PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (367922)

Clipboard (0)
None

Related Articles

1.  Deficiency of Transcription Factor Brn4 Disrupts Cochlear Gap Junction Plaques in a Model of DFN3 Non-Syndromic Deafness 
PLoS ONE  2014;9(9):e108216.
Brn4, which encodes a POU transcription factor, is the gene responsible for DFN3, an X chromosome–linked, non-syndromic type of hearing loss. Brn4-deficient mice have a low endocochlear potential (EP), hearing loss, and ultrastructural alterations in spiral ligament fibrocytes, however the molecular pathology through which Brn4 deficiency causes low EP is still unclear. Mutations in the Gjb2 and Gjb6 genes encoding the gap junction proteins connexin26 (Cx26) and connexin30 (Cx30) genes, respectively, which encode gap junction proteins and are expressed in cochlear fibrocytes and non-sensory epithelial cells (i.e., cochlear supporting cells) to maintain the proper EP, are responsible for hereditary sensorineural deafness. It has been hypothesized that the gap junction in the cochlea provides an intercellular passage by which K+ is transported to maintain the EP at the high level necessary for sensory hair cell excitation. Here we analyzed the formation of gap junction plaques in cochlear supporting cells of Brn4-deficient mice at different stages by confocal microscopy and three-dimensional graphic reconstructions. Gap junctions from control mice, which are composed mainly of Cx26 and Cx30, formed linear plaques along the cell-cell junction sites with adjacent cells. These plaques formed pentagonal or hexagonal outlines of the normal inner sulcus cells and border cells. Gap junction plaques in Brn4-deficient mice did not, however, show the normal linear structure but instead formed small spots around the cell-cell junction sites. Gap junction lengths were significantly shorter, and the level of Cx26 and Cx30 was significantly reduced in Brn4-deficient mice compared with littermate controls. Thus the Brn4 mutation affected the assembly and localization of gap junction proteins at the cell borders of cochlear supporting cells, suggesting that Brn4 substantially contributes to cochlear gap junction properties to maintain the proper EP in cochleae, similar to connexin-related deafness.
doi:10.1371/journal.pone.0108216
PMCID: PMC4178122  PMID: 25259580
2.  Mechanisms That Determine the Internal Environment of the Developing Brain: A Transcriptomic, Functional and Ultrastructural Approach 
PLoS ONE  2013;8(7):e65629.
We provide comprehensive identification of embryonic (E15) and adult rat lateral ventricular choroid plexus transcriptome, with focus on junction-associated proteins, ionic influx transporters and channels. Additionally, these data are related to new structural and previously published permeability studies. Results reveal that most genes associated with intercellular junctions are expressed at similar levels at both ages. In total, 32 molecules known to be associated with brain barrier interfaces were identified. Nine claudins showed unaltered expression, while two claudins (6 and 8) were expressed at higher levels in the embryo. Expression levels for most cytoplasmic/regulatory adaptors (10 of 12) were similar at the two ages. A few junctional genes displayed lower expression in embryos, including 5 claudins, occludin and one junctional adhesion molecule. Three gap junction genes were enriched in the embryo. The functional effectiveness of these junctions was assessed using blood-delivered water-soluble tracers at both the light and electron microscopic level: embryo and adult junctions halted movement of both 286Da and 3kDa molecules into the cerebrospinal fluid (CSF). The molecular identities of many ion channel and transporter genes previously reported as important for CSF formation and secretion in the adult were demonstrated in the embryonic choroid plexus (and validated with immunohistochemistry of protein products), but with some major age-related differences in expression. In addition, a large number of previously unidentified ion channel and transporter genes were identified for the first time in plexus epithelium. These results, in addition to data obtained from electron microscopical and physiological permeability experiments in immature brains, indicate that exchange between blood and CSF is mainly transcellular, as well-formed tight junctions restrict movement of small water-soluble molecules from early in development. These data strongly indicate the brain develops within a well-protected internal environment and the exchange between the blood, brain and CSF is transcellular and not through incomplete barriers.
doi:10.1371/journal.pone.0065629
PMCID: PMC3699566  PMID: 23843944
3.  Transmission eigenvalue distributions in highly conductive molecular junctions 
Summary
Background: The transport through a quantum-scale device may be uniquely characterized by its transmission eigenvalues τn. Recently, highly conductive single-molecule junctions (SMJ) with multiple transport channels (i.e., several τn > 0) have been formed from benzene molecules between Pt electrodes. Transport through these multichannel SMJs is a probe of both the bonding properties at the lead–molecule interface and of the molecular symmetry.
Results: We use a many-body theory that properly describes the complementary wave–particle nature of the electron to investigate transport in an ensemble of Pt–benzene–Pt junctions. We utilize an effective-field theory of interacting π-electrons to accurately model the electrostatic influence of the leads, and we develop an ab initio tunneling model to describe the details of the lead–molecule bonding over an ensemble of junction geometries. We also develop a simple decomposition of transmission eigenchannels into molecular resonances based on the isolated resonance approximation, which helps to illustrate the workings of our many-body theory, and facilitates unambiguous interpretation of transmission spectra.
