Search tips
Search criteria

Results 1-25 (1468901)

Clipboard (0)

Related Articles

1.  Sugammadex for reversal of neuromuscular blockade: a retrospective analysis of clinical outcomes and cost-effectiveness in a single center 
The aim of the study is to evaluate the clinical and economic impact of introducing a rocuronium–neostigmine–sugammadex strategy into a cisatracurium–neostigmine regimen for neuromuscular block (NMB) management.
We conducted a retrospective analysis of clinical outcomes and cost-effectiveness in five operating rooms at University Hospital of Padova. A clinical outcome evaluation after sugammadex administration as first-choice reversal drug in selected patients (rocuronium–sugammadex) and as rescue therapy after neostigmine reversal (rocuronium–neostigmine–sugammadex) compared to control was performed. A cost-analysis of NMB management accompanying the introduction of a rocuronium–neostigmine–sugammadex strategy into a cisatracurium–neostigmine regimen was carried out. To such purpose, two periods were compared: 2011–2012, without sugammadex available; 2013–2014, with sugammadex available. A subsequent analysis was performed to evaluate if sugammadex replacing neostigmine as first choice reversal drug is cost-effective.
The introduction of a rocuronium–neostigmine–sugammadex strategy into a cisatracurium–neostigmine regimen reduced the average cost of NMB management by 36%, from €20.8/case to €13.3/case. Patients receiving sugammadex as a first-choice reversal drug (3%) exhibited significantly better train-of-four ratios at extubation (P<0.001) and were discharged to the surgical ward (P<0.001) more rapidly than controls. The cost-saving of sugammadex as first-choice reversal drug has been estimated to be €2.9/case. Patients receiving sugammadex as rescue therapy after neostigmine reversal (3.2%) showed no difference in time to discharge to the surgical ward (P=0.44) compared to controls. No unplanned intensive care unit (ICU) admissions with rocuronium–neostigmine–sugammadex strategy were observed. The potential economic benefit in avoiding postoperative residual curarization (PORC)-related ICU admission in the 2013–2014 period was estimated at an average value of €13,548 (€9,316–€23,845).
Sugammadex eliminated PORC and associated morbidities. In our center, sugammadex reduced the costs of NMB management and promoted rapid turnover of patients in operating rooms, with total cost-effectiveness that counteracts the disadvantages of its high cost.
PMCID: PMC4762464  PMID: 26937203
neuromuscular blockade; neuromuscular blocking agents; rocuronium; sugammadex; postoperative residual curarization; cost-benefit analysis
2.  A discrete event simulation model of clinical and operating room efficiency outcomes of sugammadex versus neostigmine for neuromuscular block reversal in Canada 
BMC Anesthesiology  2016;16:114.
The objective of this analysis is to explore potential impact on operating room (OR) efficiency and incidence of residual neuromuscular blockade (RNMB) with use of sugammadex (Bridion™, Merck & Co., Inc., Kenilworth, NJ USA) versus neostigmine for neuromuscular block reversal in Canada.
A discrete event simulation (DES) model was developed to compare ORs using either neostigmine or sugammadex for NMB reversal over one month. Selected inputs included OR procedure and turnover times, hospital policies for paid staff overtime and procedural cancellations due to OR time over-run, and reductions in RNMB and associated complications with sugammadex use. Trials show sugammadex’s impact on OR time and RNMB varies by whether full neuromuscular recovery (train-of-four ratio ≥0.9) is verified prior to extubation in the OR. Scenarios were therefore evaluated reflecting varied assumptions for neuromuscular reversal practices.
With use of moderate neuromuscular block, when full neuromuscular recovery is verified prior to extubation (93 procedures performed with sugammadex, 91 with neostigmine), use of sugammadex versus neostigmine avoided 2.4 procedural cancellations due to OR time over-run and 33.5 h of paid staff overtime, while saving an average of 62 min per OR day. No difference was observed between comparators for these endpoints in the scenario when full neuromuscular recovery was not verified prior to extubation, however, per procedure risk of RNMB at extubation was reduced from 60% to 4% (reflecting 51 cases prevented), with associated reductions in risks of hypoxemia (12 cases avoided) and upper airway obstruction (23 cases avoided).
Sugammadex impact in reversing deep neuromuscular block was evaluated in an exploratory analysis. When it was hypothetically assumed that 30 min of OR time were saved per procedure, the number of paid hours of staff over-time dropped from 84.1 to 32.0, with a 93% reduction in the per patient risk of residual blockade.
In clinical practice within Canada, for the majority of patients currently managed with moderate neuromuscular block, the principal impact of substituting sugammadex for neostigmine is likely to be a reduction in the risk of residual blockade and associated complications. For patients maintained at a deep level of block to the end of the procedure, sugammadex is likely to both enhance OR efficiency and reduce residual block complications.
Electronic supplementary material
The online version of this article (doi:10.1186/s12871-016-0281-3) contains supplementary material, which is available to authorized users.
PMCID: PMC5112647  PMID: 27852231
Neuromuscular block; Reversal; Sugammadex; Neostigmine; Residual blockade; Operating room; Efficiency
3.  Sugammadex versus neostigmine reversal of moderate rocuronium-induced neuromuscular blockade in Korean patients 
Korean Journal of Anesthesiology  2013;65(6):501-507.
Rapid and complete reversal of neuromuscular blockade (NMB) is desirable at the end of surgery. Sugammadex reverses rocuronium-induced NMB by encapsulation. It is well tolerated in Caucasian patients, providing rapid reversal of moderate (reappearance of T2) rocuronium-induced NMB. We investigated the efficacy and safety of sugammadex versus neostigmine in Korean patients.
This randomized, safety assessor-blinded trial (NCT01050543) included Korean patients undergoing general anesthesia. Rocuronium 0.6 mg/kg was given prior to intubation with maintenance doses of 0.1-0.2 mg/kg as required. Patients received sugammadex 2.0 mg/kg or neostigmine 50 µg/kg with glycopyrrolate 10 µg/kg to reverse the NMB at the reappearance of T2, after the last rocuronium dose. The primary efficacy endpoint was the time from sugammadex or neostigmine administration to recovery of the train-of-four (TOF) ratio to 0.9. The safety of these medications was also assessed.
