Search tips
Search criteria

Results 1-25 (1462415)

Clipboard (0)

Related Articles

1.  Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei 
Nucleic Acids Research  2014;42(15):9717-9729.
Base J, β-d-glucosyl-hydroxymethyluracil, is an epigenetic modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. J is enriched at sites involved in RNA polymerase (RNAP) II initiation and termination. Reduction of J in Leishmania tarentolae via growth in BrdU resulted in cell death and indicated a role of J in the regulation of RNAP II termination. To further explore J function in RNAP II termination among kinetoplastids and avoid indirect effects associated with BrdU toxicity and genetic deletions, we inhibited J synthesis in Leishmania major and Trypanosoma brucei using DMOG. Reduction of J in L. major resulted in genome-wide defects in transcription termination at the end of polycistronic gene clusters and the generation of antisense RNAs, without cell death. In contrast, loss of J in T. brucei did not lead to genome-wide termination defects; however, the loss of J at specific sites within polycistronic gene clusters led to altered transcription termination and increased expression of downstream genes. Thus, J regulation of RNAP II transcription termination genome-wide is restricted to Leishmania spp., while in T. brucei it regulates termination and gene expression at specific sites within polycistronic gene clusters.
PMCID: PMC4150806  PMID: 25104019
2.  Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene 
Nucleic Acids Research  2003;31(14):4201-4210.
Leishmania parasites (order Kinetoplastida, family Trypanosomatidae) cause a spectrum of human diseases ranging from asymptomatic to lethal. The ∼33.6 Mb genome is distributed among 36 chromosome pairs that range in size from ∼0.3 to 2.8 Mb. The complete nucleotide sequence of Leishmania major Friedlin chromosome 1 revealed 79 protein-coding genes organized into two divergent polycistronic gene clusters with the mRNAs transcribed towards the telomeres. We report here the complete nucleotide sequence of chromosome 3 (384 518 bp) and an analysis revealing 95 putative protein-coding ORFs. The ORFs are primarily organized into two large convergent polycistronic gene clusters (i.e. transcribed from the telomeres). In addition, a single gene at the left end is transcribed divergently towards the telomere, and a tRNA gene separates the two convergent gene clusters. Numerous genes have been identified, including those for metabolic enzymes, kinases, transporters, ribosomal proteins, spliceosome components, helicases, an RNA-binding protein and a DNA primase subunit.
PMCID: PMC167632  PMID: 12853638
3.  Spatial Organization of the Core Region of Yeast TFIIIB-DNA Complexes 
Molecular and Cellular Biology  1999;19(7):5218-5234.
The interaction of yeast TFIIIB with the region upstream of the SUP4 tRNATyr gene was extensively probed by use of photoreactive phosphodiesters, deoxyuridines, and deoxycytidines that are site specifically incorporated into DNA. The TATA binding protein (TBP) was found to be in close proximity to the minor groove of a TATA-like DNA sequence that starts 30 nucleotides upstream of the start site of transcription. TBP was cross-linked to the phosphate backbone of DNA from bp −30 to −20 in the nontranscribed strand and from bp −28 to −24 in the transcribed strand (+1 denotes the start site of transcription). Most of the major groove of DNA in this region was shown not to be in close proximity to TBP, thus resembling the binding of TBP to the TATA box, with one notable exception. TBP was shown to interact with the major groove of DNA primarily at bp −23 and to a lesser degree at bp −25 in the transcribed strand. The stable interaction of TBP with the major groove at bp −23 was shown to require the B" subunit of TFIIIB. The S4 helix and flanking region of TBP were shown to be proximal to the major groove of DNA by peptide mapping of the region of TBP cross-linked at bp −23. Thus, TBP in the TFIIIB-SUP4 gene promoter region is bound in the same direction as TBP bound to the TATA box with respect to the transcription start site. The B" and TFIIB-related factor (BRF) subunits of TFIIIB are positioned on opposite sides of the TBP-DNA core of the TFIIIB complex, as indicated by correlation of cross-linking data to the crystal structure of the TBP-TATA box complex. Evidence is given for BRF binding near the C-terminal stirrup of TBP, similar to that of TFIIB near the TBP-TATA box complex. The protein clamp formed around the TBP-DNA complex by BRF and B" would help explain the long half-life of the TFIIIB-DNA complex and its resistance to polyanions and high salt. The path of DNA traversing the surface of TBP at the 3′ end of the TATA-like element in the SUP4 tRNA gene is not the same as that of TBP bound to a TATA box element, as shown by the cross-linking of TBP at bp −23.