Conclusion: We confirm that Pt–benzene–Pt junctions have two dominant transmission channels, with only a small contribution from a third channel with τn << 1. In addition, we demonstrate that the isolated resonance approximation is extremely accurate and determine that transport occurs predominantly via the HOMO orbital in Pt–benzene–Pt junctions. Finally, we show that the transport occurs in a lead–molecule coupling regime where the charge carriers are both particle-like and wave-like simultaneously, requiring a many-body description.
doi:10.3762/bjnano.3.5
PMCID: PMC3304317  PMID: 22428095
benzene–platinum junction; effective-field theory; isolated-resonance approximation; lead–molecule interface; many-body theory; multichannel; quantum transport; single-molecule junction; transmission eigenchannels
4.  Nonlinear Gap Junctions Enable Long-Distance Propagation of Pulsating Calcium Waves in Astrocyte Networks 
PLoS Computational Biology  2010;6(8):e1000909.
A new paradigm has recently emerged in brain science whereby communications between glial cells and neuron-glia interactions should be considered together with neurons and their networks to understand higher brain functions. In particular, astrocytes, the main type of glial cells in the cortex, have been shown to communicate with neurons and with each other. They are thought to form a gap-junction-coupled syncytium supporting cell-cell communication via propagating Ca2+ waves. An identified mode of propagation is based on cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP3) through gap junctions that locally trigger Ca2+ pulses via IP3-dependent Ca2+-induced Ca2+ release. It is, however, currently unknown whether this intracellular route is able to support the propagation of long-distance regenerative Ca2+ waves or is restricted to short-distance signaling. Furthermore, the influence of the intracellular signaling dynamics on intercellular propagation remains to be understood. In this work, we propose a model of the gap-junctional route for intercellular Ca2+ wave propagation in astrocytes. Our model yields two major predictions. First, we show that long-distance regenerative signaling requires nonlinear coupling in the gap junctions. Second, we show that even with nonlinear gap junctions, long-distance regenerative signaling is favored when the internal Ca2+ dynamics implements frequency modulation-encoding oscillations with pulsating dynamics, while amplitude modulation-encoding dynamics tends to restrict the propagation range. As a result, spatially heterogeneous molecular properties and/or weak couplings are shown to give rise to rich spatiotemporal dynamics that support complex propagation behaviors. These results shed new light on the mechanisms implicated in the propagation of Ca2+ waves across astrocytes and the precise conditions under which glial cells may participate in information processing in the brain.
Author Summary
In recent years, the focus of Cellular Neuroscience has progressively stopped only being on neurons but started to include glial cells as well. Indeed, astrocytes, the main type of glial cells in the cortex, dynamically modulate neuron excitability and control the flow of information across synapses. Moreover, astrocytes have been shown to communicate with each other over long distances using calcium waves. These waves spread from cell to cell via molecular gates called gap junctions, which connect neighboring astrocytes. In this work, we used a computer model to question what biophysical mechanisms could support long-distance propagation of Ca2+ wave signaling. The model shows that the coupling function of the gap junction must be non-linear and include a threshold. This prediction is largely unexpected, as gap junctions are classically considered to implement linear functions. Recent experimental observations, however, suggest their operation could actually be more complex, in agreement with our prediction. The model also shows that the distance traveled by waves depends on characteristics of the internal astrocyte dynamics. In particular, long-distance propagation is facilitated when internal calcium oscillations are in their frequency-modulation encoding mode and are pulsating. Hence, this work provides testable experimental predictions to decipher long-distance communication between astrocytes.
doi:10.1371/journal.pcbi.1000909
PMCID: PMC2928752  PMID: 20865153
5.  Current–voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution 
Summary
We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current–voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.
doi:10.3762/bjnano.3.89
PMCID: PMC3554105  PMID: 23365792
diarylethene; mechanically controllable break-junction; molecular electronics; photoswitching; single-molecule junctions
6.  Chemical control of electrical contact to sp2 carbon atoms 
Nature Communications  2014;5:3659.
Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures.
Understanding metal-molecule contacts is crucial for molecular electronic devices. Here, the authors use a C60-terminated scanning tunnelling tip to probe how the chemical nature of the contacting atom on the substrate electrode determines the transport properties.
doi:10.1038/ncomms4659
PMCID: PMC3997807  PMID: 24736561
7.  Supramolecular Approaches to Combining Membrane Transport with Adhesion 
Accounts of Chemical Research  2013;46(12):2878-2887.
Cells carefully control the transit of compounds through their membranes using “gated” protein channels that respond to chemical stimuli. Connexin gap junctions, which are high conductance cell-to-cell channels, are a remarkable class of “gated” channel with multiple levels of assembly. A gap junction between adhering cells comprises two half-channels in each cell membrane that adhere to each other to form a continuous cell-to-cell channel. Each half-channel is a hexameric assembly of six protein transmembrane subunits. These gap junctions display both intramembrane assembly and intermembrane assembly, making them an attractive target for biomimetic studies. Although many examples of self-assembled channels have been developed, few can also mediate intermembrane adhesion. Developing systems that combine membrane adhesion with controlled transit across the membrane would not only provide a better understanding of self-assembly in and around the membrane, but would also provide a route towards smart biomaterials, targeted drug delivery and an interface with nanotechnology.
