PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (524823)

Clipboard (0)
None

Related Articles

1.  The Keap1–Nrf2 system in cancers: stress response and anabolic metabolism 
Frontiers in Oncology  2012;2:200.
The Keap1–Nrf2 [Kelch-like ECH-associated protein 1–nuclear factor (erythroid-derived 2)-like 2] pathway plays a central role in the protection of cells against oxidative and xenobiotic stresses. Nrf2 is a potent transcription activator that recognizes a unique DNA sequence known as the antioxidant response element (ARE). Under normal conditions, Nrf2 binds to Keap1 in the cytoplasm, resulting in proteasomal degradation. Following exposure to electrophiles or reactive oxygen species, Nrf2 becomes stabilized, translocates into the nucleus, and activates the transcription of various cytoprotective genes. Increasing attention has been paid to the role of Nrf2 in cancer cells because the constitutive stabilization of Nrf2 has been observed in many human cancers with poor prognosis. Recent studies have shown that the antioxidant and detoxification activities of Nrf2 confer chemo- and radio-resistance to cancer cells. In this review, we provide an overview of the Keap1–Nrf2 system and discuss its role under physiological and pathological conditions, including cancers. We also introduce the results of our recent study describing Nrf2 function in the metabolism of cancer cells. Nrf2 likely confers a growth advantage to cancer cells through enhancing cytoprotection and anabolism. Finally, we discuss the possible impact of Nrf2 inhibitors on cancer therapy.
doi:10.3389/fonc.2012.00200
PMCID: PMC3530133  PMID: 23272301
stress response; redox homeostasis; transcription; purine nucleotide; glutathione
2.  Molecular Mechanisms of Nrf2-Mediated Antioxidant Response 
Molecular carcinogenesis  2009;48(2):91-104.
Nrf2 is the key transcription factor regulating the antioxidant response. Nrf2 signaling is repressed by Keap1 at basal condition and induced by oxidative stress. Keap1 is recently identified as a Cullin 3-dependent substrate adaptor protein. A two-sites binding “hinge & latch” model vividly depicts how Keap1 can efficiently present Nrf2 as substrate for ubiquitination. Oxidative perturbation can impede Keap1-mediated Nrf2 ubiquitination but fail to disrupt Nrf2/Keap1 binding. Nrf2 per se is a redox-sensitive transcripon factor. A new Nrf2-mediated redox signaling model is proposed based on these new discoveries. Free floating Nrf2 protein functions as a redox-sensitive probe. Keap1 instead functions as a gate keeper to control the availability of Nrf2 probes and thus regulates the overall sensitivity of the redox signaling.
doi:10.1002/mc.20465
PMCID: PMC2631094  PMID: 18618599
Nrf2; Keap1; redox
3.  Ectodermal-Neural Cortex 1 Down-Regulates Nrf2 at the Translational Level 
PLoS ONE  2009;4(5):e5492.
The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1), which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1), which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.
doi:10.1371/journal.pone.0005492
PMCID: PMC2675063  PMID: 19424503
4.  Keap1 Controls Postinduction Repression of the Nrf2-Mediated Antioxidant Response by Escorting Nuclear Export of Nrf2▿  
Molecular and Cellular Biology  2007;27(18):6334-6349.
The transcription factor Nrf2 regulates cellular redox homeostasis. Under basal conditions, Keap1 recruits Nrf2 into the Cul3-containing E3 ubiquitin ligase complex for ubiquitin conjugation and subsequent proteasomal degradation. Oxidative stress triggers activation of Nrf2 through inhibition of E3 ubiquitin ligase activity, resulting in increased levels of Nrf2 and transcriptional activation of Nrf2-dependent genes. In this study, we identify Keap1 as a key postinduction repressor of Nrf2 and demonstrate that a nuclear export sequence (NES) in Keap1 is required for termination of Nrf2-antioxidant response element (ARE) signaling by escorting nuclear export of Nrf2. We provide evidence that ubiquitination of Nrf2 is carried out in the cytosol. Furthermore, we show that Keap1 nuclear translocation is independent of Nrf2 and the Nrf2-Keap1 complex does not bind the ARE. Collectively, our results suggest the following mechanism of postinduction repression: upon recovery of cellular redox homeostasis, Keap1 translocates into the nucleus to dissociate Nrf2 from the ARE. The Nrf2-Keap1 complex is then transported out of the nucleus by the NES in Keap1. Once in the cytoplasm, the Keap1-Nrf2 complex associates with the E3 ubiquitin ligase, resulting in degradation of Nrf2 and termination of the Nrf2 signaling pathway. Hence, postinduction repression of the Nrf2-mediated antioxidant response is controlled by the nuclear export function of Keap1 in alliance with the cytoplasmic ubiquitination and degradation machinery.
doi:10.1128/MCB.00630-07
PMCID: PMC2099624  PMID: 17636022
5.  Nuclear Oncoprotein Prothymosin α Is a Partner of Keap1: Implications for Expression of Oxidative Stress-Protecting Genes 
Molecular and Cellular Biology  2005;25(3):1089-1099.