PMCID: PMC84364  PMID: 10373570
4.  Role for Nhp6, Gcn5, and the Swi/Snf Complex in Stimulating Formation of the TATA-Binding Protein-TFIIA-DNA Complex 
Molecular and Cellular Biology  2004;24(18):8312-8321.
The TATA-binding protein (TBP), TFIIA, and TFIIB interact with promoter DNA to form a complex required for transcriptional initiation, and many transcriptional regulators function by either stimulating or inhibiting formation of this complex. We have recently identified TBP mutants that are viable in wild-type cells but lethal in the absence of the Nhp6 architectural transcription factor. Here we show that many of these TBP mutants were also lethal in strains with disruptions of either GCN5, encoding the histone acetyltransferase in the SAGA complex, or SWI2, encoding the catalytic subunit of the Swi/Snf chromatin remodeling complex. These synthetic lethalities could be suppressed by overexpression of TOA1 and TOA2, the genes encoding TFIIA. We also used TFIIA mutants that eliminated in vitro interactions with TBP. These viable TFIIA mutants were lethal in strains lacking Gcn5, Swi2, or Nhp6. These lethalities could be suppressed by overexpression of TBP or Nhp6, suggesting that these coactivators stimulate formation of the TBP-TFIIA-DNA complex. In vitro studies have previously shown that TBP binds very poorly to a TATA sequence within a nucleosome but that Swi/Snf stimulates binding of TBP and TFIIA. In vitro binding experiments presented here show that histone acetylation facilitates TBP binding to a nucleosomal binding site and that Nhp6 stimulates formation of a TBP-TFIIA-DNA complex. Consistent with the idea that Nhp6, Gcn5, and Swi/Snf have overlapping functions in vivo, nhp6a nhp6b gcn5 mutants had a severe growth defect, and mutations in both nhp6a nhp6b swi2 and gcn5 swi2 strains were lethal.
PMCID: PMC515044  PMID: 15340090
5.  Histone H3 trimethylated at lysine 4 is enriched at probable transcription start sites in Trypanosoma brucei 
Recent studies have identified histone modifications and suggested a role for epigenetic gene regulation in Trypanosoma brucei. The histone modification H4K10ac and histone variants H2AZ and H2BV localize to probable sites of transcription initiation. Although all T. brucei histones have very evolutionarily divergent N-terminal tails, histone H3 shows conservation with other eukaryotic organisms in 6 of 8 amino acids encompassing lysine 4. Tri-methylation of H3K4 is generally associated with transcription. We therefore generated a specific antibody to T. brucei H3K4me3 and performed chromosome immunoprecipitation and high-throughput sequencing. We show that H3K4me3 is enriched at the start of polycistronic transcription units at divergent strand-switch regions and at other sites of RNA Polymerase II transcription reinitiation. H3K4me3 largely co-localizes with H4K10ac, but with a skew towards the upstream side of the H4K10ac peak, suggesting that it is a component of specific nucleosomes that play a role in Pol II transcription initiation.
PMCID: PMC2875994  PMID: 20347883
Trypanosoma brucei; Histone modification; Transcription regulation; Chromatin immunoprecipitation; High-throughput DNA sequencing
6.  Recruitment of Histone Deacetylase 3 to the Interferon-A Gene Promoters Attenuates Interferon Expression 
PLoS ONE  2012;7(6):e38336.