This Account describes our biomimetic approaches to combining membrane adhesion with membrane transport, using both self-assembled “sticky” pores and “sticky” nanoparticles to trigger transit across membranes. This combination links both fundamental and applied research, acting as a bridge between molecular level assembly and the formation of functional biomaterials. The ultimate goal is to create complex self-assembled systems in biological or biomimetic environments that can both interface with cells and transport compounds across bilayers in response to remote chemical or electromagnetic signals. Our research in this area started with fundamental studies of intramembrane and intermembrane self-assembly, building upon previously known channel-forming compounds to create self-assembled channels that were switchable or able to mediate vesicle–vesicle adhesion. Subsequently, nanoparticles with a “sticky” coating were used to mediate adhesion between vesicles. Combining these adhesive properties with the unique characteristics of nanosized magnetite allowed a noninvasive magnetic signal to trigger transport of compounds out of magnetic nanoparticle-vesicle assemblies. Adding an extravesicular matrix produced new responsive biomaterials for use in tissue engineering. These biomaterials can be magnetically patterned and can deliver drugs upon receipt of a magnetic signal, allowing spatiotemporal control over cellular responses.
doi:10.1021/ar400032c
PMCID: PMC3868445  PMID: 23682580
8.  A Dual-Tracer Method for Differentiating Transendothelial Transport from Paracellular Leakage in Vivo and in Vitro 
Inflammation-induced impaired function of vascular endothelium may cause leakage of plasma proteins that can lead to edema. Proteins may leave the vascular lumen through two main paracellular and transcellular pathways. As the first involves endothelial cell (EC) junction proteins and the second caveolae formation, these two pathways are interconnected. Therefore, it is difficult to differentiate the prevailing role of one or the other pathway during pathology that causes inflammation. Here we present a newly developed dual-tracer probing method that allows differentiation of transcellular from paracellular transport during pathology. This fluorescence-based method can be used in vitro to test changes in EC layer permeability and in vivo in various animal vascular preparations. The method is based on comparison of low molecular weight molecule (LMWM) transport to that of high molecular weight molecule (HMWM) transport through the EC layer or the vascular wall during physiological and pathological conditions. Since the LMWM will leak through mainly the paracellular and HMWM will move through paracellular (when gaps between the ECs are wide enough) and transcellular pathways, the difference in transport rate (during normal conditions and pathology) of these molecules will indicate the prevailing transport pathway involved in overall protein crossing of vascular wall. Thus, the novel approach of assessing the transport kinetics of different size tracers in vivo by intravital microscopy can clarify questions related to identification of target pathways for drug delivery during various pathologies associated with elevated microvascular permeability.
doi:10.3389/fphys.2012.00166
PMCID: PMC3385581  PMID: 22754530
cerebrovascular leakage; intravital microscopy; fluorescent dyes
9.  Limiting transport steps and novel interactions of Connexin-43 along the secretory pathway 
Histochemistry and Cell Biology  2009;132(3):263-280.
Connexins are four-transmembrane-domain proteins expressed in all vertebrates which form permeable gap junction channels that connect cells. Here, we analysed Connexin-43 (Cx43) transport to the plasma membrane and studied the effects of small GTPases acting along the secretory pathway. We show that both GTP- and GDP-restricted Sar1 prevents exit of Cx43 from the endoplasmic reticulum (ER), but only GTP-restricted Sar1 arrests Cx43 in COP II-coated ER exit sites and accumulates 14-3-3 proteins in the ER fraction. FRET-FLIM data confirm that already in ER exit sites Cx43 exists in oligomeric form, suggesting an in vivo role for 14-3-3 in Cx43 oligomerization. Exit of Cx43 from the ER can be blocked by other factors—such as expression of the β subunit of the COP I coat or p50/dynamitin that acts on the microtubule-based dynein motor complex. GTP-restricted Arf1 blocks Cx43 in the Golgi. Lastly, we show that GTP-restricted Arf6 removes Cx43 gap junction plaques from the cell–cell interface and targets them to degradation. These data provide a molecular explanation of how small GTPases act to regulate Cx43 transport through the secretory pathway, facilitating or abolishing cell–cell communication through gap junctions.
doi:10.1007/s00418-009-0617-x
PMCID: PMC2756399  PMID: 19626334
Connexins; Gap junction; Arf; COP; FRET
10.  Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability 
Journal of Clinical Investigation  2001;107(10):1319-1327.
Tight junctions regulate paracellular conductance and ionic selectivity. These properties vary among epithelia but the molecular basis of this variation remains unknown. To test whether members of the claudin family of tight junction proteins influence paracellular ionic selectivity, we expressed human claudin-4 in cultured MDCK cells using an inducible promoter. Overexpression increased the complexity of tight junction strands visible by freeze-fracture microscopy without affecting the levels of claudin-1, -2, or -3, occludin, or ZO-1. A decrease in conductance correlated directly with the kinetics of claudin-4 induction. Dilution potentials revealed that the decrease in paracellular conductance resulted from a selective decrease in Na+ permeability without a significant effect on Cl– permeability. Flux for an uncharged solute, mannitol, and the rank order of permeabilities for the alkali metal cations were unchanged. A paracellular site for these effects was supported by the lack of apical/basal directionality of the dilution potentials, the linearity of current-voltage relationships, and the lack of influence of inhibitors of major transcellular transporters. These results provide, to our knowledge, the first direct demonstration of the ability of a claudin to influence paracellular ion selectivity and support a role for the claudins in creating selective channels through the tight-junction barrier.