Animal cells counteract oxidative stress and electrophilic attack through coordinated expression of a set of detoxifying and antioxidant enzyme genes mediated by transcription factor Nrf2. In unstressed cells, Nrf2 appears to be sequestered in the cytoplasm via association with an inhibitor protein, Keap1. Here, by using the yeast two-hybrid screen, human Keap1 has been identified as a partner of the nuclear protein prothymosin α. The in vivo and in vitro data indicated that the prothymosin α-Keap1 interaction is direct, highly specific, and functionally relevant. Furthermore, we showed that Keap1 is a nuclear-cytoplasmic shuttling protein equipped with a nuclear export signal that is important for its inhibitory action. Prothymosin α was able to liberate Nrf2 from the Nrf2-Keap1 inhibitory complex in vitro through competition with Nrf2 for binding to the same domain of Keap1. In vivo, the level of Nrf2-dependent transcription was correlated with the intracellular level of prothymosin α by using prothymosin α overproduction and mRNA interference approaches. Our data attribute to prothymosin α the role of intranuclear dissociator of the Nrf2-Keap1 complex, thus revealing a novel function for prothymosin α and adding a new dimension to the molecular mechanisms underlying expression of oxidative stress-protecting genes.
doi:10.1128/MCB.25.3.1089-1099.2005
PMCID: PMC544000  PMID: 15657435
6.  Cul3-mediated Nrf2 ubiquitination and ARE activation are dependent on the partial molar volume at position 151 of Keap1 
The Biochemical journal  2009;422(1):10.1042/BJ20090471.
SYNOPSIS
Nrf2 is a transcription factor that activates transcription of a battery of cytoprotective genes by binding to the antioxidant response element (ARE). Nrf2 is repressed by the cysteine-rich Keap1 protein, which targets Nrf2 for ubiquitination and subsequent degradation by a Cul3-mediated ubiquitination complex. We find that modification of C151 of human Keap1 by mutation to a tryptophan relieves the repression by Keap1 and allows activation of the ARE by Nrf2. Keap1 C151W has a decreased affinity for Cul3, and can no longer serve to target Nrf2 for ubiquitination, though it retains its affinity for Nrf2. A series of 12 mutant Keap1 proteins, each containing a different residue at position 151, was constructed to explore the chemistry required for the effect. The series reveals that the extent to which Keap1 loses the ability to target Nrf2 for degradation, and hence the ability to repress ARE activation, correlates well with the partial molar volume of the residue. Other physico-chemical properties do not appear to contribute significantly to the effect. Based on this finding, a structural model is proposed whereby large residues at position 151 cause steric clashes that lead to alteration of the Keap1-Cul3 interaction. This model has significant implications for how electrophiles, which modify C151, disrupt the repressive function of Keap1.
doi:10.1042/BJ20090471
PMCID: PMC3865926  PMID: 19489739
Keap1; Nrf2; partial molar volume; antioxidant response element; cysteine; tryptophan
7.  Nrf2:INrf2(Keap1) Signaling in Oxidative Stress 
Free radical biology & medicine  2009;47(9):1304-1309.
Nrf2:INrf2(Keap1) are cellular sensors of chemical and radiation induced oxidative and electrophilic stress. Nrf2 is a nuclear transcription factor that controls the expression and coordinated induction of a battery of defensive genes encoding detoxifying enzymes and antioxidant proteins. This is a mechanism of critical importance for cellular protection and cell survival. Nrf2 is retained in the cytoplasm by an inhibitor INrf2. INrf2 functions as an adapter for Cul3/Rbx1 mediated degradation of Nrf2. In response to oxidative/electrophilic stress, Nrf2 is switched on and then off by distinct early and delayed mechanisms. Oxidative/electrophilic modification of INrf2cysteine151 and/or PKC phosphorylation of Nrf2serine40 results in the escape or release of Nrf2 from INrf2. Nrf2 is stabilized and translocates to the nucleus, forms heterodimers with unknown proteins, and binds antioxidant response element (ARE) that leads to coordinated activation of gene expression. It takes less than fifteen minutes from the time of exposure to switch on nuclear import of Nrf2. This is followed by activation of a delayed mechanism that controls switching off of Nrf2 activation of gene expression. GSK3β phosphorylates Fyn at unknown threonine residue(s) leading to nuclear localization of Fyn. Fyn phosphorylates Nrf2tyrosine568 resulting in nuclear export of Nrf2, binding with INrf2 and degradation of Nrf2. The switching on and off of Nrf2 protect cells against free radical damage, prevents apoptosis and promotes cell survival.