Induction of Type I Interferon (IFN) genes constitutes an essential step leading to innate immune responses during virus infection. Sendai virus (SeV) infection of B lymphoid Namalwa cells transiently induces the transcriptional expression of multiple IFN-A genes. Although transcriptional activation of IFN-A genes has been extensively studied, the mechanism responsible for the attenuation of their expression remains to be determined.
Principal Findings
In this study, we demonstrate that virus infection of Namalwa cells induces transient recruitment of HDAC3 (histone deacetylase 3) to IFN-A promoters. Analysis of chromatin-protein association by Chip-QPCR demonstrated that recruitment of interferon regulatory factor (IRF)3 and IRF7, as well as TBP correlated with enhanced histone H3K9 and H3K14 acetylation, whereas recruitment of HDAC3 correlated with inhibition of histone H3K9/K14 acetylation, removal of IRF7 and TATA-binding protein (TBP) from IFN-A promoters and inhibition of virus-induced IFN-A gene transcription. Additionally, HDAC3 overexpression reduced, and HDAC3 depletion by siRNA enhanced IFN-A gene expression. Furthermore, activation of IRF7 enhanced histone H3K9/K14 acetylation and IFN-A gene expression, whereas activation of both IRF7 and IRF3 led to recruitment of HDAC3 to the IFN-A gene promoters, resulting in impaired histone H3K9 acetylation and attenuation of IFN-A gene transcription.
Altogether these data indicate that reversal of histone H3K9/K14 acetylation by HDAC3 is required for attenuation of IFN-A gene transcription during viral infection.
PMCID: PMC3369917  PMID: 22685561
7.  Epigenetic Regulation of Polymerase II Transcription Initiation in Trypanosoma cruzi: Modulation of Nucleosome Abundance, Histone Modification, and Polymerase Occupancy by O-Linked Thymine DNA Glucosylation▿ † 
Eukaryotic Cell  2011;10(11):1465-1472.
Very little is understood regarding how transcription is initiated/regulated in the early-diverging eukaryote Trypanosoma cruzi. Unusually for a eukaryote, genes transcribed by RNA polymerase (Pol) II in T. cruzi are arranged in polycistronic transcription units (PTUs). On the basis of this gene organization, it was previously thought that trypanosomes rely solely on posttranscriptional processes to regulate gene expression. We recently localized a novel glucosylated thymine DNA base, called base J, to potential promoter regions of PTUs throughout the trypanosome genome. Loss of base J, following the deletion of JBP1, a thymidine hydroxylase involved with synthesis, led to a global increase in the Pol II transcription rate and gene expression. In order to determine the mechanism by which base J regulates transcription, we have characterized changes in chromatin structure and Pol II recruitment to promoter regions following the loss of base J. The loss of base J coincides with a decrease in nucleosome abundance, increased histone H3/H4 acetylation, and increased Pol II occupancy at promoter regions, including the well-characterized spliced leader RNA gene promoter. These studies present the first direct evidence for epigenetic regulation of Pol II transcription initiation via DNA modification and chromatin structure in kinetoplastids as well as provide a mechanism for regulation of trypanosome gene expression via the novel hypermodified base J.
PMCID: PMC3209055  PMID: 21926332
8.  Core promoter structure and genomic context reflect histone 3 lysine 9 acetylation patterns 
BMC Genomics  2010;11:257.
Histone modifications play an important role in gene regulation. Acetylation of histone 3 lysine 9 (H3K9ac) is generally associated with transcription initiation and unfolded chromatin, thereby positively influencing gene expression. Deep sequencing of the 5' ends of gene transcripts using DeepCAGE delivers detailed information about the architecture and expression level of gene promoters. The combination of H3K9ac ChIP-chip and DeepCAGE in a myeloid leukemia cell line (THP-1) allowed us to study the spatial distribution of H3K9ac around promoters using a novel clustering approach. The promoter classes were analyzed for association with relevant genomic sequence features.