PMCID: PMC209303  PMID: 11375422
11.  Cadherin-2 Controls Directional Chain Migration of Cerebellar Granule Neurons 
PLoS Biology  2009;7(11):e1000240.
Imaging cerebellar granule neurons in zebrafish embryos reveals a further role for Cadherin-2 in neurogenesis: regulating cohesive and directional granule cell migration via intra-membranous Cadherin-2 relocalisation and centrosome stabilization.
Long distance migration of differentiating granule cells from the cerebellar upper rhombic lip has been reported in many vertebrates. However, the knowledge about the subcellular dynamics and molecular mechanisms regulating directional neuronal migration in vivo is just beginning to emerge. Here we show by time-lapse imaging in live zebrafish (Danio rerio) embryos that cerebellar granule cells migrate in chain-like structures in a homotypic glia-independent manner. Temporal rescue of zebrafish Cadherin-2 mutants reveals a direct role for this adhesion molecule in mediating chain formation and coherent migratory behavior of granule cells. In addition, Cadherin-2 maintains the orientation of cell polarization in direction of migration, whereas in Cadherin-2 mutant granule cells the site of leading edge formation and centrosome positioning is randomized. Thus, the lack of adhesion leads to impaired directional migration with a mispositioning of Cadherin-2 deficient granule cells as a consequence. Furthermore, these cells fail to differentiate properly into mature granule neurons. In vivo imaging of Cadherin-2 localization revealed the dynamics of this adhesion molecule during cell locomotion. Cadherin-2 concentrates transiently at the front of granule cells during the initiation of individual migratory steps by intramembraneous transport. The presence of Cadherin-2 in the leading edge corresponds to the observed centrosome orientation in direction of migration. Our results indicate that Cadherin-2 plays a key role during zebrafish granule cell migration by continuously coordinating cell-cell contacts and cell polarity through the remodeling of adherens junctions. As Cadherin-containing adherens junctions have been shown to be connected via microtubule fibers with the centrosome, our results offer an explanation for the mechanism of leading edge and centrosome positioning during nucleokinetic migration of many vertebrate neuronal populations.
Author Summary
As the vertebrate nervous system develops, neurons migrate from proliferation zones to their later place of function. Adhesion molecules have been implicated as key players in regulating cellular motility. In addition, the centrosome (the main microtubule organizing center of the cell) orients into the direction of neuronal migration. In this study we assign the trans-membrane adhesion molecule Cadherin-2 with an important function in the migration of granule neurons in the cerebellum, by interconnecting adhesion with directionality of migration. Time-lapse analysis in transparent zebrafish embryos revealed that Cadherin-2 enables granule neurons to form ‘chain’-like structures during migration. In addition, this adhesion molecule stabilized the position of the centrosome at the leading edge of the migrating neuron. In vivo tracing of a fluorescent Cadherin-2 reporter molecule showed that during individual migratory steps of a granule neuron, Cadherin-2 is shifted along the cell membrane in contact with chain-migrating neighboring neurons to the front compartment of migrating cells. Cadherin-2 is a crucial component of adherens junctions, which are connected via microtubules to the centrosome. We propose that the forward translocation of Cadherin-2-containing adherens junctions stabilizes the centrosome to the cell's front. Cadherin-2 thus transmits cell-cell contact modulation into directional migration of cerebellar granule neurons.
doi:10.1371/journal.pbio.1000240
PMCID: PMC2766073  PMID: 19901980
12.  A Three-Pore Model Describes Transport Properties of Bovine Retinal Endothelial Cells in Normal and Elevated Glucose 
A three-pore model was developed that describes for the first time, the fractional transport of water and molecular tracers across the retinal endothelial barrier. Experimental results showed that there was no change in permeability or hydraulic conductivity in bovine retinal endothelial cell (BREC) monolayers after exposure to high glucose, whereas VEGF increased permeability under both normal and high-glucose environments. The transport results are consistent with ZO-1 and VE-cadherin immunocytochemistry and the expression of claudin-5, which are all unaltered by high glucose.
Purpose.
Changes in blood vessel barrier properties contribute to retinal edema in diabetic retinopathy (DR). However, limited data are available to describe the routes of transport for fluids and solutes across the inner blood–retinal barrier (iBRB). In this study, a three-pore model was developed to characterize such routes in normal and elevated glucose levels.
Methods.
Diffusive and apparent permeabilities to TAMRA (467 Da), dextran (70 kDa), and LDL (2000 kDa), as well as hydraulic conductivity, were measured across bovine retinal endothelial cell (BREC) monolayers after exposure to normal- and high-glucose media for 6 days. The data were used to develop a model of transport dynamics. Claudin 5 and eNOS Western blot analysis were used to measure changes in expression and phosphorylation. Immunolocalization of ZO-1 and VE-cadherin demonstrated organization of the junctional complex. Apoptosis was measured by TUNEL assay.
Results.
A three-pore model describes the fractional transport of water and molecular tracers across the retinal endothelial barrier. No change in permeability or hydraulic conductivity was observed after exposure to high glucose, whereas VEGF increased permeability in both normal- and high-glucose environments. The transport results were consistent with ZO-1 and VE-cadherin immunocytochemistry and expression of claudin-5, which were all unaltered by high glucose.
Conclusions.
