiotherapy regimen could be tolerated. A phase II trial is recommended to further evaluate the efficacy and safety of this regimen.
doi:10.1186/1748-717X-8-201
PMCID: PMC3765388  PMID: 23957889
Accelerated hypofractionated radiotherapy; Three-dimensional conformal radiotherapy; Non-small-cell lung cancer; Concurrent chemoradiotherapy; Maximum tolerated dose; Vinorelbine; Carboplatin
16.  Anthracycline and concurrent radiotherapy as adjuvant treatment of operable breast cancer: a retrospective cohort study in a single institution 
BMC Research Notes  2010;3:247.
Background
Concurrent chemoradiotherapy (CCRT) after breast surgery was investigated by few authors and remains controversial, because of concerns of toxicity with taxanes/anthracyclines and radiation. This treatment is not standard and is more commonly used for locally advanced breast cancer. The aim of our study was to evaluate the efficacy and safety of the concomitant use of anthracycline with radiotherapy (RT).
Findings
Four hundred women having operable breast cancer, treated by adjuvant chemotherapy (CT) and RT in concomitant way between January 2001 and December 2003, were included in this retrospective cohort study. The study compares 2 adjuvant treatments using CCRT, the first with anthracycline (group A) and the second with CMF (group B). The CT treatment was repeated every 21 days for 6 courses and the total delivered dose of RT was 50 Gy, divided as 2 Gy daily fractions. Locoregional recurrence free (LRFS), event free (EFS), and overall survivals (OS) were estimated by the Kaplan-Meier method. The log-rank test was used to compare survival events. Multivariate Cox-regression was used to evaluate the relationship between patient characteristics, treatment and survival.
In the 2 groups (A+B) (n = 400; 249 in group A and 151 in group B), the median follow-up period was 74.5 months. At 5 years, the isolated LRFS was significantly higher in group A compared to group B (98.7% vs 95.3%; hazard ratio [HR] = 0.258; 95% CI, 0.067 to 0.997; log-rank P = .034). In addition, the use of anthracycline regimens was associated with a higher rate of 5 years EFS (80.4% vs 75.1%; HR = 0.665; 95% CI, 0.455 to 1.016; log-rank P = .057). The 5 years OS was 83.2% and 79.2% in the anthracycline and CMF groups, respectively (HR = 0.708; 95% CI, 0.455 to 1.128; log-rank P = .143). Multivariate analysis confirmed the positive effect of anthracycline regimens on LRFS (HR = 0.347; 95% CI, 0.114 to 1.053; log-rank P = .062), EFS (HR = 0.539; 95% CI, 0.344 to 0.846; P = 0.012), and OS (HR = 0.63; 95% CI, 0.401 to 0.991; P = .046). LRFS, EFS and OS were significantly higher in the anthracycline group where the patients (n = 288) received more than 1 cycle of concurrent CT (P = .038, P = .026 and P = .038, respectively). LRFS and EFS were significantly higher in the anthracycline group within the BCT subgroup (P = .049 and P = .04, respectively). There were more hematologic, and more grade 2/3/4 skin toxicity in the anthracycline group.
Conclusions
After mastectomy or BCT, the adjuvant treatment based on anthracycline and concurrent RT reduced breast cancer relapse rate, and significantly improved LRFS, EFS and OS in the patients receiving more than 1 cycle of concurrent CT. There were more hematologic and non hematologic toxicities in the anthracycline group.
doi:10.1186/1756-0500-3-247
PMCID: PMC2958885  PMID: 20920323
17.  Locoregional Interaction of Ixabepilone (Ixempra) After Breast Cancer Radiation 
The Oncologist  2013;18(3):265-270.
Chemotherapy-radiotherapy interactions are uncommon but potentially serious adverse events. The authors identified 3 of 19 patients with clinically significant interactions when ixebepilone was given shortly after radiotherapy.