We performed a clustering of 4,481 promoters according to their surrounding H3K9ac signal and analyzed the clustered promoters for association with different sequence features. The clustering revealed three groups with major H3K9ac signal upstream, centered and downstream of the promoter. Narrow single peak promoters tend to have a concentrated activity of H3K9ac in the upstream region, while broad promoters tend to have a concentrated activity of H3K9ac and RNA polymerase II binding in the centered and downstream regions. A subset of promoters with high gene expression level, compared to subsets with low and medium gene expression, shows dramatic increase in H3K9ac activity in the upstream cluster only; this may indicate that promoters in the centered and downstream clusters are predominantly regulated at post-initiation steps. Furthermore, the upstream cluster is depleted in CpG islands and more likely to regulate un-annotated genes.
Clustering core promoters according to their surrounding acetylation signal is a promising approach for the study of histone modifications. When examining promoters clustered into groups according to their surrounding H3K9 acetylation signal, we find that the relative localization and intensity of H3K9ac is very specific depending on characteristic sequence features of the promoter. Experimental data from DeepCAGE and ChIP-chip experiments using undifferentiated (monocyte) and differentiated (macrophage) THP-1 cells leads us to the same conclusions.
PMCID: PMC2867832  PMID: 20409305
9.  Regulation of TATA-Binding Protein Binding by the SAGA Complex and the Nhp6 High-Mobility Group Protein 
Molecular and Cellular Biology  2003;23(6):1910-1921.
Transcriptional activation of the yeast HO gene involves the sequential action of DNA-binding and chromatin-modifying factors. Here we examine the role of the SAGA complex and the Nhp6 architectural transcription factor in HO regulation. Our data suggest that these factors regulate binding of the TATA-binding protein (TBP) to the promoter. A gcn5 mutation, eliminating the histone acetyltransferase present in SAGA, reduces the transcription of HO, but expression is restored in a gcn5 spt3 double mutant. We conclude that the major role of Gcn5 in HO activation is to overcome repression by Spt3. Spt3 is also part of SAGA, and thus two proteins in the same regulatory complex can have opposing roles in transcriptional regulation. Chromatin immunoprecipitation experiments show that TBP binding to HO is very weak in wild-type cells but markedly increased in an spt3 mutant, indicating that Spt3 reduces HO expression by inhibiting TBP binding. In contrast, it has been shown previously that Spt3 stimulates TBP binding to the GAL1 promoter as well as GAL1 expression, and thus, Spt3 regulates these promoters differently. We also find genetic interactions between TBP and either Gcn5 or the high-mobility-group protein Nhp6, including multicopy suppression and synthetic lethality. These results suggest that, while Spt3 acts to inhibit TBP interaction with the HO promoter, Gcn5 and Nhp6 act to promote TBP binding. The result of these interactions is to limit TBP binding and HO expression to a short period within the cell cycle. Furthermore, the synthetic lethality resulting from combining a gcn5 mutation with specific TBP point mutations can be suppressed by the overexpression of transcription factor IIA (TFIIA), suggesting that histone acetylation by Gcn5 can stimulate transcription by promoting the formation of a TBP/TFIIA complex.
PMCID: PMC149471  PMID: 12612066
10.  Polymerase (Pol) III TATA Box-Binding Protein (TBP)-Associated Factor Brf Binds to a Surface on TBP Also Required for Activated Pol II Transcription 
Molecular and Cellular Biology  1998;18(3):1692-1700.