doi:10.1016/j.freeradbiomed.2009.07.035
PMCID: PMC2763938  PMID: 19666107
8.  MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism 
NF-E2-related factor 2 (Nrf2) is an important transcription factor involved in antioxidant response. Nrf2 binds antioxidant response elements (ARE) within promoters of genes encoding detoxification enzymes (e.g., NAD (P) H-quinone oxidoreductase 1 (NQO1)) leading to their transcriptional activation. Nrf2 function is regulated post-translationally by its negative regulator Kelch-like ECH-associated protein 1 (Keap1) that binds Nrf2 and induces cytoplasmic Nrf2 degradation. Our present studies provide new evidence that Nrf2 expression can be regulated by a Keap1-independent mechanism. Here, we utilized breast epithelial cells to explore the impact of microRNA (miRNA) on Nrf2 expression. We found that Nrf2 mRNA levels are reversibly correlated with miR-28 expression and that ectopic expression of miR-28 alone reduces Nrf2 mRNA and protein levels. We further investigated the molecular mechanisms by which miR-28 inhibits Nrf2 mRNA expression. Initially, the ability of miR-28 to regulate the 3′ untranslated region (3′UTR) of Nrf2 mRNA was evaluated via luciferase reporter assay. We observed that miR-28 reduces wild-type Nrf2 3′UTR luciferase reporter activity and this repression is eliminated upon mutation of the miR-28 targeting seed sequence within the Nrf2 3′UTR. Moreover, over-expression of miR-28 decreased endogenous Nrf2 mRNA and protein expression. We also explored the impact of miR-28 on Keap1-Nrf2 interactions and found that miR-28 overexpression does not alter Keap1 protein levels and has no effect on the interaction of Keap1 and Nrf2. Our findings, that miR-28 targets the 3′UTR of Nrf2 mRNA and decreases Nrf2 expression, suggest that this miRNA is involved in the regulation of Nrf2 expression in breast epithelial cells.
doi:10.1007/s10549-011-1604-1
PMCID: PMC3752913  PMID: 21638050
Mammary epithelial cells; miR-28; Nrf2; Chemoprevention
9.  CAND1-Mediated Substrate Adaptor Recycling Is Required for Efficient Repression of Nrf2 by Keap1 
Molecular and Cellular Biology  2006;26(4):1235-1244.
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2. Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex to repress steady-state levels of Nrf2 and Nrf2-dependent transcription. Cullin-dependent ubiquitin ligase complexes have been proposed to undergo dynamic cycles of assembly and disassembly that enable substrate adaptor exchange or recycling. In this report, we have characterized the importance of substrate adaptor recycling for regulation of Keap1-mediated repression of Nrf2. Association of Keap1 with Cul3 was decreased by ectopic expression of CAND1 and was increased by small interfering RNA (siRNA)-mediated knockdown of CAND1. However, both ectopic overexpression and siRNA-mediated knockdown of CAND1 decreased the ability of Keap1 to target Nrf2 for ubiquitin-dependent degradation, resulting in stabilization of Nrf2 and activation of Nrf2-dependent gene expression. Neddylation of Cul3 on Lys 712 is required for Keap1-dependent ubiquitination of Nrf2 in vivo. However, the K712R mutant Cul3 molecule, which is not neddylated, can still assemble with Keap1 into a functional ubiquitin ligase complex in vitro. These results provide support for a model in which substrate adaptor recycling is required for efficient substrate ubiquitination by cullin-dependent E3 ubiquitin ligase complexes.
doi:10.1128/MCB.26.4.1235-1244.2006
PMCID: PMC1367193  PMID: 16449638
10.  Discovery of potent, novel Nrf2 inducers via quantum modeling, virtual screening and in vitro experimental validation 
Chemical biology & drug design  2012;80(6):810-820.
Nuclear factor erythroid 2-related factor 2 (Nrf2) is the master transcription factor of the antioxidant response element (ARE) pathway, coordinating the induction of detoxifying and antioxidant enzymes. Nrf2 is normally sequestered in the cytoplasm by Kelch-like ECH associating protein 1 (Keap1). To identify novel small molecules that will disturb Nrf2:Keap1 binding and promote activation of the Nrf2-ARE pathway, we generated a quantum model based on the structures of known Nrf2-ARE activators. We used the quantum model to perform in silico screening on over 18 million commercially available chemicals to identify the structures predicted to activate the Nrf2-ARE pathway based on the quantum model. The top hits were tested in vitro and half of the predicted hits activated the Nrf2-ARE pathway significantly in primary cell culture. In addition, we identified a new family of Nrf2-ARE activating structures that all have comparable activity to tBHQ and protect against oxidative stress and dopaminergic toxins in vitro. The improved ability to identify potent activators of Nrf2 through the combination of in silico and in vitro screening described here improves the speed and cost associated with screening Nrf2-ARE activating compounds for drug development.
doi:10.1111/cbdd.12040
PMCID: PMC3484224  PMID: 22925725
11.  Dysfunctional KEAP1–NRF2 Interaction in Non-Small-Cell Lung Cancer 
PLoS Medicine  2006;3(10):e420.
Background
Nuclear factor erythroid-2 related factor 2 (NRF2) is a redox-sensitive transcription factor that positively regulates the expression of genes encoding antioxidants, xenobiotic detoxification enzymes, and drug efflux pumps, and confers cytoprotection against oxidative stress and xenobiotics in normal cells. Kelch-like ECH-associated protein 1 (KEAP1) negatively regulates NRF2 activity by targeting it to proteasomal degradation. Increased expression of cellular antioxidants and xenobiotic detoxification enzymes has been implicated in resistance of tumor cells against chemotherapeutic drugs.
Methods and Findings
Here we report a systematic analysis of the KEAP1 genomic locus in lung cancer patients and cell lines that revealed deletion, insertion, and missense mutations in functionally important domains of KEAP1 and a very high percentage of loss of heterozygosity at 19p13.2, suggesting that biallelic inactivation of KEAP1 in lung cancer is a common event. Sequencing of KEAP1 in 12 cell lines and 54 non-small-cell lung cancer (NSCLC) samples revealed somatic mutations in KEAP1 in a total of six cell lines and ten tumors at a frequency of 50% and 19%, respectively. All the mutations were within highly conserved amino acid residues located in the Kelch or intervening region domain of the KEAP1 protein, suggesting that these mutations would likely abolish KEAP1 repressor activity. Evaluation of loss of heterozygosity at 19p13.2 revealed allelic losses in 61% of the NSCLC cell lines and 41% of the tumor samples. Decreased KEAP1 activity in cancer cells induced greater nuclear accumulation of NRF2, causing enhanced transcriptional induction of antioxidants, xenobiotic metabolism enzymes, and drug efflux pumps.