Learning Objectives
Describe the significant locoregional clinical interaction that may result from ixabepilone chemotherapy following radiation.Explain the importance of awareness, detection, and management of radiation recall by both the medical and the radiation oncologist.Describe the spectrum of toxicity represented by radiation recall that can range from erythema to chest wall necrosis requiring reconstructive surgery.
Background.
Radiation recall is an acute inflammatory reaction within a previously irradiated field triggered by chemotherapy administration. We observed a series of patients with unexpectedly severe reactions that included radiation recall and delayed healing when patients received the microtubule stabilizer ixabepilone (Ixempra; Bristol-Myers Squibb, Princeton, NJ) after radiation. We therefore decided to evaluate our experience in patients receiving ixabepilone following radiotherapy.
Methods.
We performed a retrospective chart review of all patients treated with curative intent in the Department of Radiation Oncology at the MD Anderson Cancer Center from 2008–2011 who received any ixabepilone after completion of external-beam radiation therapy. These patients received adjuvant ixabepilone on one of two protocols, either for locally advanced breast cancer or for metastatic breast cancer. In total, 19 patients were identified and their charts were subsequently reviewed for evidence of ixabepilone-related toxicity.
Results.
Of the 19 patients identified who received ixabepilone following radiation therapy, three (15.8%) had unexpectedly serious reactions in the months following radiation therapy. Complications included delayed wound closure and drain placement into the seroma, intense erythema, and delayed wound closure and grade 4 chest wall necrosis requiring latissimus flap and skin grafting. The average number of days between the end of radiation therapy and documentation of reaction was 99.
Conclusions.
Ixabepilone chemotherapy may induce radiation recall and delayed wound healing when used shortly after the completion of external-beam radiotherapy. Significant clinical interactions have not been previously reported and merit further evaluation.
doi:10.1634/theoncologist.2012-0348
PMCID: PMC3607521  PMID: 23404814
Ixabepilone; Radiation recall; Breast cancer; Microtubule stabilizer
18.  Thermal boost combined with interstitial brachytherapy in breast conserving therapy – Assessment of early toxicity 
Background
Hyperthermia (HT) causes a direct damage to cancerous cells and/or sensitize them to radiotherapy with usually minimal injury to normal tissues. Adjuvant HT is probably one of the most effective radiation sensitizers known and works best when delivered simultaneously with radiation. In breast conserving therapy, irradiation has to minimize the risk of local relapse within the treated breast, especially in an area of a tumor bed. Brachytherapy boost reduces 5-year local recurrence rate to mean 5,5%, so there still some place for further improvement. The investigated therapeutic option is an adjuvant single session of local HT (thermal boost) preceding standard CT-based multicatheter interstitial HDR brachytherapy boost in order to increase the probability of local cure.
Aim
To report the short-term results in regard to early toxicity of high-dose-rate (HDR) brachytherapy (BT) boost with or without interstitial microwave hyperthermia (MV HT) for early breast cancer patients treated with breast conserving therapy (BCT).
Materials and methods
Between February 2006 and December 2007, 57 stage IA–IIIA breast cancer patients received a 10 Gy HDR BT boost after conservative surgery and 42.5–50 Gy whole breast irradiation (WBI) ± adjuvant chemotherapy. 32 patients (56.1%) were treated with additional pre-BT single session of interstitial MW HT to a tumor bed (multi-catheter technique). Reference temperature was 43 °C and therapeutic time (TT) was 1 h. Incidence, severity and duration of radiodermatitis, skin oedema and skin erythema in groups with (I) or without HT (II) were assessed, significant p-value ≤ 0.05.
Results
Median follow-up was 40 months. Local control was 100% and distant metastasis free survival was 91.1%. HT sessions (median): reference temperature 42.2 °C, therapeutic time (TT) 61.4 min, total thermal dose 42 min and a gap between HT and BT 30 min. Radiodermatitis grades I and II occurred in 24 and 6 patients, respectively, differences between groups I and II were not significant. Skin oedema and erythema occurred in 48 (85.7%) and 36 (64.3%) cases, respectively, and were equally distributed between the groups. The incidence and duration of skin oedema differed between the subgroups treated with different fractionation protocols of WBI, p = 0.006. Skin oedema was present up to 12 months. No difference in pattern of oedema regression between groups I and II was observed, p = 0.933.