The data describe, for the first time, a model for transport of various size solutes and fluids across endothelial cells of the iBRB. Further, the results support the existence of an indirect pathway by which iBRB permeability is increased through the upregulation of retinal VEGF in response to hyperglycemia.
doi:10.1167/iovs.10-5971
PMCID: PMC3053101  PMID: 21357410
13.  Tight junctions on the move: molecular mechanisms for epithelial barrier regulation 
Increasing evidence suggests that the tight junction is a dynamically regulated structure. Cytoskeletal reorganization, particularly myosin light chain phosphorylation–induced actomyosin contraction, has increasingly been recognized as a mediator of physiological and pathophysiological tight junction regulation. However, our understanding of molecular mechanisms of tight junction modulation remains limited. Recent studies using live cell and live animal imaging techniques allowed us to peek into the molecular details of tight junction regulation. At resting conditions, the tight junction is maintained by dynamic protein–protein interactions, which may provide a platform for rapid tight junction regulation. Following stimulation, distinct forms of tight junction protein reorganization were observed. Tumor necrosis factor (TNF-α) causes a myosin light chain kinase (MLCK)–mediated barrier regulation by inducing occludin removal from the tight junction through caveolar endocytosis. In contrast, MLCK- and CK2-inhibition–caused tight junction regulation is mediated by altered zonula occludens (ZO)-1 protein dynamics and requires ZO-1–mediated protein–protein interaction, potentially through regulating claudin function. Although some of the molecular details are missing, studies summarized above point to modulating protein localization and dynamics that are common mechanisms for tight junction regulation.
doi:10.1111/j.1749-6632.2012.06613.x
PMCID: PMC3690943  PMID: 22731710
tight junction; protein dynamics; fluorescent recovery after photobleaching; endocytosis; epithelial barrier function
14.  Charge transport in a zinc–porphyrin single-molecule junction 
Summary
We have investigated charge transport in ZnTPPdT–Pyr (TPPdT: 5,15-di(p-thiolphenyl)-10,20-di(p-tolyl)porphyrin) molecular junctions using the lithographic mechanically controllable break-junction (MCBJ) technique at room temperature and cryogenic temperature (6 K). We combined low-bias statistical measurements with spectroscopy of the molecular levels in the form of I(V) characteristics. This combination allows us to characterize the transport in a molecular junction in detail. This complex molecule can form different junction configurations, having an observable effect on the trace histograms and the current–voltage (I(V)) measurements. Both methods show that multiple, stable single-molecule junction configurations can be obtained by modulating the interelectrode distance. In addition we demonstrate that different ZnTPPdT–Pyr junction configurations can lead to completely different spectroscopic features with the same conductance values. We show that statistical low-bias conductance measurements should be interpreted with care, and that the combination with I(V) spectroscopy represents an essential tool for a more detailed characterization of the charge transport in a single molecule.
doi:10.3762/bjnano.2.77
PMCID: PMC3201625  PMID: 22043461
mechanically controllable break junction; molecular conformation; molecular electronics; porphyrin; single-molecule transport
15.  Assembly and regulation of acetylcholinesterase at the vertebrate neuromuscular junction 
Chemico-biological interactions  2008;175(1-3):26-29.
The collagen-tailed form of acetylcholinesterase (ColQ-AChE) is the major if not unique form of the enzyme associated with the neuromuscular junction (NMJ). This enzyme form consists of catalytic and non-catalytic subunits encoded by separate genes, assembled as three enzymatic tetramers attached to the three-stranded collagen-like tail (ColQ). This synaptic form of the enzyme is tightly attached to the basal lamina associated with the glycosaminoglycan perlecan. Fasciculin-2 is a snake toxin that binds tightly to AChE. Localization of junctional AChE on frozen sections of muscle with fluorescent Fasciculin-2 shows that the labeled toxin dissociates with a half-life of about 36 h. The fluorescent toxin can subsequently be taken up by the muscle fibers by endocytosis giving the appearance of enzyme recycling. Newly synthesized AChE molecules undergo a lengthy series of processing events before final transport to the cell surface and association with the synaptic basal lamina. Following co-translational glycosylation the catalytic subunit polypeptide chain interacts with several molecular chaperones, glycosidases and glycosyltransferases to produce a catalytically active enzyme that can subsequently bind to one of two non-catalytic subunits. These molecular chaperones can be rate limiting steps in the assembly process. Treatment of muscle cells with a synthetic peptide containing the PRAD attachment sequence and a KDEL retention signal results in a large increase in assembled and exportable AChE, providing an additional level of post-translational control. Finally, we have found that Pumilio2, a member of the PUF family of RNA-binding proteins, is highly concentrated at the vertebrate neuromuscular junction where it plays an important role in regulating AChE translation through binding to a highly conserved NANOS response element in the 3′-UTR. Together, these studies define several new levels of AChE regulation in electrically excitable cells.
doi:10.1016/j.cbi.2008.05.025
PMCID: PMC2952421  PMID: 18599029
Fasciculin-2; AChE turnover; Synapse; Molecular chaperones; Protein folding; AChE assembly; RNA-binding protein; Translational regulation
16.  Direct Observation of the Myosin Va Recovery Stroke That Contributes to Unidirectional Stepping along Actin 
PLoS Biology  2011;9(4):e1001031.
Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed “strokes”; the “power stroke” is the force-generating swinging of the myosin light chain–binding “neck” domain relative to the motor domain “head” while bound to actin; the “recovery stroke” is the necessary initial motion that primes, or “cocks,” myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a “hand over hand” mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s) attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥5 kBT of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery stroke contributes to unidirectional stepping of myosin Va.
Author Summary
Myosin Va is a “two-legged” ATP-dependent linear molecular motor that transports cellular organelles by “stepping” along actin filaments in a processive manner analogous to human walking, the two “feet” alternating between forward and backward positions. During stepping, the lifted leg undergoes rotational Brownian movements around a free joint at the leg–leg junction. Although these movements are random, the lifted foot lands preferentially on forward sites and rarely steps backward. This directional bias arises in part from the forward movement of the junction bending the “ankle” of the attached leg. Here, we show that the lifted foot also plays a role in the direction of stepping by controlling the orientation of its actin-binding site (the “sole”), which dictates the accessibility of potential stepping positions. We observed the ATP-dependent foot orientation and its stabilizing on individual myosin Va molecules in real time under an optical microscope; we show that the lifted foot of walking myosin Va is oriented in a “toe-down” conformation so that binding to a forward site on actin is preferred largely over backward or adjacent sites. Thus, the great kinetic and energetic stability of the myosin Va lifted foot conformation contributes to unidirectional stepping along actin filaments.
doi:10.1371/journal.pbio.1001031
PMCID: PMC3075224  PMID: 21532738
17.  Cell Signaling in Regulation of the Barrier Integrity of the Corneal Endothelium 
Experimental Eye Research  2011;95(1):8-15.
The barrier integrity of the corneal endothelium, which is conferred by its tight and adherens junctions, is critical for the maintenance of deturgescence of the corneal stroma. Although characteristically leaky, the barrier integrity restricts fluid leakage into the stroma such that the rate of leak does not exceed the rate of the endothelial active fluid transport directed toward the aqueous humor. At a molecular level, the barrier integrity is influenced by the actin cytoskeleton and microtubules, which are coupled to tight and adherens junctions via a variety of linker proteins. Since the cytoskeleton is affected by Rho family small GTPases and p38 MAP kinase, among others, many pathophysiological stimuli induce plasticity to the cytoskeleton and thereby elicit dynamic regulation of the barrier integrity. This review presents an overview of the impact of several bioactive factors on the barrier integrity of the corneal endothelium through altered actin cytoskeleton and/or disassembly of microtubules. The main focus is on the effect of TNF-α (tumor necrosis factor-α) which is a pro-inflammatory molecule found in the intraocular milieu during allograft rejection and anterior uveitis. This cytokine elicits acute activation of p38 MAP kinase, induces disassembly of microtubules, disrupts the peri-junctional actomyosin ring, and concomitantly breaks down the barrier integrity. These effects of TNF-α could be inhibited by stabilizing the microtubules, co-treating with a selective p38 MAP kinase inhibitor, and elevating intracellular cAMP via A2B receptors or direct exposure to forskolin. Overall, the corneal edema following a potential breakdown of the endothelial barrier integrity can be rescued pharmacologically by inhibiting specific cell-signaling mechanisms.
doi:10.1016/j.exer.2011.09.009
PMCID: PMC3271188  PMID: 21963716
Cornea; Endothelium; Tight Junctions; Actomyosin Contraction; TNF-α; Microtubules; p38 MAP kinase
18.  Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch 
Nature  2009;458(7235):233-237.
The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches1–3. Flavin mononucleotide (FMN)-specific riboswitches4,5, also known as RFN elements6, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B2) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin7. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg2+-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.
doi:10.1038/nature07642
PMCID: PMC3726715  PMID: 19169240
19.  APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice 
eLife  2013;2:e00220.
ApoE, ApoE receptors and APP cooperate in the pathogenesis of Alzheimer’s disease. Intriguingly, the ApoE receptor LRP4 and APP are also required for normal formation and function of the neuromuscular junction (NMJ). In this study, we show that APP interacts with LRP4, an obligate co-receptor for muscle-specific tyrosine kinase (MuSK). Agrin, a ligand for LRP4, also binds to APP and co-operatively enhances the interaction of APP with LRP4. In cultured myotubes, APP synergistically increases agrin-induced acetylcholine receptor (AChR) clustering. Deletion of the transmembrane domain of LRP4 (LRP4 ECD) results in growth retardation of the NMJ, and these defects are markedly enhanced in APP−/−;LRP4ECD/ECD mice. Double mutant NMJs are significantly reduced in size and number, resulting in perinatal lethality. Our findings reveal novel roles for APP in regulating neuromuscular synapse formation through hetero-oligomeric interaction with LRP4 and agrin and thereby provide new insights into the molecular mechanisms that govern NMJ formation and maintenance.
DOI: http://dx.doi.org/10.7554/eLife.00220.001
eLife digest
One of the hallmarks of Alzheimer’s disease is the formation of plaques in the brain by a protein called β-amyloid. This protein is generated by the cleavage of a precursor protein, and mutations in the gene that encodes amyloid precursor protein greatly increase the risk of developing a familial, early-onset form of Alzheimer’s disease in middle age. Individuals with a particular variant of a lipoprotein called ApoE (ApoE4) are also more likely to develop Alzheimer’s disease at a younger age than the rest of the population. Due to its prevalence—approximately 20% of the world’s population are carriers of at least one allele—ApoE4 is the single-most important risk factor for the late-onset form of Alzheimer’s disease.