The TATA box-binding protein (TBP) plays an essential role in transcription by all three eukaryotic nuclear RNA polymerases, polymerases (Pol) I, II, and III. In each case, TBP interacts with class-specific TBP-associated factors (TAFs) to form class-specific transcription initiation factors. For yeast Pol III transcription, TBP associates with Brf (from TFIIB-related factor) and B", two Pol III TAFs, to form Pol III transcription factor TFIIIB. Here, we identify TBP surface residues that are required for interaction with yeast Pol III TAFs. Ninety-one human TBP surface residue mutants with radical substitutions were analyzed for the ability to form stable gel shift complexes with purified Brf and B" and for their activities for in vitro synthesis of yeast U6 snRNA. Mutations in a large positively charged epitope extending from the top (that is, on the surface opposite the DNA-facing “saddle” of TBP) and onto the side of the first TBP repeat inhibited binding to Brf (residues K181, L185, R186, E206, R231, L232, R235, K236, R239, Q242, K243, K249, and F250). A triple-mutant TBP (R231E + R235E + R239S) had greatly reduced activity for yeast U6 snRNA gene transcription while remaining active for Pol II basal transcription. Similar results were observed when selected mutations were introduced into yeast TBP at equivalent positions. A C-terminal fragment of Brf lacking the region of homology with TFIIB retains the ability to bind TBP-DNA complexes (G. Kassavetis, C. Bardeleben, A. Kumar, E. Ramirez, and E. P. Geiduschek, Mol. Cell. Biol. 17:5299–5306, 1997); the same TBP mutations reduced binding by this fragment. Mutations in TBP residues that interact with TFIIB did not affect Brf binding or U6 gene transcription. These results indicate that Brf and TFIIB interact differently with TBP. An extensively overlapping epitope on the top surface of TBP was found previously to be required for activated Pol II transcription and has been hypothesized to interact with Pol II TAFs. Our results map the surface of TBP that interacts with Brf and suggest that Pol II and Pol III TAFs interact with the same surface of TBP.
PMCID: PMC108884  PMID: 9488486
11.  Autogenous Translational Regulation of the Borna Disease Virus Negative Control Factor X from Polycistronic mRNA Using Host RNA Helicases 
PLoS Pathogens  2009;5(11):e1000654.
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that employs several unique strategies for gene expression. The shortest transcript of BDV, X/P mRNA, encodes at least three open reading frames (ORFs): upstream ORF (uORF), X, and P in the 5′ to 3′ direction. The X is a negative regulator of viral polymerase activity, while the P phosphoprotein is a necessary cofactor of the polymerase complex, suggesting that the translation of X is controlled rigorously, depending on viral replication. However, the translation mechanism used by the X/P polycistronic mRNA has not been determined in detail. Here we demonstrate that the X/P mRNA autogenously regulates the translation of X via interaction with host factors. Transient transfection of cDNA clones corresponding to the X/P mRNA revealed that the X ORF is translated predominantly by uORF-termination-coupled reinitiation, the efficiency of which is upregulated by expression of P. We found that P may enhance ribosomal reinitiation at the X ORF by inhibition of the interaction of the DEAD-box RNA helicase DDX21 with the 5′ untranslated region of X/P mRNA, via interference with its phosphorylation. Our results not only demonstrate a unique translational control of viral regulatory protein, but also elucidate a previously unknown mechanism of regulation of polycistronic mRNA translation using RNA helicases.
Author Summary
All viruses rely on host cell factors to complete their life cycles. Therefore, the replication strategies of viruses may provide not only the understanding of virus pathogenesis but also useful models to disentangle the complex machinery of host cells. Translation regulation of viral mRNA is a good example of this. Borna disease virus (BDV) is a highly neurotropic RNA virus which is characterized by persistent infection. BDV expresses mRNAs as polycistronic coding transcripts. Among them, the 0.8 kb X/P mRNA encodes at least three open reading frames (ORFs), upstream ORF, X, and P. Although BDV X and P have opposing effects in terms of viral polymerase activity, the translational regulation of X/P polycistronic mRNA has not been elucidated. In this study, we show an ingenious strategy of translational control of viral regulatory protein using host factors. We demonstrate that host RNA helicases, mainly DDX21, can affect ribosomal reinitiation of X via interaction with the 5′ untranslated region (UTR) of X/P mRNA and that the downstream P protein autogenously controls the translation of X by interfering with the binding of DDX21 to the 5′ UTR. Our findings uncover not only a unique translational control of viral regulatory protein but also a previously unknown mechanism of translational regulation of polycistronic mRNA using RNA helicases.