Of 128 randomized patients, 118 had evaluable data (n = 59 in each group). The geometric mean (95% confidence interval) time to recovery of the TOF ratio to 0.9 was 1.8 (1.6, 2.0) minutes in the sugammadex group and 14.8 (12.4, 17.6) minutes in the neostigmine group (P < 0.0001). Sugammadex was generally well tolerated, with no evidence of residual or recurrence of NMB; four patients in the neostigmine group reported adverse events possibly indicative of inadequate NMB reversal.
Sugammadex was well tolerated and provided rapid reversal of moderate rocuronium-induced NMB in Korean patients, with a recovery time 8.1 times faster than neostigmine. These results are consistent with those reported for Caucasian patients.
PMCID: PMC3888842  PMID: 24427455
Caucasian; Korean; Neostigmine; Neuromuscular blockade; Rocuronium; Sugammadex
4.  Reversal of profound vecuronium-induced neuromuscular block under sevoflurane anesthesia: sugammadex versus neostigmine.  
BMC Anesthesiology  2010;10:15.
Acetylcholinesterase inhibitors cannot rapidly reverse profound neuromuscular block. Sugammadex, a selective relaxant binding agent, reverses the effects of rocuronium and vecuronium by encapsulation. This study assessed the efficacy of sugammadex compared with neostigmine in reversal of profound vecuronium-induced neuromuscular block under sevoflurane anesthesia.
Patients aged ≥18 years, American Society of Anesthesiologists class 1-4, scheduled to undergo surgery under general anesthesia were enrolled in this phase III, multicenter, randomized, safety-assessor blinded study. Sevoflurane anesthetized patients received vecuronium 0.1 mg/kg for intubation, with maintenance doses of 0.015 mg/kg as required. Patients were randomized to receive sugammadex 4 mg/kg or neostigmine 70 μg/kg with glycopyrrolate 14 μg/kg at 1-2 post-tetanic counts. The primary efficacy variable was time from start of study drug administration to recovery of the train-of-four ratio to 0.9. Safety assessments included physical examination, laboratory data, vital signs, and adverse events.
Eighty three patients were included in the intent-to-treat population (sugammadex, n = 47; neostigmine, n = 36). Geometric mean time to recovery of the train-of-four ratio to 0.9 was 15-fold faster with sugammadex (4.5 minutes) compared with neostigmine (66.2 minutes; p < 0.0001) (median, 3.3 minutes with sugammadex versus 49.9 minutes with neostigmine). No serious drug-related adverse events occurred in either group.
Recovery from profound vecuronium-induced block is significantly faster with sugammadex, compared with neostigmine. Neostigmine did not rapidly reverse profound neuromuscular block (Trial registration number: NCT00473694).
PMCID: PMC2944304  PMID: 20809967
5.  Relationship between first-twitch depression and train-of-four ratio during sugammadex reversal of rocuronium-induced neuromuscular blockade 
Korean Journal of Anesthesiology  2016;69(3):239-243.
The primary outcome of sugammadex reversal for rocuronium-induced neuromuscular block (NMB) is a train-of-four ratio (TOFR) of 0.9, not first twitch (T1) height. We investigated whether the recovery of TOFR or T1 differs based on the reversal of NMB with neostigmine or sugammadex.
The acceleromyographic responses from 0.6 mg/kg of rocuronium were monitored supramaximally in 80 patients after induction of anesthesia. The TOFR and T1 height were recorded, and saved in a personal computer using TOF-Watch SX Monitor software in all patients. Patients were randomly assigned to 2 groups to receive either neostigmine 50 µg/kg with glycopyrrolate 10 µg/kg (neostigmine group, n = 40) or sugammadex 2.0 mg/kg (sugammadex group, n = 40). The primary objective was to determine the difference of recovery time between TOFR to 0.9 and T1 to 0.9 after sugammadex or neostigmine administration during moderate rocuronium-induced NMB.
The recovery pattern of the TOFR 2 min after sugammadex administration was 1.0 or more, but that of T1 was less than 90% (T1 / control value) up to 6 min after drug was injected. The recovery pattern of TOFR and T1 was similar during the 20 min after reversal with neostigmine.
If you have not performed the T1 monitoring, both TOFR and T1 should be considered to confirm suitable recovery during the 6 min after reversal with sugammadex during rocuronium-induced moderate NMB.
PMCID: PMC4891535  PMID: 27274368
Neostigmine; Neuromuscular monitoring; Rocuronium; Sugammadex
6.  The use of sugammadex for bariatric surgery: analysis of recovery time from neuromuscular blockade and possible economic impact 
Neuromuscular block (NMB) monitoring and use of reversal agents accelerate the recovery time and improve the workflow in the operating room. We aimed to compare recovery times after sugammadex or neostigmine administration, and estimate the time spent in operating theater and the possible economic impact of a faster recovery, in morbidly obese patients undergoing bariatric surgery.
We conducted a retrospective study that analyzed data from records of morbidly obese patients (body mass index >40 kg/m2) undergoing elective laparoscopic bariatric surgery in which sugammadex or neostigmine were used to reverse NMB. Patients were divided in two groups: group 1 (sugammadex group [SUG]) received rocuronium and sugammadex for reversal and group 2 (neostigmine group [NEO]) received either rocuronium or cisatracurium and neostigmine. Data are presented as mean (standard deviation).
Compared with NEO, SUG group showed shorter times to achieve train-of-four ratio of 0.9 (P<0.05) and an Aldrete score of 10 (P<0.05), a higher cost (€146.7 vs €3.6 [P<0.05]), plus a remarkable less duration of operating theater occupancy (P<0.05). Sugammadex cost accounted for 2.58% of the total cost per surgery, while neostigmine cost accounted for 0.06%. Total time saved in SUG group was 19.4 hours, which could be used to perform 12 extra laparoscopic sleeve gastrectomies.