Conclusion
Additional thermal boost preceding standard HDR BT boost has a potential of further improvement in breast cancer local control in BCT. Pre-BT hyperthermia did not increase early toxicity in patients treated with BCT and was well tolerated. All side effects of combined treatment were transient and were present for up to 12 months. The increase in incidence of skin oedema was related to hypofractionated protocols of WBI. The study has to be randomized and continued on a larger group of breast cancer patients to verify the potential of local control improvement and to assess the profile of late toxicity.
doi:10.1016/j.rpor.2011.02.004
PMCID: PMC3863141  PMID: 24376963
Hyperthermia; Brachytherapy boost; Breast cancer
19.  Exquisite Sensitivity of TP53 Mutant and Basal Breast Cancers to a Dose-Dense Epirubicin−Cyclophosphamide Regimen 
PLoS Medicine  2007;4(3):e90.
Background
In breast cancers, only a minority of patients fully benefit from the different chemotherapy regimens currently in use. Identification of markers that could predict the response to a particular regimen would thus be critically important for patient care. In cell lines or animal models, tumor protein p53 (TP53) plays a critical role in modulating the response to genotoxic drugs. TP53 is activated in response to DNA damage and triggers either apoptosis or cell-cycle arrest, which have opposite effects on cell fate. Yet, studies linking TP53 status and chemotherapy response have so far failed to unambiguously establish this paradigm in patients. Breast cancers with a TP53 mutation were repeatedly shown to have a poor outcome, but whether this reflects poor response to treatment or greater intrinsic aggressiveness of the tumor is unknown.
Methods and Findings
In this study we analyzed 80 noninflammatory breast cancers treated by frontline (neoadjuvant) chemotherapy. Tumor diagnoses were performed on pretreatment biopsies, and the patients then received six cycles of a dose-dense regimen of 75 mg/m2 epirubicin and 1,200 mg/m2 cyclophosphamide, given every 14 days. After completion of chemotherapy, all patients underwent mastectomies, thus allowing for a reliable assessment of chemotherapy response. The pretreatment biopsy samples were used to determine the TP53 status through a highly efficient yeast functional assay and to perform RNA profiling. All 15 complete responses occurred among the 28 TP53-mutant tumors. Furthermore, among the TP53-mutant tumors, nine out of ten of the highly aggressive basal subtypes (defined by basal cytokeratin [KRT] immunohistochemical staining) experienced complete pathological responses, and only TP53 status and basal subtype were independent predictors of a complete response. Expression analysis identified many mutant TP53-associated genes, including CDC20, TTK, CDKN2A, and the stem cell gene PROM1, but failed to identify a transcriptional profile associated with complete responses among TP53 mutant tumors. In patients with unresponsive tumors, mutant TP53 status predicted significantly shorter overall survival. The 15 patients with responsive TP53-mutant tumors, however, had a favorable outcome, suggesting that this chemotherapy regimen can overcome the poor prognosis generally associated with mutant TP53 status.
Conclusions
This study demonstrates that, in noninflammatory breast cancers, TP53 status is a key predictive factor for response to this dose-dense epirubicin–cyclophosphamide regimen and further suggests that the basal subtype is exquisitely sensitive to this association. Given the well-established predictive value of complete responses for long-term survival and the poor prognosis of basal and TP53-mutant tumors treated with other regimens, this chemotherapy could be particularly suited for breast cancer patients with a mutant TP53, particularly those with basal features.
Hugues de The and colleagues report thatTP53 status is a predictive factor for responsiveness in breast cancers to a dose-dense epirubicin-cyclophosphamide chemotherapy regimen, and suggests that this regimen might be well suited for patientsTP53 mutant tumors.
Editors' Summary
Background.