Amyloid precursor protein and the receptors for ApoE—in particular one called LRP4—are also essential for the development of the specialized synapse that forms between motor neurons and muscles. However, the mechanisms by which they, individually or together, contribute to the formation of these neuromuscular junctions are incompletely understood.
Now, Choi et al. have shown that amyloid precursor protein and LRP4 interact at the developing neuromuscular junction. A protein called agrin, which is produced by motor neurons and which must bind to LRP4 to induce neuromuscular junction formation, also binds directly to amyloid precursor protein. This latter interaction leads to the formation of a complex between LRP4 and amyloid precursor protein that robustly promotes the formation of the neuromuscular junction. Mutations that remove the part of LRP4 that anchors it to the cell membrane weaken this complex and thus reduce the development of neuromuscular junctions in mice, especially if the animals also lack amyloid precursor protein.
These three proteins thus seem to influence the development and maintenance of neuromuscular junctions by regulating the activity of a fourth protein, called MuSK, which is present on the surface of muscle cells. Activation of MuSK by agrin bound to LRP4 promotes the clustering of acetylcholine receptors in the membrane, which is a crucial step in the formation of the neuromuscular junction. Intriguingly, Choi et al. have now shown that amyloid precursor protein can, by interacting directly with LRP4, also activate MuSK even in the absence of agrin, albeit only to a small extent.
The work of Choi et al. suggests that the complex formed between agrin, amyloid precursor protein and LRP4 helps to focus the activation of MuSK, and thus the clustering of acetylcholine receptors, to the site of the developing neuromuscular junction. Since all four proteins are also found in the central nervous system, similar processes might well be at work during the development and maintenance of synapses in the brain. Further studies of these interactions, both at the neuromuscular junction and in the brain, should shed new light on both normal synapse formation and the synaptic dysfunction that is seen in Alzheimer’s disease.
DOI: http://dx.doi.org/10.7554/eLife.00220.002
doi:10.7554/eLife.00220
PMCID: PMC3748711  PMID: 23986861
neuromuscular synapse; neurodegeneration; nervous system development; Alzheimer's disease; LRP; ApoE; Mouse
20.  Cross-Talk between Adherens Junctions and Desmosomes Depends on Plakoglobin 
The Journal of Cell Biology  1997;136(4):919-934.
Squamous epithelial cells have both adherens junctions and desmosomes. The ability of these cells to organize the desmosomal proteins into a functional structure depends upon their ability first to organize an adherens junction. Since the adherens junction and the desmosome are separate structures with different molecular make up, it is not immediately obvious why formation of an adherens junction is a prerequisite for the formation of a desmosome. The adherens junction is composed of a transmembrane classical cadherin (E-cadherin and/or P-cadherin in squamous epithelial cells) linked to either β-catenin or plakoglobin, which is linked to α-catenin, which is linked to the actin cytoskeleton. The desmosome is composed of transmembrane proteins of the broad cadherin family (desmogleins and desmocollins) that are linked to the intermediate filament cytoskeleton, presumably through plakoglobin and desmoplakin. To begin to study the role of adherens junctions in the assembly of desmosomes, we produced an epithelial cell line that does not express classical cadherins and hence is unable to organize desmosomes, even though it retains the requisite desmosomal components. Transfection of E-cadherin and/or P-cadherin into this cell line did not restore the ability to organize desmosomes; however, overexpression of plakoglobin, along with E-cadherin, did permit desmosome organization. These data suggest that plakoglobin, which is the only known common component to both adherens junctions and desmosomes, must be linked to E-cadherin in the adherens junction before the cell can begin to assemble desmosomal components at regions of cell–cell contact. Although adherens junctions can form in the absence of plakoglobin, making use only of β-catenin, such junctions cannot support the formation of desmosomes. Thus, we speculate that plakoglobin plays a signaling role in desmosome organization.
PMCID: PMC2132504  PMID: 9049256
21.  Application of a fiber-matrix model to transport in renal tubules 
The Journal of General Physiology  1989;94(5):863-879.
The effects of tight junction structure on water and solute fluxes across proximal tubular epithelium were examined with fiber-matrix equations previously derived by Curry and Michel (1980. Microvascular Research. 20:96-99). Using plausible estimates of tight junction fiber length and width the model predicts solute (Ps) and water permeability (Lp) coefficients that agree with the measured values. When fiber- matrix and pore models were compared for physiologically relevant ranges of matrix void fraction (80-98%) and pore radii (0-20 A), the fiber-matrix model predicted a 10-fold higher Lp/Ps ratio. Lp/Ps was most sensitive to small changes in tight junction structure when void fractions exceeded 90%. Void fractions of 96.5% and 97.1% predicted previously measured values for Lp and solute permeabilities in rat and rabbit proximal tubules. These values are consistent with void fractions and permeabilities of artificial membranes. The fiber-matrix tight junction model was incorporated into a model of reabsorption from the rat proximal tubule developed by Weinstein (1984). American Journal of Physiology. 247:F848-F862.) A void fraction of 98% predicted the experimental results for isosmotic reabsorption driven by active transport. Changing void fraction over the range of 97-99% produced a 50-75% change in predicted volume reabsorption with active transport. According to the fiber-matrix model: (a) solute permeabilities alone cannot be used to predict Lp, (b) previously measured solute permeabilities in the proximal tubule are compatible with significant water reabsorption through a water-permeable tight junction, and (c) hydraulic and solute permeabilities may be sensitive to small changes in tight junction fiber length and diameter or ionic strength within the tight junction.