PMCID: PMC2766071  PMID: 19893625
12.  SLaP mapper: A webserver for identifying and quantifying spliced-leader addition and polyadenylation site usage in kinetoplastid genomes 
Graphical abstract
•A web-server for identification of spliced-leader and polyadenylation addition sites.•Fully automated site quantification and gene assignment.•Multiple species within the Kinetoplastida.
The Kinetoplastida are a diverse and globally distributed class of free-living and parasitic single-celled eukaryotes that collectively cause a significant burden on human health and welfare. In kinetoplastids individual genes do not have promoters, but rather all genes are arranged downstream of a small number of RNA polymerase II transcription initiation sites and are thus transcribed in polycistronic gene clusters. Production of individual mRNAs from this continuous transcript occurs co-transcriptionally by trans-splicing of a ∼39 nucleotide capped RNA and subsequent polyadenylation of the upstream mRNA. SLaP mapper (Spliced-Leader and Polyadenylation mapper) is a fully automated web-service for identification, quantitation and gene-assignment of both spliced-leader and polyadenylation addition sites in Kinetoplastid genomes. SLaP mapper only requires raw read data from paired-end Illumina RNAseq and performs all read processing, mapping, quality control, quantification, and analysis in a fully automated pipeline. To provide usage examples and estimates of the quantity of sequence data required we use RNAseq obtained from two different library preparations from both Trypanosoma brucei and Leishmania mexicana to show the number of expected reads that are obtained from each preparation type. SLaP mapper is an easy to use, platform independent webserver that is freely available for use at Example files are provided on the website.
PMCID: PMC4222701  PMID: 25111964
RNA splicing; Trypanosoma; Leishmania; Polyadenylation; RNA-Seq; Kinetoplastida
13.  Redundant Cooperative Interactions for Assembly of a Human U6 Transcription Initiation Complex 
Molecular and Cellular Biology  2002;22(22):8067-8078.
The core human U6 promoter consists of a proximal sequence element (PSE) located upstream of a TATA box. The PSE is recognized by the snRNA-activating protein complex (SNAPc), which consists of five types of subunits, SNAP190, SNAP50, SNAP45, SNAP43, and SNAP19. The TATA box is recognized by TATA box binding protein (TBP). In addition, basal U6 transcription requires the SANT domain protein Bdp1 and the transcription factor IIB-related factor Brf2. SNAPc and mini-SNAPc, which consists of just SNAP43, SNAP50, and the N-terminal third of SNAP190, bind cooperatively with TBP to the core U6 promoter. By generating complexes smaller than mini-SNAPc, we have identified a 50-amino-acid region within SNAP190 that is (i) required for cooperative binding with TBP in the context of mini-SNAPc and (ii) sufficient for cooperative binding with TBP when fused to a heterologous DNA binding domain. We show that derivatives of mini-SNAPc lacking this region are active for transcription and that with such complexes, TBP can still be recruited to the U6 promoter through cooperative interactions with Brf2. Our results identify complexes smaller than mini-SNAPc that are transcriptionally active and show that there are at least two redundant mechanisms to stably recruit TBP to the U6 transcription initiation complex.
PMCID: PMC134731  PMID: 12391172
14.  A kinetic model of TBP auto-regulation exhibits bistability 
Biology Direct  2010;5:50.