One woman in eight will develop breast cancer during her life. As with other cancers, breast cancer arises when cells accumulate genetic changes (mutations) that allow them to grow uncontrollably and to move around the body. These altered cells are called malignant cells. The normal human breast contains several types of cell, any of which can become malignant. In addition, there is more than one route to malignancy—different sets of genes can be mutated. As a result, breast cancer is a heterogeneous disease that cannot be cured with a single type of treatment. Ideally, oncologists would like to know before they start treating a patient which therapeutic approach is going to be successful for that individual. Recently, researchers have begun to identify molecular changes that might eventually allow oncologists to make such rational treatment decisions. For example, laboratory studies in cell lines or animals indicate that the status of a gene called TP53 determines the chemotherapy agents (drugs that preferentially kill rapidly dividing cancer cells) to which cells respond. p53, the protein encoded by TP53, is a tumor suppressor. That is, in normal cells it prevents unregulated growth by controlling the expression of proteins involved in cell division and cell death. Consequently, p53 is often inactivated during cancer development.
Why Was This Study Done?
Although laboratory studies have linked TP53 status to chemotherapy responses, little is known about this relationship in human breast cancers. The clinical studies that have investigated whether TP53 status affects chemotherapy responses have generally found that patients whose tumors contain mutant TP53 have a poorer response to therapy and/or a shorter survival time than those whose tumors contain normal TP53. In this study, the researchers have asked whether TP53 status affects tumor responses to a dose-intense chemotherapy regimen (frequent, high doses of drugs) given to women with advanced noninflammatory breast cancer before surgery. This type of treatment is called neoadjuvant chemotherapy and is used to shrink tumors before surgery.
What Did the Researchers Do and Find?
The researchers collected breast tumor samples from 80 women before starting six fortnightly cycles of chemotherapy with epirubicin and cyclophosphamide. After this, each woman had her affected breast removed and examined to see whether the chemotherapy had killed the tumor cells. The researchers determined which original tumor samples contained mutated TP53 and used a technique called microarray expression profiling to document gene expression patterns in them. Overall, 28 tumors contained mutated TP53. Strikingly, all 15 tumors that responded completely to neoadjuvant chemotherapy (no tumor cells detectable in the breast tissue after chemotherapy) contained mutated TP53. Nine of these responsive tumors were basal-cell–like breast tumors, a particularly aggressive type of breast cancer; only one basal-cell–like, TP53-mutated tumor did not respond to chemotherapy. Patients whose tumors were unresponsive to the neoadjuvant chemotherapy but contained mutated TP53 tended to die sooner than those whose tumors contained normal TP53 or those with chemotherapy-responsive TP53-mutated tumors. Finally, expression profiling identified changes in the expression of many p53-regulated genes, but did not identify an expression profile in the TP53-mutated tumors unique to those that responded to chemotherapy.
What Do These Findings Mean?
These findings indicate that noninflammatory breast tumors containing mutant TP53—in particular, basal-cell–like tumors—are very sensitive to dose-dense epirubicin and cyclophosphamide chemotherapy. Intensive regimens of this type have rarely been used in previous studies, which might explain the apparent contradiction between these results and the generally poor response to chemotherapy of TP53-mutated breast tumors. More tumors now need to be examined to confirm the association between complete response, TP53 status and basal-cell–like tumors. In addition, although complete tumor responses generally predict good overall survival, longer survival studies than those reported here are needed to show that the tumor response to this particular neoadjuvant chemotherapy regimen translates into improved overall survival. If the present results can be confirmed and extended, dose-dense neoadjuvant chemotherapy with epirubicin and cyclophosphamide could considerably improve the outlook for patients with aggressive TP53-mutant, basal-cell–like breast tumors.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040090.