Reversal from NMB was significantly faster with sugammadex than with neostigmine. Although sugammadex was substantially more expensive, duration of operating theater occupancy was reduced with potentially workflow increase or personnel reduced cost.
PMCID: PMC4934482  PMID: 27418846
PORC; pharmacoeconomics; laparoscopic surgery; reversal agents
7.  Sugammadex for reversal of neuromuscular block after rapid sequence intubation: a systematic review and economic assessment† 
BJA: British Journal of Anaesthesia  2010;105(5):568-575.
Sugammadex 16 mg kg−1 can be used for the immediate reversal of neuromuscular block 3 min after administration of rocuronium and could be used in place of succinylcholine for emergency intubation. We have systematically reviewed the efficacy and cost-effectiveness and made an economic assessment of sugammadex for immediate reversal. The economic assessment investigated whether sugammadex appears cost-effective under various assumptions about the value of any reduction in recovery time with sugammadex, the likelihood of a ‘can't intubate, can't ventilate’ (CICV) event, the age of the patient, and the length of the procedure. Three trials were included in the efficacy review. Sugammadex administered 3 or 5 min after rocuronium produced markedly faster recovery than placebo or spontaneous recovery from succinylcholine-induced block. No published economic evaluations were found. Our economic analyses showed that sugammadex appears more cost-effective, where the value of any reduction in recovery time is greater, where the reduction in mortality compared with succinylcholine is greater, and where the patient is younger, for lower probabilities of a CICV event and for long procedures which do not require profound block throughout. Because of the lack of evidence, the value of some parameters remains unknown, which makes it difficult to provide a definitive assessment of the cost-effectiveness of sugammadex in practice. The use of sugammadex in combination with high-dose rocuronium is efficacious. Further research is needed to clarify key parameters in the analysis and to allow a fuller economic assessment.
PMCID: PMC2955537  PMID: 20937718
complications, intubation tracheal; neuromuscular block, recovery; neuromuscular block, rocuronium; neuromuscular block, succinylcholine
8.  Sugammadex is effective in reversing rocuronium in the presence of antibiotics 
BMC Anesthesiology  2014;14:69.
The effectiveness of sugammadex in reversing rocuronium-induced neuromuscular blockade (NMB) in the presence of drugs that may potentiate NMB remains to be fully established. The aim of this post-hoc analysis of data from a Phase III clinical trial (VISTA; NCT00298831) was to investigate the impact of antibiotics on recovery from rocuronium-induced NMB after administration of sugammadex for reversal, and compared the neuromuscular recovery in patients who received antibiotics preoperatively with those who did not.
A Phase III, multicenter, open-label study designed to reflect potential use of sugammadex in clinical practice was conducted at 19 sites. Data obtained from patients who received antibiotics were compared with the cohort of patients who underwent the same protocol without antibiotics. Each subject received rocuronium 0.6 mg/kg for muscle relaxation, after which tracheal intubation was performed; patients were also permitted to receive maintenance doses of rocuronium 0.15 mg/kg to maintain the desired level of NMB throughout the operation, as required.. At least 15 min after the last rocuronium dose, patients received sugammadex 4.0 mg/kg for reversal. Neuromuscular monitoring was continued until a train-of-four (TOF) ratio of ≥0.9 was achieved or the anesthetic was discontinued.
The presence of antibiotics prior to the administration of sugammadex did not affect the recovery time from rocuronium-induced NMB when sugammadex 4.0 mg/kg was administered at least 15 min after the last dose of rocuronium. In the presence of antibiotics, the geometric mean (95% CI) time from administration of sugammadex 4.0 mg/kg to recovery of the TOF ratio to ≥0.9 was 1.6 (1.4–1.9) min (range: 0.7–10.5 min), compared with 2.0 (1.8–2.3) min (range: 0.7–22.3 min) for patients who did not receive antibiotics.
These findings suggest that prophylactic antibiotic use is unlikely to have a major impact on the recovery time from rocuronium-induced NMB with sugammadex reversal.
Trial registration Identifier: NCT00298831.
PMCID: PMC4142447  PMID: 25157214
Sugammadex; Rocuronium; Neuromuscular blockade; Antibiotics
9.  The combination of sugammadex and neostigmine can reduce the dosage of sugammadex during recovery from the moderate neuromuscular blockade 
Korean Journal of Anesthesiology  2015;68(6):547-555.
Sugammadex is a novel neuromuscular reversal agent, but its associated hypersensitivity reaction and high cost have been obstacles to its widespread use. In the interest of reducing the necessary dosage of sugammadex, the reversal time of the combined use of sugammadex and neostigmine from moderate neuromuscular blockade were investigated.
The patients enrolled ranged in age from 18 to 65 years old with American Society of Anesthesiologists class 1 or 2. The subjects were randomly assigned into one of the four groups (Group S2, S1, SN, and N; n = 30 per group). The reversal agents of each groups were as follows: S2 - sugammadex 2 mg/kg, S1 - sugammadex 1 mg/kg, SN - sugammadex 1 mg/kg + neostigmine 50 µg/kg + glycopyrrolate 10 µg/kg, N - neostigmine 50 µg/kg + glycopyrrolate 10 µg/kg. The time to recovery of the train-of-four (TOF) ratio was checked in each group.
The time to 90% recovery of TOF ratio was 182.6 ± 88.9, 371.1 ± 210.4, 204.3 ± 103.2, 953.2 ± 379.7 sec in group S2, S1, SN and N, respectively. Group SN showed a significantly shorter recovery time than did group S1 and N (P < 0.001). However, statistically significant differences between the S2 and SN groups were not be observed (P = 0.291). No hypersensitivity reactions occurred in all groups.
For the reversal from rocuronium-induced moderate neuromuscular blockade, the combined use of sugammadex and neostigmine may be helpful to decrease the recovery time and can also reduce the required dosage of sugammadex. However, the increased incidence of systemic muscarinic side effects must be considered.
PMCID: PMC4667139  PMID: 26634077
Neostigmine; Neuromuscular blockade; Rocuronium; Sugammadex
10.  Rocuronium blockade reversal with sugammadex vs. neostigmine: randomized study in Chinese and Caucasian subjects 
BMC Anesthesiology  2014;14:53.