Conclusions
This is the first study to our knowledge to demonstrate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC. Loss of KEAP1 function leading to constitutive activation of NRF2-mediated gene expression in cancer suggests that tumor cells manipulate the NRF2 pathway for their survival against chemotherapeutic agents.
Biallelic inactivation ofKEAP1, a frequent genetic alteration in NSCLC, is associated with activation of the NRF2 pathway which leads to expression of genes that contribute to resistance against chemotherapeutic drugs.
Editors' Summary
Background.
Lung cancer is the most common cause of cancer-related death worldwide. More than 150,000 people in the US alone die every year from this disease, which can be split into two basic types—small cell lung cancer and non-small-cell lung cancer (NSCLC). Four out of five lung cancers are NSCLCs, but both types are mainly caused by smoking. Exposure to chemicals in smoke produces changes (or mutations) in the genetic material of the cells lining the lungs that cause the cells to grow uncontrollably and to move around the body. In more than half the people who develop NSCLC, the cancer has spread out of the lungs before it is diagnosed, and therefore can't be removed surgically. Stage IV NSCLC, as this is known, is usually treated with chemotherapy—toxic chemicals that kill the fast-growing cancer cells. However, only 2% of people with stage IV NSCLC are still alive two years after their diagnosis, mainly because their cancer cells become resistant to chemotherapy. They do this by making proteins that destroy cancer drugs (detoxification enzymes) or that pump them out of cells (efflux pumps) and by making antioxidants, chemicals that protect cells against the oxidative damage caused by many chemotherapy agents.
Why Was This Study Done?
To improve the outlook for patients with lung cancer, researchers need to discover exactly how cancer cells become resistant to chemotherapy drugs. Detoxification enzymes, efflux pumps, and antioxidants normally protect cells from environmental toxins and from oxidants produced by the chemical processes of life. Their production is regulated by nuclear factor erythroid-2 related factor 2 (NRF2). The activity of this transcription factor (a protein that controls the expression of other proteins) is controlled by the protein Kelch-like ECH-associated protein 1 (KEAP1). KEAP1 holds NRF2 in the cytoplasm of the cell (the cytoplasm surrounds the cell's nucleus, where the genetic material is stored) when no oxidants are present and targets it for destruction. When oxidants are present, KEAP1 no longer interacts with NRF2, which moves into the nucleus and induces the expression of the proteins that protect the cell against oxidants and toxins. In this study, the researchers investigated whether changes in KEAP1 might underlie the drug resistance seen in lung cancer.
What Did the Researchers Do and Find?
The researchers looked carefully at the gene encoding KEAP1 in tissue taken from lung tumors and in several lung cancer cell lines—tumor cells that have been grown in a laboratory. They found mutations in parts of KEAP1 known to be important for its function in half the cell lines and a fifth of the tumor samples. They also found that about half of the samples had lost part of one copy of the KEAP1 gene—cells usually have two copies of each gene. Five of the six tumors with KEAP1 mutations had also lost one copy of KEAP1—geneticists call this biallelic inactivation. This means that these tumors should have no functional KEAP1. When the researchers checked this by staining the tumors for NRF2, they found that the tumor cells had more NRF2 than normal cells and that it accumulated in the nucleus. In addition, the tumor cells made more detoxification enzymes, efflux proteins, and antioxidants than normal cells. Finally, the researchers showed that lung cancer cells with KEAP1 mutations were more resistant to chemotherapy drugs than normal lung cells were.
What Do These Findings Mean?
These results indicate that biallelic inactivation of KEAP1 is a frequent genetic alteration in NSCLC and suggest that the loss of KEAP1 activity is one way that lung tumors can increase their NRF2 activity and develop resistance to chemotherapeutic drugs. More lung cancer samples need to be examined to confirm this result, and similar studies need to be done in other cancers to see whether loss of KEAP1 activity is a common mechanism by which tumors become resistant to chemotherapy. If such studies confirm that high NRF2 activity (either through mutation or by some other route) is often associated with a poor tumor response to chemotherapy, then the development of NRF2 inhibitors might help to improve treatment outcomes in patients with chemotherapy-resistant tumors.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030420.