The US National Cancer Institute provides patient and physician information on breast cancer and general information on understanding cancer
Cancer Research UK offers patient information on cancer and breast cancer
The MedlinePlus encyclopedia has pages on breast cancer
Emory University's CancerQuest discusses the biology of cancer, including the role of tumor suppressor proteins
Wikipedia has pages on p53 (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0040090
PMCID: PMC1831731  PMID: 17388661
20.  Concurrent Docetaxel-Based Chemoradiotherapy in Squamous Cell Esophageal Cancer 
Background:
The incidence of esophageal cancer has risen worldwide in recent decades. In Romania, the incidence is 5.3/100,000 population in males and 0.7/100,000 in females, with mortality rates of 4.8/100,000 and 0.5/100,000 in males and females, respectively. Esophageal cancer is a treatable but rarely curable cancer, as many patients have advanced-stage disease at diagnosis. We evaluated a multimodality approach of preoperative radiochemotherapy for patients with squamous cell esophageal carcinoma in terms of safety, tumor response, and resectability rate.
Methods:
From January 2004 to May 2007, 87 patients were included in the study. Inclusion criteria were histologically confirmed squamous esophageal cancer not amenable to curative surgery, no distant metastases, ECOG performance status ≤ 2, and no previous anticancer therapy. The preoperative treatment schedule was conformal radiotherapy (40 Gy) with concomitant weekly docetaxel (25 mg/m2) and carboplatin (AUC=2). Patients were evaluated at baseline, after having received 40 Gy radiotherapy, and 3 months after treatment ended. Endoscopy, barium swallow X-ray, and CT scan of the chest and upper abdomen were used to evaluate patients. Patients whose tumors were resectable underwent surgery; those with unresectable tumors continued radiotherapy to a total dose of 60 Gy and received four cycles of docetaxel (75 mg/m2) and carboplatin (AUC=6) (q3wk regimen). The resected patients received adjuvant chemotherapy with four cycles of the same docetaxel/carboplatin q3wk regimen.
Results:
The median patient age was 53.6 years (range, 32–70 years); 78 of the patients were males and 9 were females. Median follow-up time was 35 months. Survival rate at 1 year was 57.5% and at 2 years, 44.8%. After patients had received 40 Gy radiotherapy, 39 were determined to have resectable disease and 30 underwent surgery (6 patients refused surgery and 3 had contraindications for surgery); 48 patients had tumor regression with clinical benefit but were not operable. No patient progressed. Six of the 30 patients undergoing surgery had complete remissions. The treatment schedule was well tolerated, with no treatment-related deaths or additional hospitalizations. All except 5 of the patients were able to receive the intended chemoradiotherapy regimen. These 5 patients stopped chemoradiotherapy because of hematologic toxicity; radiotherapy was continued (after an approximate 1-week delay) following hematologic recovery. The operated patients had no additional perioperative complications. Radiation therapy was delivered as intended with no toxicity-related interruptions, except in the 5 patients mentioned above. Chemotherapy was delayed in 15 additional cases due to grade 3–4 hematologic effects; a 25% dose reduction was necessary in 9 cases.
Conclusions:
Multimodality treatment of locally advanced esophageal cancer (concurrent radiochemotherapy ± surgery) can be considered superior to each method as single-agent therapy. Radiotherapy and chemotherapy may convert some tumors considered initially unresectable to resectable status. The weekly docetaxel/carboplatin regimen was well tolerated when administered concurrently with radiation therapy. This regimen resulted in a 44.8% resectability rate in patients considered initially unresectable, and 15.4% of patients undergoing surgery had complete remissions. Further investigation of this regimen is warranted.
PMCID: PMC3056309
21.  Optimal Sequence of Implied Modalities in the Adjuvant Setting of Breast Cancer Treatment: An Update on Issues To Consider 
The Oncologist  2010;15(11):1169-1178.
Breast surgery, radiotherapy, chemotherapy, hormonotherapy, and targeted agents are all being used together concomitantly or sequentially with the aim to achieve local and distant control and improve survival in breast cancer patients. With this goal being reached more and more often nowadays, quality of life emerges as another issue of pivotal importance. Existing data on the maximum acceptable delay of radiotherapy when given as sole adjuvant treatment after surgery and the optimal sequence of all these modalities with respect to each other are reviewed.