This study compared efficacy and safety of the selective relaxant binding agent sugammadex (2 mg/kg) with neostigmine (50 μg/kg) for neuromuscular blockade (NMB) reversal in Chinese and Caucasian subjects.
This was a randomized, active-controlled, multicenter, safety-assessor-blinded study (NCT00825812) in American Society of Anesthesiologists Class 1-3 subjects undergoing surgery with propofol anesthesia. Rocuronium 0.6 mg/kg was administered for endotracheal intubation, with 0.1–0.2 mg/kg maintenance doses given as required. NMB was monitored using TOF-Watch® SX. At second twitch reappearance, after last rocuronium dose, subjects received sugammadex 2 mg/kg or neostigmine 50 μg/kg plus atropine 10–20 μg/kg, according to randomization. Primary efficacy variable was time from sugammadex/neostigmine to recovery of the train-of-four (TOF) ratio to 0.9.
Overall, 230 Chinese subjects (sugammadex, n = 119, neostigmine, n = 111); and 59 Caucasian subjects (sugammadex, n = 29, neostigmine, n = 30) had evaluable data. Geometric mean (95% CI) time to recovery to TOF ratio 0.9 was 1.6 (1.5–1.7) min with sugammadex vs 9.1 (8.0–10.3) min with neostigmine in Chinese subjects. Corresponding times for Caucasian subjects were 1.4 (1.3–1.5) min and 6.7 (5.5–8.0) min, respectively. Sugammadex 2 mg/kg was generally well tolerated, with no serious adverse events reported. There was no residual NMB or recurrence of NMB.
Both Chinese and Caucasian subjects recovered from NMB significantly faster after sugammadex 2 mg/kg vs neostigmine 50 μg/kg, with a ~5.7 times (p < 0.0001) faster recovery with sugammadex vs neostigmine in Chinese subjects. Sugammadex was generally well tolerated.
Trial registration Identifier: NCT00825812.
PMCID: PMC4153006  PMID: 25187755
Sugammadex; Rocuronium; Neostigmine; Neuromuscular blockade; Chinese; Caucasian
11.  Comparative study between sugammadex and neostigmine in neurosurgical anesthesia in pediatric patients 
Saudi Journal of Anaesthesia  2015;9(3):247-252.
Postoperative recurarization remains a risk following the use of the conventional neuromuscular blocking agents. In addition, none of the commonly used reversal agents, such as neostigmine or edrophonium are capable of reliably reversing profound blockade. The present comparative and randomized study investigated the use of sugammadex for reversing profound neuromuscular blockade (NMB) in pediatric neurosurgical patients undergone posterior fossa tumor excision.
Patients and Methods:
Forty pediatric patients undergoing elective craniotomy for posterior fossa tumor excision were randomly divided into either of neostigmine or sugammadex group in which muscle relaxant was reversed at the end of anesthesia either with neostigmine 0.04 mg/kg added to atropine 0.02 mg/kg or sugammadex 4 mg/kg alone, respectively. The primary endpoint was the time from the administration of sugammadex or neostigmine to recovery of the train of four (TOF) ratio to 90% after rocuronium-induced neuromuscular block. Unpaired t-test was used to compare continuous variables between groups. Meanwhile, repeated ANOVA was used to detect intragroup differences.
Patients in sugammadex group attained a TOF ratio 90% in statistically shorter time (1.4 ± 1.2 min) than those in neostigmine group (25.16 ± 6.49 min) for reversal of the rocuronium. Mean arterial pressure and heart rate were significantly higher in neostigmine group at 2, 5 and 10 min after administration of the reversal agents and returned nonsignificantly different after that. With no recurarization in any patient throughout the study period.
Sugammadex rapidly and effectively reverses rocuronium-induced NMB in pediatric patients undergoing neurosurgery when administered at reappearance of T2 of TOF at dose 4 mg/kg.
PMCID: PMC4478814  PMID: 26240540
Neostigmine; reversal of neuromuscular blockade; sugammadex
12.  Dexamethasone does not diminish sugammadex reversal of neuromuscular block – clinical study in surgical patients undergoing general anesthesia 
BMC Anesthesiology  2016;16:101.
Sugammadex reverses neuromuscular block (NMB) through binding aminosteroid neuromuscular blocking agents. Although sugammadex appears to be highly selective, it can interact with other drugs, like corticosteroids. A prospective single-blinded randomized clinical trial was designed to explore the significance of interactions between dexamethasone and sugammadex.
Sixty-five patients who were anesthetized for elective abdominal or urological surgery were included. NMB was assessed using train-of-four stimulation (TOF), with rocuronium used to maintain the desired NMB depth. NMB reversal at the end of anaesthesia was achieved using sugammadex. According to their received antiemetics, the patients were randomized to either the granisetron or dexamethasone group. Blood samples were taken before and after NMB reversal, for plasma dexamethasone and rocuronium determination. Primary endpoint was time from sugammadex administration to NMB reversal. Secondary endpoints included the ratios of the dexamethasone and rocuronium concentrations after NMB reversal versus before sugammadex administration.
There were no differences for time to NMB reversal between the control (mean 121 ± 61 s) and the dexamethasone group (mean 125 ± 57 s; P = 0.760). Time to NMB reversal to a TOF ratio ≥0.9 was significantly longer in patients with lower TOF prior to sugammadex administration (Beta = −0.268; P = 0.038). The ratio between the rocuronium concentrations after NMB reversal versus before sugammadex administration was significantly affected by sugammadex dose (Beta = −0.375; P = 0.004), as was rocuronium dose per hour of operation (Beta = −0.366; p = 0.007), while it was not affected by NMB depth before administration of sugammadex (Beta = −0.089; p = 0.483) and dexamethasone (Beta = −0.186; p = 0.131). There was significant drop in plasma dexamethasone after sugammadex administration and NMB reversal (p < 0.001).
Administration of dexamethasone to anesthetized patients did not delay NMB reversal by sugammadex.