US National Cancer Institute information on lung cancer and on cancer treatment
MedlinePlus entries on small cell lung cancer and NSCLC Cancer Research UK information on lung cancer
Wikipedia entries on lung cancer and chemotherapy (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030420
PMCID: PMC1584412  PMID: 17020408
12.  Conditioned Media Downregulates Nuclear Expression of Nrf2 
Nuclear factor erythroid 2-related factor-2 (Nrf2) is a redox-sensitive transcription factor that activates several antioxidant and cytoprotective genes in response to oxidative stress. The role of Nrf2 activators and the intracellular regulation of Nrf2 have been studied extensively. In comparison, little is known about the self-regulation of Nrf2 due to experimental techniques commonly used to synchronize cellular signaling. Here we report that endogenous Nrf2 was downregulated in the nucleus of HeLa and MDA-MB-231 cells serum starved for 24hrs. Nrf2 expression was rescued by the addition of unconditioned media irrespective of its serum content. No concomitant change was observed in the expression of the primary inhibitor of Nrf2, Kelch-like ECH-associated protein-1 (Keap1). Nrf2 was upregulated by tert-butyl hydroquinone, although there was limited increase in Nrf2 in conditioned media-treated cells as compared to unconditioned media-treated cells. Decreasing the fraction of conditioned media in culture resulted in a dose-dependent increase in Nrf2 protein level. Taken together, our data suggests the existence of a complex self-regulatory mechanism for endogenous Nrf2 signaling.
doi:10.1007/s12195-013-0272-0
PMCID: PMC3780449  PMID: 24073021
Nrf2; Keap1; conditioned media; starvation; serum-free media; cell synchronization
13.  Acetylation of Nrf2 by p300/CBP Augments Promoter-Specific DNA Binding of Nrf2 during the Antioxidant Response▿ †  
Molecular and Cellular Biology  2009;29(10):2658-2672.
To maintain intracellular redox homeostasis, genes encoding many antioxidants and detoxification enzymes are transcriptionally upregulated upon deleterious oxidative stress through the cis antioxidant responsive elements (AREs) in their promoter regions. Nrf2 is the critical transcription factor responsible for ARE-dependent transcription. We and others have previously demonstrated that Nrf2 is targeted for ubiquitin-mediated degradation by Keap1 in a redox-sensitive manner through modifications of distinct cysteine residues of Keap1. Here, we report that p300/CBP directly acetylates Nrf2 in response to arsenite-induced stress. We have identified multiple acetylated lysine residues within the Nrf2 Neh1 DNA-binding domain. Combined lysine-to-arginine mutations on the acetylation sites, with no effects on Nrf2 protein stability, compromised the DNA-binding activity of Nrf2 in a promoter-specific manner. These findings demonstrated that acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 and established acetylation as a novel regulatory mechanism that functions in concert with Keap1-mediated ubiquitination in modulating the Nrf2-dependent antioxidant response.
doi:10.1128/MCB.01639-08
PMCID: PMC2682049  PMID: 19273602
14.  Structural analysis of the complex of Keap1 with a prothymosin α peptide 
The crystal structure of the complex of mouse Keap1-DC with a fragment of the nuclear protein prothymosin α was determined and refined to 1.9 Å resolution and revealed that the peptide binds to the bottom region of the β-propeller domain of Keap1-DC.
The Nrf2 transcription factor, which plays important roles in oxidative and xenobiotic stress, is negatively regulated by the cytoplasmic repressor Keap1. The β-propeller/Kelch domain of Keap1, which is formed by the double-glycine repeat and C-terminal region domains (Keap1-DC), interacts directly with the Neh2 domain of Nrf2. The nuclear oncoprotein prothymosin α (ProTα) also interacts directly with Keap1 and may play a role in the dissociation of the Keap1–Nrf2 complex. The structure of Keap1-DC complexed with a ProTα peptide (amino acids 39–54) has been determined at 1.9 Å resolution. The Keap1-bound ProTα peptide possesses a hairpin conformation and binds to the Keap1 protein at the bottom region of the β-propeller domain. Complex formation occurs as a consequence of their complementary electrostatic interactions. A comparison of the present structure with recently reported Keap1-DC complex structures revealed that the DLG and ETGE motifs of the Neh2 domain of Nrf2 and the ProTα peptide bind to Keap1 in a similar manner but with different binding potencies.
doi:10.1107/S1744309108004995
PMCID: PMC2374262  PMID: 18391415
oxidative stress; Nrf2 transcription factor; prothymosin α; Keap1; β-propeller domain
15.  Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response 
Molecular cell  2009;34(6):663-673.
Summary
In response to oxidative stress, Nrf2 and p21 Cip1/WAF1 are both upregulated to protect cells from oxidative damage. Nrf2 is constantly ubiquitinated by a Keap1 dimer that interacts with a weak-binding 29DLG motif and a strong-binding 79ETGE motif in Nrf2, resulting in degradation of Nrf2. Modification of the redox-sensitive cysteine residues on Keap1 disrupts the Keap1-29DLG binding, leading to diminished Nrf2 ubiquitination and activation of the antioxidant response. However, the underlying mechanism by which p21 protects cells from oxidative damage remains unclear. Here, we present molecular and genetic evidence suggesting that the antioxidant function of p21 is mediated through activation of Nrf2 by stabilizing the Nrf2 protein. The 154KRR motif in p21 directly interacts with the 29DLG and 79ETGE motifs in Nrf2, and thus, competes with Keap1 for Nrf2 binding, compromising ubiquitination of Nrf2. Furthermore, the physiological significance of our findings was demonstrated in vivo using p21-deficient mice.
doi:10.1016/j.molcel.2009.04.029
PMCID: PMC2714804  PMID: 19560419
16.  KEAP1 MODIFICATION AND NUCLEAR ACCUMULATION IN RESPONSE TO S-NITROSOCYSTEINE 
Free radical biology & medicine  2007;44(4):692-698.