The adjuvant setting of early breast cancer treatment is an evolving field where different modalities must be combined to improve outcomes; moreover, quality of life of breast cancer survivors emerges as a new important parameter to consider, thus implying a better understanding of toxicities of these modalities. We have conducted a review focusing on the latest literature of the past 3 years, trying to evaluate the existing data on the maximum acceptable delay of radiotherapy when given as sole adjuvant treatment after surgery and the optimal sequence of all these modalities with respect to each other. It becomes evident radiotherapy should be given as soon as possible and within a time frame of 6–20 weeks. Chemotherapy is given before radiotherapy and hormone therapy. However, radiotherapy should be started within 7 months after surgery in these cases. Hormone therapy with tamoxifen might be given safely concomitantly or sequentially with radiotherapy although solid data are still lacking. The concurrent administration of letrozole and radiotherapy seems to be safe, whereas data on trastuzumab can imply only that it is safe to use concurrently with radiotherapy. Randomized comparisons of hormone therapy and trastuzumab administration with radiotherapy need to be performed.
doi:10.1634/theoncologist.2010-0187
PMCID: PMC3227907  PMID: 21041378
Radiotherapy; Chemotherapy; Hormone therapy; Trastuzumab; Sequence; Delay; Breast cancer; AROME
22.  The Bronchoalveolar Lavage Pattern in Radiation Pneumonitis Secondary to Radiotherapy for Breast Cancer 
Mædica  2010;5(4):250-257.
ABSTRACT
Background and purpose: Radiotherapy in breast cancer patients is limited by lung tissue tolerance. Two complications involving the lung are known: radiation pneumonitis (RP) and radiation fibrosis. The aim of the study was to evaluate the pattern of bronchoalveolar lavage (BAL) in patients with RP after radiotherapy for breast cancer in symptomatic and asymptomatic patients.
Material and methods: Sixty-five female patients (mean age 58.3 yrs) with RP after radiotherapy for breast cancer were included in the study. The majority of patients had previous breast surgery (mastectomy or lumpectomy and axillary dissection) and received doses of radiations of 45-50Gy. All patients had adjuvant chemotherapy with cyclophosphamide, 5-fluorouracil, and epirubicin or methotrexate.
Results: All patients had an infiltrate or consolidation on chest radiography confined to the upper lobe of the irradiated lung, as marker of RP. Based on the presence or absence of symptoms, we divided the patients in 2 groups: 49 patients (75.4%) with symptomatic RP (fever, cough, dyspnea, chest pain and fatigue) and 16 patients (24.6%) without any symptom. Symptomatic RP patients had a BAL with significant increase in total cells (18.0±12.2 x106 cells•100mL-1) when compared to BAL in asymptomatic patients (11.9±6.2 x106 cells•100mL-1), p=0.01. Lymphocytosis in BAL was significantly increased in symptomatic group, compared with asymptomatic one (35.4±18.7% vs. 26.1±14.3%, p=0.045), with predominance of T lymphocytes (CD3). It was also a predominance of CD4 lymphocytes in all patients, but the CD4/CD8 ratio was inside normal range in the majority of cases. Five patients had clinical features of bronchiolitis obliterans organizing pneumonia (BOOP) secondary to irradiation with increased percentages of lymphocytes, neutrophils, eosinophils, and mast cells in BAL and one patient without history of atopic disease had a percentage of 40% eosinophils. Only a mild reduction in diffusing capacity for carbon monoxide was seen in both groups on pulmonary function tests. The lung volumes were normal in all patients.
Conclusions: Lymphocytic alveolitis was the marker of radiation pneumonitis in all patients. The degree of the inflammatory reaction of the lungs was correlated with the presence of symptoms. The lymphocytic alveolitis consisted mainly of T lymphocytes, with a predominance of CD4 subset in both groups, but the CD4/CD8 ratio remained mostly into normal range.