Trial registration
The trial was retrospectively registered with The Australian New Zealand Clinical Trials Registry (ANZCTR) on February 28th 2012 (enrollment of the first patient on February 2nd 2012) and was given a trial ID number ACTRN12612000245897 and universal trial number U1111-1128-5104.
PMCID: PMC5073416  PMID: 27765010
Rocuronium; Sugammadex; Dexamethasone; Neuromuscular block
13.  Neostigmine but not sugammadex impairs upper airway dilator muscle activity and breathing 
BJA: British Journal of Anaesthesia  2008;101(3):344-349.
Cholinesterase inhibitor-based reversal agents, given in the absence of neuromuscular block, evoke a partial upper airway obstruction by decreasing skeletal upper airway muscle function. Sugammadex reverses neuromuscular block by encapsulating rocuronium. However, its effects on upper airway integrity and breathing are unknown.
Fifty-one adult male rats were anaesthetized with isoflurane, tracheostomized, and a femoral artery and vein were cannulated. First, we compared the efficacy of sugammadex 15 mg kg−1 and neostigmine 0.06 mg kg−1 to reverse respiratory effects of rocuronium-induced partial paralysis [train-of-four ratio (T4/T1)=0.5]. Subsequently, we compared the safety of sugammadex and neostigmine given after recovery of the T4/T1 to 1, by measuring phasic genioglossus activity and breathing.
During partial paralysis (T4/T1=0.5), time to recovery of minute volume to baseline values was 10.9 (2), 75.8 (18), and 153 (54) s with sugammadex, neostigmine, and placebo, respectively (sugammadex was significantly faster than neostigmine and placebo, P<0.05). Recovery of T4/T1 was also faster for sugammadex than neostigmine and placebo. Neostigmine administration after complete recovery of T4/T1 decreased upper airway dilator muscle activity to 64 (30)% of baseline and decreased tidal volume (P<0.05 for both variables), whereas sugammadex had no effect on either variable.
In contrast to neostigmine, which significantly impairs upper airway dilator muscle activity when given after recovery from neuromuscular block, a reversal dose of sugammadex given under the same conditions does not affect genioglossus muscle activity and normal breathing. Human studies will be required to evaluate the clinical relevance of our findings.
PMCID: PMC4994812  PMID: 18559352
airway, muscles; airway, obstruction; airway, patency; airway, pharynx; airway, reflexes; airway, tongue; neuromuscular block, antagonism: neuromuscular block, neurotransmission effects; neuromuscular block, pharmacology; neuromuscular block, recovery; ventilation, airway muscles; ventilation, pattern
14.  Efficacy of different doses of sugammadex after continuous infusion of rocuronium 
AIM: To evaluate the effects of two different doses of sugammadex after maintenance anesthesia with sevofluorane and remifentanil and deep rocuronium-induced neuromuscular blockade (NMB).
METHODS: Patients between 20 and 65 years of age, with American Society of Anesthesiologists physical status classification I-II, undergoing gynecological surgery were included in a prospective, comparative and randomized study. NMB was induced with an injection of 0.6 mg/kg of rocuronium followed by continuous infusion of 0.3-0.6 mg/kg per hour to maintain a deep block. Anesthesia was maintained with sevofluorane and remifentanil. Finally, when surgery was finished, a bolus of 2 mg/kg (group A) or 4 mg/kg (group B) of sugammadex was applied when the NMB first response in the train-of-four was reached. The primary clinical endpoint was time to recovery to a train-of-four ratio of 0.9. Other variables recorded were the time until recovery of train-of-four ratio of 0.7, 0.8, hemodynamic variables (arterial blood pressure and heart rate at baseline, starting sugammadex, and minutes 2, 5 and 10) and adverse events were presented after one hour in the post-anesthesia care unit.
RESULTS: Thirty-two patients were included in the study: 16 patients in group A and 16 patients in group B. Only 14 patients each group were recorded because arterial pressure values were lost in two patients from each group in minute 10. The two groups were comparable. Median recovery time from starting of sugammadex administration to a train-of-four ratio of 0.9 in group A and B was 129 and 110 s, respectively. The estimated difference in recovery time between groups was 24 s (95%CI: 0 to 45 s, Hodges-Lehmann estimator), entirely within the predefined equivalence interval. Times to recovery to train-of-four ratios of 0.8 (group A: 101 s; group B: 82.5 s) and 0.7 (group A: 90 s; group B: 65 s) from start of sugammadex administration were not equivalent between groups. There was not a significant variation in the arterial pressure and heart rate values between the two groups and none of the patients showed any clinical evidence of residual or recurrent NMB.
CONCLUSION: A dose of 2 mg/kg of sugammadex after continuous rocuronium infusion is enough to reverse the NMB when first response in the Train-Of-Four is reached.
PMCID: PMC4391006  PMID: 25879008
Rocuronium; Sugammadex; Neuromuscular block antagonism; Monitoring neuromuscular function; Neuromuscular block rocuronium
15.  Comparative effectiveness of Calabadion and sugammadex to reverse non-depolarizing neuromuscular blocking agents 
Anesthesiology  2015;123(6):1337-1349.
We evaluated the comparative effectiveness of calabadion 2 to reverse non-depolarizing neuromuscular blocking agents (NMBAs) by binding and inactivation.
The dose-response relationship of drugs to reverse vecuronium, rocuronium, and cisatracurium-induced neuromuscular block (NMB) was evaluated in vitro (competition binding assays and urine analysis), ex vivo (n=34; phrenic nerve hemidiaphragm preparation) and in vivo (n=108; quadriceps femoris muscle of the rat). Cumulative dose-response curves of calabadions, neostigmine, or sugammadex were created ex vivo at steady-state deep NMB. In living rats, we studied the dose-response relationship of the test drugs to reverse deep block under physiological conditions and we measured the amount of calabadion 2 excreted in the urine.