Keap1 is a key regulator of the Nrf2 transcription factor which transactivates the Antioxidant Response Element (ARE) and upregulates numerous proteins involved in antioxidant defense. Under basal conditions, Keap1 targets Nrf2 for ubiquitination and proteolytic degradation and as such is responsible for the rapid turnover of Nrf2. In response to oxidants and electrophiles, Nrf2 is stabilized and accumulates in the nucleus. The mechanism for this effect has been proposed to involve thiol-dependent modulation of Keap1 leading to loss of its ability to negatively regulate Nrf2. We have previously shown that nitric oxide and S-nitrosothiols cause nuclear accumulation of Nrf2 and upregulation of the ARE-regulated gene HO-1. Here we show that nitric oxide and S-nitrosocysteine (CSNO) cause time and dose-dependent Keap1 thiol modification. These studies were carried out in HEK293 and in HEK293 cells overexpressing hemagglutinin-tagged Keap1. Furthermore we demonstrate that in response to CSNO Keap1 accumulates in the nucleus with a time course similar to that of Nrf2.
doi:10.1016/j.freeradbiomed.2007.10.055
PMCID: PMC2267934  PMID: 18062931
Nitric Oxide; S-Nitrosocysteine; S-Nitrosylation; Oxidation; Keap1; Nrf2; Nuclear localization
17.  The Keap1-BTB Protein Is an Adaptor That Bridges Nrf2 to a Cul3-Based E3 Ligase: Oxidative Stress Sensing by a Cul3-Keap1 Ligase 
Molecular and Cellular Biology  2004;24(19):8477-8486.
The Nrf2 transcription factor promotes survival following cellular insults that trigger oxidative damage. Nrf2 activity is opposed by the BTB/POZ domain protein Keap1. Keap1 is proposed to regulate Nrf2 activity strictly through its capacity to inhibit Nrf2 nuclear import. Recent work suggests that inhibition of Nrf2 may also depend upon ubiquitin-mediated proteolysis. To address the contribution of Keap1-dependent sequestration versus Nrf2 proteolysis, we identified the E3 ligase that regulates Nrf2 ubiquitination. We demonstrate that Keap1 is not solely a cytosolic anchor; rather, Keap1 is an adaptor that bridges Nrf2 to Cul3. We demonstrate that Cul3-Keap1 complexes regulate Nrf2 polyubiquitination both in vitro and in vivo. Inhibition of either Keap1 or Cul3 increases Nrf2 nuclear accumulation, leading to promiscuous activation of Nrf2-dependent gene expression. Our data demonstrate that Keap1 restrains Nrf2 activity via its capacity to target Nrf2 to a cytoplasmic Cul3-based E3 ligase and suggest a model in which Keap1 coordinately regulates both Nrf2 accumulation and access to target genes.
doi:10.1128/MCB.24.19.8477-8486.2004
PMCID: PMC516753  PMID: 15367669
18.  Effect of Graded Nrf2 Activation on Phase-I and -II Drug Metabolizing Enzymes and Transporters in Mouse Liver 
PLoS ONE  2012;7(7):e39006.
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that induces a battery of cytoprotective genes in response to oxidative/electrophilic stress. Kelch-like ECH associating protein 1 (Keap1) sequesters Nrf2 in the cytosol. The purpose of this study was to investigate the role of Nrf2 in regulating the mRNA of genes encoding drug metabolizing enzymes and xenobiotic transporters. Microarray analysis was performed in livers of Nrf2-null, wild-type, Keap1-knockdown mice with increased Nrf2 activation, and Keap1-hepatocyte knockout mice with maximum Nrf2 activation. In general, Nrf2 did not have a marked effect on uptake transporters, but the mRNAs of organic anion transporting polypeptide 1a1, sodium taurocholate cotransporting polypeptide, and organic anion transporter 2 were decreased with Nrf2 activation. The effect of Nrf2 on cytochrome P450 (Cyp) genes was minimal, with only Cyp2a5, Cyp2c50, Cyp2c54, and Cyp2g1 increased, and Cyp2u1 decreased with enhanced Nrf2 activation. However, Nrf2 increased mRNA of many other phase-I enzymes, such as aldo-keto reductases, carbonyl reductases, and aldehyde dehydrogenase 1. Many genes involved in phase-II drug metabolism were induced by Nrf2, including glutathione S-transferases, UDP- glucuronosyltransferases, and UDP-glucuronic acid synthesis enzymes. Efflux transporters, such as multidrug resistance-associated proteins, breast cancer resistant protein, as well as ATP-binding cassette g5 and g8 were induced by Nrf2. In conclusion, Nrf2 markedly alters hepatic mRNA of a large number of drug metabolizing enzymes and xenobiotic transporters, and thus Nrf2 plays a central role in xenobiotic metabolism and detoxification.
doi:10.1371/journal.pone.0039006
PMCID: PMC3395627  PMID: 22808024
19.  Keap1 Regulates the Oxidation-Sensitive Shuttling of Nrf2 into and out of the Nucleus via a Crm1-Dependent Nuclear Export Mechanism†  
Molecular and Cellular Biology  2005;25(11):4501-4513.