PMCID: PMC3152839  PMID: 21977166
radiation pneumonitis; breast cancer; bronchoalveolar lavage; lymphocytosis
23.  Chemotherapy versus radiotherapy for FIGO stages IB1 and IIA1 cervical carcinoma patients with postoperative isolated deep stromal invasion: a retrospective study 
BMC Cancer  2016;16:403.
Background
The adjuvant treatment for patients with isolated stromal invasion after radical hysterectomy and pelvic lymph node dissection (PLND) in FIGO stage IB1 and IIA1 cervical carcinoma has not been established. This study assessed the survival outcomes and recurrent patterns in this particular group of patients treated with chemotherapy or radiation-based adjuvant therapy.
Methods
The records 133 IB1 and IIA1 postoperative cervical carcinoma patients with histopathology-confirmed isolated deep stromal invasion (DSI) without any other unfavorable pathological finding between June 2010 and March 2013 were analyzed. Sixty-five patients received postoperative adjuvant four to six cycles of cisplatin-based chemotherapy (CT group) and Sixty-eight received postoperative received postoperative adjuvant radiotherapy (RT group). Treatment-related toxicities were evaluated and disease-free survival (DFS) and overall survival (OS) were analyzed using Kaplan-Meier estimates and statistical significance was determined using the log-rank test.
Results
With a median follow-up of 33.7 months (range 10–62 months), RT group had a significantly improved in DFS rate (P = 0.044), but there was no significant difference in overall survival (P = 0.437). Upon further analysis, patients with outer 1/3 to full-thickness invasion in chemotherapy group exhibited significantly higher recurrence rates compared to the radiotherapy group. Leukocytopenia, nausea and vomiting were the most frequent short-term complications of chemotherapy, whereas colitis/proctitis and cystitis were more frequent in the radiotherapy group (P = 0.000 respectively). No significant differences were found regards to other acute toxicities, including hemoglobin, platelets and ALT/AST, colitis/proctitis, cystitis and dermatitis (P = 0.000 respectively). Fewer late severe side effects in the chemotherapy group were observed compared with the radiation group and significant differences were found at colitis/proctitis, cystitis and dermatitis (P = 0.000 respectively).
Conclusion
Compared to chemotherapy alone, postoperative RT to FIGO stages IB1 and IIA1 cervical carcinoma patients with isolated DSI can reduce risk of recurrence and with acceptable morbidity.
doi:10.1186/s12885-016-2447-2
PMCID: PMC4936260  PMID: 27387204
Cervical cancer; Deep stromal invasion (DSI); Chemotherapy; Radiotherapy
24.  Neoadjuvant-intensified treatment for rectal cancer: Time to change? 
AIM: To investigate whether neoadjuvant-intensified radiochemotherapy improved overall and disease-free survival in patients with locally advanced rectal cancer.
METHODS: Between January 2007 and December 2011, 80 patients with histologically confirmed rectal adenocarcinoma were enrolled. Tumors were clinically classified as either T3 or T4 and by the N stage based on the presence or absence of positive regional lymph nodes. Patients received intensified combined modality treatment, consisting of neoadjuvant radiation therapy (50.4-54.0 Gy) and infusional chemotherapy (oxaliplatin 50 mg/m2) on the first day of each week, plus five daily continuous infusions of fluorouracil (200 mg/m2 per die) from the first day of radiation therapy until radiotherapy completion. Patients received five or six cycles of oxaliplatin based on performance status, clinical lymph node involvement, and potential risk of a non-sphincter-conserving surgical procedure. Surgery was planned 7 to 9 wk after the end of radiochemotherapy treatment; adjuvant chemotherapy treatment was left to the oncologist’s discretion and was recommended in patients with positive lymph nodes. After treatment, all patients were monitored every three months for the first year and every six months for the subsequent years.