In vitro experiments showed that calabadion 2 binds rocuronium with 89 times the affinity of sugammadex (Ka = 3.4 × 109 M−1 and Ka = 3.8 × 107 M−1). Urine analysis (proton nuclear magnetic resonance), competition binding assays and ex vivo study results obtained in the absence of metabolic deactivation are in accordance with an 1:1 binding ratio of sugammadex and calabadion 2 toward rocuronium. In living rats, calabadion 2 dose-dependently and rapidly reversed all NMBAs tested. The molar potency of calabadion 2 to reverse vecuronium and rocuronium was higher compared to sugammadex. Calabadion 2 was eliminated renally, and did not affect blood pressure or heart rate.
Calabadion 2 reverses NMB-induced by benzylisoquinolines and steroidal NMBAs in rats more effectively, i.e. faster, than sugammadex. Calabadion 2 is eliminated in the urine and well tolerated in rats.
PMCID: PMC4679413  PMID: 26418697
Reversal of neuromuscular blockade; encapsulation; safety
16.  A Miracle That Accelerates Operating Room Functionality: Sugammadex 
BioMed Research International  2014;2014:945310.
Background. Sugammadex offers a good alternative to the conventional decurarisation process currently performed with cholinesterase inhibitors. Sugammadex, which was developed specifically for the aminosteroid-structured rocuronium and vecuronium neuromuscular blockers, is a modified cyclodextrin made up of 8 glucose monomers arranged in a cylindrical shape. Methods. In this study, the goal was to investigate the efficacy of sugammadex. Sugammadex was used when there was insufficient decurarisation following neostigmine. This study was performed on 14 patients who experienced insufficient decurarisation (TOF <0.9) with neostigmine after general anaesthesia in the operating rooms of a university and a state hospital between June, 2012, and January, 2014. A dose of 2 mg/kg of sugammadex was administered. Results. Time elapsed until sugammadex administration following neostigmine 37 ± 6 min, following sugammadex it took 2.1 ± 0.9 min to reach TOF ≥0.9, and the extubation time was 3.2 ± 1.4 min. No statistically significant differences were detected in the hemodynamic parameters before and after sugammadex application. From the time of administration of sugammadex to the second postoperative hour, no side effects or complications occurred. None of the patients experienced acute respiratory failure or residual block during this time period. Conclusion. Sugammadex was successfully used to reverse rocuronium-induced neuromuscular block in patients where neostigmine was insufficient.
PMCID: PMC4150404  PMID: 25202709
17.  The influence of mild hypothermia on reversal of rocuronium-induced deep neuromuscular block with sugammadex 
BMC Anesthesiology  2015;15:7.
Mild hypothermia may be frequently induced due to cool environments in the operating room. The study analyzed patient recovery time and response to sugammadex after a prolonged rocuronium-induced deep neuromuscular block (NMB) during mild hypothermia.
Sixty patients were randomly (1:1) allocated to the mild hypothermia and normothermia groups, defined as having core temperatures between 34.5 - 35°C and 36.5 - 37°C, respectively. Patients received 0.6 mg/kg of rocuronium, followed by 7 – 10 μg/kg/min to maintain a deep NMB [post-tetanic count (PTC) 1–2]. After surgery, the deep NMB was reversed with sugammadex 4.0 mg/kg. The primary end-point was the time until the train-of-four (TOF) ratio was 0.9.
The appropriate neuromuscular function (TOF ratio ≥ 0.9) was restored after sugammadex was administered, even after hypothermia. The length of recovery in the hypothermia patients [mean (SD), 171.1 (62.1) seconds (s)] was significantly slower compared with the normothermia patients [124.9 (59.2) s] (p = 0.005). There were no adverse effects from sugammadex.
Sugammadex safely and securely reversed deep rocuronium-induced NMB during mild hypothermia. An additional 46 s was required for recovery from a deep NMB in hypothermia patients. Based on the results, we think this prolonged recovery time is clinically acceptable.
Trial registration Identifier: NCT01965067.
PMCID: PMC4430027  PMID: 25971394
Hypothermia; Neuromuscular blockade Rocuronium; Sugammadex
18.  The effect of on-demand vs deep neuromuscular relaxation on rating of surgical and anaesthesiologic conditions in patients undergoing thoracolaparoscopic esophagectomy (DEPTH trial): study protocol for a randomized controlled trial 
Trials  2015;16:331.
Deep muscle relaxation has been shown to facilitate operating conditions during laparoscopic surgery. Minimally invasive esophageal surgery is a high-risk procedure in which the use of deep neuromuscular block (NMB) may improve conditions in the thoracic phase as well. Neuromuscular antagonists can be given on demand or by continuous infusion (deep NMB). However, the positioning of the patient often hampers train-of-four (TOF) monitoring. A continuous infusion thus may result in a deep NMB at the end of surgery. The use of neostigmine not only is insufficient for reversing deep NMB but also may be contraindicated for this procedure because of its cholinergic effects. Sugammadex is an effective alternative but is rather expensive. This study aims to evaluate the use of deep versus on-demand NMB on operating, anaesthesiologic conditions, and costs in patients undergoing a two- or three-phase thoracolaparoscopic esophageal resection.
We will conduct a single-center randomized controlled double-blinded intervention study. Sixty-six patients undergoing a thoracolaparoscopic esophageal resection will be included. Patients will receive either continuous infusion of rocuronium 0.6 mg/kg per hour (group 1) or continuous infusion of NaCl 0.9 % 0.06 ml/kg per hour (group 2). In both groups, on-demand boluses of rocuronium can be given (open-label design).
The primary aim of this study is to compare the surgical rating scale (SRS) during the abdominal phase. Main secondary aims are to evaluate SRS during the thoracic phase, to evaluate anesthesiologic conditions, and to compare costs (in euros) associated with use of rocuronium, sugammadex, and duration of surgery.
This study is the first to evaluate the benefits of deep neuromuscular relaxation on surgical and anaesthesiologic conditions during thoracolaparoscopic esophageal surgery. This surgical procedure is unique because it consists of both an abdominal phase and a thoracic phase taking place in different order depending on the subtype of surgery (a two- or three-stage transthoracic esophagectomy). In addition, possible benefits associated with deep NMB, such as decrease in operating time, will be weighed against costs.