PMCID: PMC2228979  PMID: 2512369
22.  PERMEABLE JUNCTIONAL COMPLEXES  
The Journal of Cell Biology  1972;54(2):302-312.
Ionic lanthanum has been used to study transepithelial ion permeation in in vitro rabbit gallbladder and intestine (ileum) by adding 1 mM La3+ to only the mucosal bathing solution. Transepithelial fluid transport electrical potential differences (p.d.), and resistances were measured. During La3+ treatment the gallbladder's rate of active solute-coupled fluid transport remained constant, the resistance increased, and the 2:1 NaCl diffusion p.d. decreased. Mucosa-to-serosa fluxes of 140La3+ were measured and indicate a finite permeability of the gallbladder to La3+. La3+ also increased the transepithelial resistance and p d. of ileum. Electron microscopic examination of La3+-treated gallbladder showed: (a) good preservation of the fine structure, (b) electron-opaque lanthanum precipitates in almost every lateral intercellular space, most frequently near the apical end of the lateral spaces close to or within the junctional complex, (c) lanthanum among the subjacent muscle and connective tissue layers, and (d) lanthanum filling almost the entire length of so-called "tight" junctions. No observations were made which unequivocally showed the penetration of lanthanum into the gallbladder cells. Electron micrographs of similar La3+-treated ilea showed lanthanum deposits penetrating the junctional complexes. These results coupled with other physiological studies indicate that the low resistance pathway for transepithelial ion permeation in gallbladder and ileum is through the tight junctions A division of salt-transporting epithelia into two main groups, those with "leaky" junctional complexes and those with tight junctional complexes, has been proposed.
PMCID: PMC2108875  PMID: 5040861
23.  Golgi-associated cPLA2α Regulates Endothelial Cell–Cell Junction Integrity by Controlling the Trafficking of Transmembrane Junction Proteins 
Molecular Biology of the Cell  2009;20(19):4225-4234.
In endothelial cells specifically, cPLA2α translocates from the cytoplasm to the Golgi complex in response to cell confluence. Considering the link between confluence and cell–cell junction formation, and the emerging role of cPLA2α in intracellular trafficking, we tested whether Golgi-associated cPLA2α is involved in the trafficking of junction proteins. Here, we show that the redistribution of cPLA2α from the cytoplasm to the Golgi correlates with adherens junction maturation and occurs before tight junction formation. Disruption of adherens junctions using a blocking anti-VE-cadherin antibody reverses the association of cPLA2α with the Golgi. Silencing of cPLA2α and inhibition of cPLA2α enzymatic activity using various inhibitors result in the diminished presence of the transmembrane junction proteins VE-cadherin, occludin, and claudin-5 at cell–cell contacts, and in their accumulation at the Golgi. Altogether, our data support the idea that VE-cadherin triggers the relocation of cPLA2α to the Golgi and that in turn, Golgi-associated cPLA2α regulates the transport of transmembrane junction proteins through or from the Golgi, thereby controlling the integrity of endothelial cell–cell junctions.
doi:10.1091/mbc.E08-02-0210
PMCID: PMC2754936  PMID: 19675210
24.  Impacts of Blood-Brain Barrier in Drug Delivery and Targeting of Brain Tumors 
BioImpacts : BI  2012;2(1):5-22.
Introduction
Entry of blood circulating agents into the brain is highly selectively con-trolled by specific transport machineries at the blood brain barrier (BBB), whose excellent barrier restrictiveness make brain drug delivery and targeting very challenging.
Methods
Essential information on BBB cellular microenvironment were reviewed and discussed towards impacts of BBB on brain drug delivery and targeting.
Results
Brain capillary endothelial cells (BCECs) form unique biological structure and architecture in association with astrocytes and pericytes, in which microenvironment the BCECs express restrictive tight junctional complexes that block the paracellular inward/outward traverse of biomolecules/compounds. These cells selectively/specifically control the transportation process through carrier and/or receptor mediated transport machineries that can also be exploited for the delivery of pharmaceuticals into the brain. Intelligent molecular therapies should be designed using such transport machineries for the efficient delivery of designated drugs into the brain. For better clinical outcomes, these smart pharmaceuticals should be engineered as seamless nanosystems to provide simultaneous imaging and therapy (multimodal theranostics).
Conclusion
The exceptional functional presence of BBB selectively controls inward and outward transportation mechanisms, thus advanced smart multifunctional nanomedicines are needed for the effective brain drug delivery and targeting. Fully understanding the biofunctions of BBB appears to be a central step for engineering of intelligent seamless therapeutics consisting of homing device for targeting, imaging moiety for detecting, and stimuli responsive device for on-demand liberation of therapeutic agent.
doi:10.5681/bi.2012.002
PMCID: PMC3648919  PMID: 23678437
Blood-Brain Barrier; Brain Capillary Endothelial Cells; Brain Tumor; Drug Delivery; Drug Targeting; Nanomedicines,Theranostics
25.  Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences 
Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells.
doi:10.1186/2045-8118-8-3
PMCID: PMC3045361  PMID: 21349151

Results 1-25 (367922)