RESULTS: Of the 80 patients enrolled, 75 patients completed the programmed neoadjuvant radiochemotherapy treatment. All patients received the radiotherapy prescribed total dose; five patients suspended chemotherapy indefinitely because of chemotherapy-related toxicity. At least five cycles of oxaliplatin were administered to 73 patients. Treatment was well tolerated with high compliance and a good level of toxicity. Most of the acute toxic effects observed were classified as grades 1-2. Proctitis grade 2 was the most common symptom (63.75%) and the earliest manifestation of acute toxicity. Acute toxicity grades 3-4 was reported in 30% of patients and grade 3 or 4 diarrhoea reported in just three patients (3.75%). Seventy-seven patients underwent surgery; low anterior resection was performed in 52 patients, Miles’ surgery in 11 patients and total mesorectal excision in nine patients. Fifty patients showed tumor downsizing ≥ 50% pathological downstaging in 88.00% of tumors. Out of 75 patients surviving surgery, 67 patients (89.33%) had some form of downstaging after preoperative treatment. A pathological complete response was achieved in 23.75% of patients and a nearly pathologic complete response (stage ypT1ypN0) in six patients. An involvement of the radial margin was never present. During surgery, intra-abdominal metastases were found in only one patient (1.25%). Initially, 45 patients required an abdominoperineal resection due to a tumor distal margin ≤ 5 cm from the anal verge. Of these patients, only seven of them underwent Miles’ surgery and sphincter preservation was guaranteed in 84.50% of patients in this subgroup. Fourteen patients received postoperative chemotherapy. In the full analysis of enrolled cohort, eight of the 80 patients died, with seven deaths related to rectal cancer and one to unrelated causes. Local recurrences were observed in seven patients (8.75%) and distant metastases in 17 cases (21.25%). The five-year rate of overall survival rate was 90.91%. Using a median follow-up time of 28.5 mo, the cumulative incidence of local recurrences was 8.75%, and the overall survival and disease-free survival rates were 90.00% and 70.00%, respectively.
CONCLUSION: The results of this study suggest oxaliplatin chemotherapy has a beneficial effect on overall survival, likely due to an increase in local tumor control.
doi:10.3748/wjg.v19.i20.3052
PMCID: PMC3662944  PMID: 23716984
Rectal cancer; Neoadjuvant treatment; Intensified radiochemotherapy; Oxaliplatin; Fluorouracil
25.  Sequential chemotherapy and radiotherapy as sandwich therapy for the treatment of high risk endometrial cancer 
Objective
The purpose of this retrospective study was to assess the tolerability and efficacy of sequential chemotherapy and radiotherapy for the treatment of high risk endometrial cancer.
Methods
We conducted a retrospective study of previously untreated high risk endometrial cancer patients who received sequential chemotherapy and radiotherapy in accordance with the sandwich approach from June 2008 until June 2011. High risk endometrial cancer patients underwent complete surgical staging followed by adjuvant therapy encompassing sequential chemotherapy, radiation therapy and consolidation chemotherapy.
Results
The study analysis comprised 32 endometrial cancer patients. All subjects were treated with carboplatin and paclitaxel chemotherapy; currently, 186 cycles have been administered and 94% of patients have completed the planned number of cycles. Grade 3 neutropenia developed in 1 (3.1%) patient; there was no incidence of grade 4 neutropenia. Moreover, we observed grade 3 anemia in four (12.5%) patients and grade 4 anemia in one (3.1%) patient. One (3.1%) patient developed grade 3 thrombocytopenia; grade 4 thrombocytopenia was not observed. Five patients exhibited progressive disease, three of whom have since expired; mean progression free survival and follow-up were 17.4 months and 18.9 months, respectively.
Conclusion
The preliminary results from our study suggest that the sandwich approach to treating high risk endometrial cancer patients is feasible. Hematologic toxicity was well tolerated and non-hematologic toxicity was mild and easily managed. Further study of this novel regimen in a larger patient population with extended follow-up is necessary.
doi:10.3802/jgo.2012.23.1.22
PMCID: PMC3280062  PMID: 22355463
Chemotherapy; Endometrial cancer; Gynecologic oncology; Radiotherapy

Results 1-25 (1737046)