Trial registration
European Clinical Trials Database (EudraCT) number: 2014-002147-18 (obtained 19 May 2014) NCT02320734 (obtained 18 Dec. 2014)
PMCID: PMC4526166  PMID: 26242177
Surgical rating scale; Neuromuscular relaxation; Anaesthesia; Minimally invasive esophagectomy
19.  A survey of the current use of neuromuscular blocking drugs among the Middle Eastern anesthesiologists 
Saudi Journal of Anaesthesia  2013;7(2):146-150.
This survey aimed to assess the extent of practice of the Middle Eastern anesthesiologists in the use of neuromuscular blocking agents (NMB) in 2012.
We distributed an electronic survey among 577 members of the Triple-M Middle Eastern Yahoo anesthesia group, enquiring about their practice in the use of neuromuscular blocking agents. Questions concerned the routine first choice use of NMB, choice for tracheal intubation, the use of neuromuscular monitoring (NMT), type of NMB used in difficult airway, frequency of using suxamethonium, cisatracurium, rocuronium and sugammadex, observed side effects of rocuronium, residual curarization, and the reversal of residual curarization of rocuronium.
A total of 71 responses from 22 Middle Eastern institutions were collected. Most of the Middle Eastern anesthesiologists were using cisatracurium and rocuronium frequently for tracheal intubation (39% and 35%, respectively). From the respondents, 2/3 were using suxamethonium for tracheal intubation in difficult airway, 1/3 were using rocuronium routinely and 17% have observed hypersensitivity reactions to rocuronium, 54% reported residual curarization from rocuronium, 78% were routinely using neostigmine to reverse the rocuronium, 21% used sugammadex occasionally, and 35% were using NMT routinely during the use of NMB.
We believe that more could be done to increase the awareness of the Middle Eastern anesthesiologists about the high incidence of PROC (>20%) and the need for routine monitoring of neuromuscular function. This could be accomplished with by developing formal training programs and providing official guidelines.
PMCID: PMC3737689  PMID: 23956713
Middle East; neuromuscular blockers; residual curarization; survey
20.  Comparison of Sugammadex versus Neostigmine Costs and Respiratory Complications in Patients with Obstructive Sleep Apnoea 
To compare sugammadex and neostigmine regarding the efficacy in reversing rocuronium-induced neuromuscular block, the incidence of post-operative respiratory complications and costs in patients undergoing surgery for the treatment of obstructive sleep apnoea (OSA).
After obtaining ethical approval and patient consent, 74 patients in ASA physical status I or II were randomised into two groups to receive 2-mg kg−1 sugammadex (Group S) or 0.04-mg kg−1 neostigmine+0.5-mg atropine (Group N). Groups were compared regarding time to TOF (train-of-four) 0.9, operating room time, post-anaesthesia care unit (PACU) stay, post-operative respiratory complications, costs related to neuromuscular block reversal, anaesthesia care and complication treatment.
Patient demographics, anaesthesia, surgical data and total rocuronium doses were similar between groups. Time to TOF 0.9 was shorter for group S [Group N: 8 (5–18) min; Group S: 2 (1.5–6) min (p<0.001)]. Operating room time [Group S: 72.4±14.3 min; Group N: 96.6±22.8 min (p<0.001)] and PACU stay [Group S: 22.9±10.1 dk; Group N: 36.3±12.6 dk (p<0.001)] were also shorter in Group S. After extubation, desaturation was observed in 12 (32.4%) patients in group N and in 4 (8%) patients in group S (p=0.048). In group N, three patients were reintubated; there were eight (21.6%) unplanned intensive care unit (ICU) admissions. There was one unplanned ICU admission in group S. Negative pressure pulmonary oedema was observed in one patient in group N. The results regarding costs were as follows. The reversal cost was higher in the sugammadex group (vial cost 98.14 TL) than that in the neostigmine group (ampoule cost 0.27 TL; total 6147.88 TL vs. 3569.5 TL); however, complication treatment cost and total cost were lower in group S than those in group N (199.5 TL vs. 3944.6 TL) (staff anaesthesia doctor cost was 0.392 TL per min and the cost of nurse anaesthetist was 0.244 TL per min).
This study confirmed the efficacy of sugammadex over neostigmine for the reversal of rocuronium-induced neuromuscular block. Sugammadex decreases the incidence of post-operative respiratory complications and related costs in patients with OSA.
PMCID: PMC4894182  PMID: 27366535
Complication; cost; neostigmine; rocuronium; sugammadex
21.  Biological evaluation of the effect of sugammadex on hemostasis and bleeding 
Notification of sugammadex has been supplemented with a section on hemostasis, including a longer clotting time in the first minutes following injection, without any documented clinical consequences. The objective of this observational study was to analyze the effects of sugammadex administration on routine coagulation tests and bleeding in the clinical setting.
After Institutional Review Board approval, a prospective observational study was conducted between January and December 2011. Adult patients scheduled for laparotomies were analyzed in groups according to the type of reversal (without sugammadex versus 2 or 4 mg/kg sugammadex). There were no changes in our current clinical practice. Blood samples drawn from these patients were standardized at the same time and tested using the same daily calibrated machine. The endpoint was a comparison of the activated partial thromboplastin time (aPTT), prothrombin time (PT), hemoglobin (Hb) level and hematocrit (Ht), immediately before sugammadex administration (H0) and 1 h after neuromuscular block reversal (H1).
One hundred and forty-two patients in three groups were included as follows: 11 in the "without sugammadex" group, 64 in the "2 mg/kg sugammadex" group and 67 in the "4 mg/kg sugammadex" group. Results did not differ significantly among the groups.
In this prospective observational study, the use of 2 and 4 mg/kg sugammadex was not associated with a longer clotting time or decreased hemoglobin concentrations. Future prospective investigations should study patients receiving 16 mg/kg sugammadex and/or with abnormal coagulation tests.
PMCID: PMC4318859  PMID: 25664150
Activated partial thromboplastin time; Hemostasis; Prothrombin time; Sugammadex
22.  Effects of Sugammadex and Neostigmine on Renal Biomarkers 
Neostigmine, the currently commonly used agent for reversal of neuromuscular blockade. Sugammadex is a novel and unique compound designed as an antagonist of steroidal neuromuscular blockers. In this study, we evaluated the effects of sugammadex or neostigmine on kidney functions in patients scheduled for elective surgery.