Keap1 is a negative regulator of Nrf2, a transcription factor essential for antioxidant response element (ARE)-mediated gene expression. We find that Keap1 sequesters Nrf2 in the cytoplasm, not by docking it to the actin cytoskeleton but instead through an active Crm1/exportin-dependent nuclear export mechanism. Deletion and mutagenesis studies identified a nuclear export signal (NES) in the intervening region of Keap1 comprised of hydrophobic leucine and isoleucine residues in agreement with a traditional NES consensus sequence. Mutation of the hydrophobic amino acids resulted in nuclear accumulation of both Keap1 and Nrf2, as did treatment with the drug leptomycin B, which inactivates Crm1/exportin. ARE genes were partially activated under these conditions, suggesting that additional oxidation-sensitive elements are required for full activation of the antioxidant response. Based on these data, we propose a new model for regulation of Nrf2 by Keap1. Under normal conditions, Keap1 and Nrf2 are complexed in the cytoplasm where they are targeted for degradation. Oxidative stress inactivates Keap1's NES, allowing entry of both Keap1 and Nrf2 into the nucleus and transcriptional transactivation of ARE genes.
doi:10.1128/MCB.25.11.4501-4513.2005
PMCID: PMC1140621  PMID: 15899855
20.  Distinct Cysteine Residues in Keap1 Are Required for Keap1-Dependent Ubiquitination of Nrf2 and for Stabilization of Nrf2 by Chemopreventive Agents and Oxidative Stress 
Molecular and Cellular Biology  2003;23(22):8137-8151.
A common feature of diverse chemopreventive agents is the ability to activate expression of a genetic program that protects cells from reactive chemical species that, if left unchecked, would cause mutagenic DNA damage. The bZIP transcription factor Nrf2 has emerged as a key regulator of this cancer-preventive genetic program. Nrf2 is normally sequestered in the cytoplasm by a protein known as Keap1. Chemopreventive agents allow Nrf2 to escape from Keap1-mediated repression, although the molecular mechanism(s) responsible for activation of Nrf2 is not understood. In this report, we demonstrate that Keap1 does not passively sequester Nrf2 in the cytoplasm but actively targets Nrf2 for ubiquitination and degradation by the proteosome under basal culture conditions. We have identified two critical cysteine residues in Keap1, C273 and C288, that are required for Keap1-dependent ubiquitination of Nrf2. Both sulforaphane, a chemopreventive isothiocyanate, and oxidative stress enable Nrf2 to escape Keap1-dependent degradation, leading to stabilization of Nrf2, increased nuclear localization of Nrf2, and activation of Nrf2-dependent cancer-protective genes. We have identified a third cysteine residue in Keap1, C151, that is uniquely required for inhibition of Keap1-dependent degradation of Nrf2 by sulforaphane and oxidative stress. This cysteine residue is also required for a novel posttranslational modification to Keap1 that is induced by oxidative stress. We propose that Keap1 is a component of a novel E3 ubiquitin ligase complex that is specifically targeted for inhibition by both chemopreventive agents and oxidative stress.
doi:10.1128/MCB.23.22.8137-8151.2003
PMCID: PMC262403  PMID: 14585973
21.  Optimization of fluorescently labeled Nrf2 peptide probes and the development of a fluorescence polarization assay for the discovery of inhibitors of Keap1-Nrf2 interaction 
Journal of Biomolecular Screening  2011;17(4):435-447.
Activation of the antioxidant response element (ARE) up-regulates enzymes involved in detoxification of electrophiles and reactive oxygen species. The induction of ARE genes is regulated by the interaction between redox sensor protein, Keap1, and the transcription factor, Nrf2. Fluorescently labeled Nrf2 peptides containing the ETGE motif were synthesized and optimized as tracers in the development of a fluorescence polarization (FP) assay to identify small molecule inhibitors of Keap1-Nrf2 interaction. The tracers were optimized to increase the dynamic range of the assay and their binding affinities to the Keap1 Kelch domain. The binding affinities of Nrf2 peptide inhibitors obtained in our FP assay using FITC-9mer Nrf2 peptide amide as the probe were in good agreement with those obtained previously by a surface plasmon resonance (SPR) assay. The FP assay exhibits considerable tolerance towards DMSO and produced a Z'-factor greater than 0.6 in a 384-well format. Further optimization of the probe led to cyanine-labeled 9mer Nrf2 peptide amide, which can be used along with the FITC-9mer Nrf2 peptide amide in a high throughput screening (HTS) assay to discover small molecule inhibitors of Keap1-Nrf2 interaction.
doi:10.1177/1087057111430124
PMCID: PMC3309107  PMID: 22156223
Nrf2; Keap1; ARE; fluorescence polarization; high throughput screening; oxidative response
22.  Roles Nrf2 Plays in Myeloid Cells and Related Disorders 
The Keap1-Nrf2 system protects animals from oxidative and electrophilic stresses. Nrf2 is a transcription factor that induces the expression of genes essential for detoxifying reactive oxygen species (ROS) and cytotoxic electrophiles. Keap1 is a stress sensor protein that binds to and ubiquitinates Nrf2 under unstressed conditions, leading to the rapid proteasomal degradation of Nrf2. Upon exposure to stress, Keap1 is modified and inactivated, which allows Nrf2 to accumulate and activate the transcription of a battery of cytoprotective genes. Antioxidative and detoxification activities are important for many types of cells to avoid DNA damage and cell death. Accumulating lines of recent evidence suggest that Nrf2 is also required for the primary functions of myeloid cells, which include phagocytosis, inflammation regulation, and ROS generation for bactericidal activities. In fact, results from several mouse models have shown that Nrf2 expression in myeloid cells is required for the proper regulation of inflammation, antitumor immunity, and atherosclerosis. Moreover, several molecules generated upon inflammation activate Nrf2. Although ROS detoxification mediated by Nrf2 is assumed to be required for anti-inflammation, the entire picture of the Nrf2-mediated regulation of myeloid cell primary functions has yet to be elucidated. In this review, we describe the Nrf2 inducers characteristic of myeloid cells and the contributions of Nrf2 to diseases.