Patients scheduled for a surgical procedure under desflurane/opioid anesthesia received an intubating dose rocuronium. Patients were divided into 2 groups receiving either sugammadex or neostigmine atropine to reverse neuromuscular blockade. Cystatin C, creatinine, urea, blood urea nitrogen, sodium, potassium, and calcium levels in the blood and α1microglobulin, β2microglobulin, and microalbumin levels in the urine were measured.
There was no significant difference between the groups with regard to the demographic data. In the Neostigmine Group, although β2microglobulin and microalbumin were similar, a significant increase was found in the postoperative α1microglobulin and cystatin C values. In the Sugammadex Group, although β2-microglobulin and cystatin C were similar, a significant increase was found in the postoperative α1-microglobulin and microalbumin values. The only significant difference was cystatin C value variation in the Neostigmine Group compared to the Sugammadex Group.
We believe that the use of more specific and sensitive new-generation markers like cystatin C to evaluate kidney function will provide a better understanding and interpretation of our results. Sugammadex has more tolerable effects on kidney function in patients than does neostigmine. However, when compared to preoperative values, there is a negative alteration of postoperative values. Neostigmine and sugammadex do not cause renal failure but they may affect kidney function.
PMCID: PMC4791087  PMID: 26963316
Anesthesia; Anesthesia, General; Neostigmine
23.  The use of 3 sugammadex out of 5 reversal of during recovery of rocuronium-induced neuromuscular blockade in a patient with post-tonsillectomy hemorrhage: a case report 
Post-tonsillectomy hemorrhage (PTH) is the most frequent complication of tonsillectomy, and occasionally results in a lethal outcome. A 21-year-old man (height 180 cm, weight 95 kg) was scheduled for a bilateral tonsillectomy and uvulopalatopharyngoplasty for treatment of obstructive sleep apnea. He required 5 rounds of general anesthesia due to recurrent PTH. The anesthesiologist used sugammadex a total of 3 times to achieve the successful reversal of the deep neuromuscular blockade (NMB) induced by rocuronium. After sugammadex 2 mg/kg was administered, the NMB was reversed in 2 minutes each time. Re-administration of rocuronium within a short time interval after sugammadex may result in unpredictable effects of neuromuscular blocking agents. Sugammadex made it possible to perform a rapid, complete reverse when the residual block was maintained by an incomplete reversal of anticholinesterase.
PMCID: PMC4121494  PMID: 25097738
Postoperative hemorrhage; Rocuronium; Sugammadex; Tonsillectomy
24.  Population pharmacokinetic–pharmacodynamic analysis for sugammadex-mediated reversal of rocuronium-induced neuromuscular blockade 
An integrated population pharmacokinetic–pharmacodynamic model was developed with the following aims: to simultaneously describe pharmacokinetic behaviour of sugammadex and rocuronium; to establish the pharmacokinetic–pharmacodynamic model for rocuronium-induced neuromuscular blockade and reversal by sugammadex; to evaluate covariate effects; and to explore, by simulation, typical covariate effects on reversal time.
Data (n = 446) from eight sugammadex clinical studies covering men, women, non-Asians, Asians, paediatrics, adults and the elderly, with various degrees of renal impairment, were used. Modelling and simulation techniques based on physiological principles were applied to capture rocuronium and sugammadex pharmacokinetics and pharmacodynamics and to identify and quantify covariate effects.
Sugammadex pharmacokinetics were affected by renal function, bodyweight and race, and rocuronium pharmacokinetics were affected by age, renal function and race. Sevoflurane potentiated rocuronium-induced neuromuscular blockade. Posterior predictive checks and bootstrapping illustrated the accuracy and robustness of the model. External validation showed concordance between observed and predicted reversal times, but interindividual variability in reversal time was pronounced. Simulated reversal times in typical adults were 0.8, 1.5 and 1.4 min upon reversal with sugammadex 16 mg kg−1 3 min after rocuronium, sugammadex 4 mg kg−1 during deep neuromuscular blockade and sugammadex 2 mg kg−1 during moderate blockade, respectively. Simulations indicated that reversal times were faster in paediatric patients and slightly slower in elderly patients compared with adults. Renal function did not affect reversal time.
Simulations of the therapeutic dosing regimens demonstrated limited impact of age, renal function and sevoflurane use, as predicted reversal time in typical subjects was always <2 min.
PMCID: PMC3175511  PMID: 21535448
population pharmacokinetics and pharmacodynamics; nonlinear mixed effects model; paediatric; elderly; renal function
25.  Sugammadex as a reversal agent for neuromuscular block: an evidence-based review 
Core Evidence  2013;8:57-67.
Sugammadex is the first clinical representative of a new class of drugs called selective relaxant binding agents. It has revolutionized the way anesthesiologists think about drug reversal. Sugammadex selectively binds rocuronium or vecuronium, thereby reversing their neuromuscular blocking action. Due to its 1:1 binding of rocuronium or vecuronium, it is able to reverse any depth of neuromuscular block. So far, it has been approved for use in adult patients and for pediatric patients over 2 years. Since its approval in Europe, Japan, and Australia, further insight on its use in special patient populations and specific diseases have become available. Due to its pharmacodynamic profile, sugammadex, in combination with rocuronium, may have the potential to displace succinylcholine as the “gold standard” muscle relaxant for rapid sequence induction. The use of rocuronium or vecuronium, with the potential of reverse of their action with sugammadex, seems to be safe in patients with impaired neuromuscular transmission, ie, neuromuscular diseases, including myasthenia gravis. Data from long-term use of sugammadex is not yet available. Evidence suggesting an economic advantage of using sugammadex and justifying its relatively high cost for an anesthesia-related drug, is missing.
PMCID: PMC3789633  PMID: 24098155
reversal agent; cyclodextrin; PORC; SRBAs

Results 1-25 (1468901)