doi:10.1155/2013/529219
PMCID: PMC3684031  PMID: 23819012
23.  Regulatory Role of KEAP1 and NRF2 in PPARγ Expression and Chemoresistance in Human Non-small Cell Lung Carcinoma Cells 
Free radical biology & medicine  2012;53(4):758-768.
The nuclear factor-E2-related factor 2 (NRF2) serves as a master regulator in cellular defense against oxidative stress and chemical detoxification. However, persistent activation of NRF2 resulting from mutations of NRF2 and/or downregulation or mutations of its suppressor Kelch-like ECH-associated protein 1 (KEAP1) are associated with tumorigenicity and chemoresistance of non-small-cell lung carcinomas (NSCLCs). Thus, inhibiting NRF2-mediated adaptive antioxidant response is widely considered a promising strategy to prevent tumor growth and reverse chemoresistance in NSCLCs. Unexpectedly, stable knockdown of KEAP1 by lentiviral shRNA sensitized three independent NSCLC cell lines (A549, HTB-178 and HTB-182) to multiple chemotherapeutic agents, including arsenic trioxide (As2O3), etoposide and doxorubicin, despite moderately increased NRF2 levels. In lung adenocarcinoma epithelial A549 cells, silencing of KEAP1 augmented the expression of peroxisome proliferator-activated receptor γ (PPARγ) and genes associated with cell differentiation, including E-Cadherin and Gelsolin. In addition, KEAP1-knockdown A549 cells displayed attenuated expression of proto-oncogene Cyclin D1 and markers for cancer stem cells (CSCs), and reduced non-adherent sphere formation. Moreover, deficiency of KEAP1 led to elevated induction of PPARγ in response to As2O3. Pretreatment of A549 cells with PPARγ agonists activated PPARγ and augmented the cytotoxicity of As2O3. A mathematical model was formulated to advance a hypothesis that differential regulation of PPARγ and detoxification enzymes by KEAP1 and NRF2 may underpin the observed landscape changes in chemo-sensitivity. Collectively, suppression of KEAP1 expression in human NSCLC cells resulted in sensitization to chemotherapeutic agents, which may be attributed to activation of PPARγ and subsequent alterations in cell differentiation and CSC abundance.
doi:10.1016/j.freeradbiomed.2012.05.041
PMCID: PMC3418425  PMID: 22684020
24.  Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity 
Neurotoxicology  2012;33(3):272-279.
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element, a cis-acting regulatory element that increases expression of detoxifying enzymes and antioxidant proteins. Kelch-like ECH associating protein 1 (Keap1) protein is a negative regulator of Nrf2. Previous work has shown that genetic overexpression of Nrf2 is protective in vitro and in vivo. To modulate the Nrf2-ARE system without overexpressing Nrf2, we used short interfering RNA (siRNA) directed against Keap1. Keap1 siRNA administration in primary astrocytes increased the levels of Nrf2-ARE driven genes and protected against oxidative stress. Moreover, Keap1 siRNA resulted in a persistent upregulation of the Nrf2-ARE pathway and protection against oxidative stress in primary astrocytes. Keap1 siRNA injected into the striatum was also modestly protective against MPTP-induced dopaminergic terminal damage. These data indicate that activation of endogenous intracellular levels of Nrf2 is sufficient to protect in models of oxidative stress and Parkinson's disease.
doi:10.1016/j.neuro.2012.01.015
PMCID: PMC3521526  PMID: 22342405
25.  PALB2 Interacts with KEAP1 To Promote NRF2 Nuclear Accumulation and Function 
Molecular and Cellular Biology  2012;32(8):1506-1517.
PALB2/FANCN is mutated in breast and pancreatic cancers and Fanconi anemia (FA). It controls the intranuclear localization, stability, and DNA repair function of BRCA2 and links BRCA1 and BRCA2 in DNA homologous recombination repair and breast cancer suppression. Here, we show that PALB2 directly interacts with KEAP1, an oxidative stress sensor that binds and represses the master antioxidant transcription factor NRF2. PALB2 shares with NRF2 a highly conserved ETGE-type KEAP1 binding motif and can effectively compete with NRF2 for KEAP1 binding. PALB2 promotes NRF2 accumulation and function in the nucleus and lowers the cellular reactive oxygen species (ROS) level. In addition, PALB2 also regulates the rate of NRF2 export from the nucleus following induction. Our findings identify PALB2 as a regulator of cellular redox homeostasis and provide a new link between oxidative stress and the development of cancer and FA.
doi:10.1128/MCB.06271-11
PMCID: PMC3318596  PMID: 22331464

Results 1-25 (524823)