TATA Binding Protein (TBP) is required for transcription initiation by all three eukaryotic RNA polymerases. It participates in transcriptional initiation at the majority of eukaryotic gene promoters, either by direct association to the TATA box upstream of the transcription start site or by indirectly localizing to the promoter through other proteins. TBP exists in solution in a dimeric form but binds to DNA as a monomer. Here, we present the first mathematical model for auto-catalytic TBP expression and use it to study the role of dimerization in maintaining the steady state TBP level.
We show that the autogenous regulation of TBP results in a system that is capable of exhibiting three steady states: an unstable low TBP state, one stable state corresponding to a physiological TBP concentration, and another stable steady state corresponding to unviable cells where no TBP is expressed. Our model predicts that a basal level of TBP is required to establish the transcription of the TBP gene, and hence for cell viability. It also predicts that, for the condition corresponding to a typical mammalian cell, the high-TBP state and cell viability is sensitive to variation in DNA binding strength. We use the model to explore the effect of the dimer in buffering the response to changes in TBP levels, and show that for some physiological conditions the dimer is not important in buffering against perturbations.
Results on the necessity of a minimum basal TBP level support the in vivo observations that TBP is maternally inherited, providing the small amount of TBP required to establish its ubiquitous expression. The model shows that the system is sensitive to variations in parameters indicating that it is vulnerable to mutations in TBP. A reduction in TBP-DNA binding constant can lead the system to a regime where the unviable state is the only steady state. Contrary to the current hypotheses, we show that under some physiological conditions the dimer is not very important in restoring the system to steady state. This model demonstrates the use of mathematical modelling to investigate system behaviour and generate hypotheses governing the dynamics of such nonlinear biological systems.
This article was reviewed by Tomasz Lipniacki, James Faeder and Anna Marciniak-Czochra.
PMCID: PMC2928763  PMID: 20687914
15.  Global coordination of transcriptional control and mRNA decay during cellular differentiation 
We have systematically identified the targets of the Schizosaccharomyces pombe RNA-binding protein Meu5p, which is transiently induced during cellular differentiation. Meu5p-bound transcripts (>80) are expressed at low levels and have shorter half-lives in meu5 mutants, suggesting that Meu5p binding stabilizes its RNA targets.Most Meu5p targets are induced during differentiation by the activity of the Mei4p transcription factor. However, although most Mei4p targets display a sharp peak of expression, Meu5p targets are expressed for a longer period. In the absence of Meu5p, all Mei4p targets are expressed with similar kinetics (similar to non-Meu5p targets). Therefore, Meu5p determines the temporal profile of its targets.As the meu5 gene is itself a target of the transcription factor Mei4p, the RNA-binding protein Meu5p and their shared targets form a feed-forward loop (FFL), a network motif that is common in transcriptional networks.Our data highlight the importance of considering both transcriptional and posttranscriptional controls to understand dynamic changes in RNA levels, and provide insight into the structure of the regulatory networks that integrate transcription and RNA decay.
RNA levels are determined by the balance between RNA production (transcription) and degradation (decay or turnover). Therefore, cells can alter transcript levels by modulating either or both processes. Regulation of transcriptional initiation is one of the most common ways to regulate RNA levels. This function is frequently performed by transcription factors (TFs), which recognize specific sequence motifs on the promoters of their target genes and activate or repress their transcription. At the posttranscriptional level, RNA-binding proteins (RBPs) can bind to specific sequences on their target RNAs and regulate their rates of turnover.
RNA decay can be studied at the genome-wide level using microarrays or next-generation sequencing. The contribution of RNA turnover to transcript levels can be assessed by directly measuring decay rates. This is usually achieved by using microarrays to follow the decrease of RNA levels after inactivation of RNA polymerase II, or by in vivo labelling of newly synthesized RNA with modified nucleosides. These approaches can be applied to mutants in genes encoding RBPs, allowing the dissection of their specific functions in RNA turnover. Moreover, direct RBP targets can be identified by purifying RBP–RNA complexes, which are then analysed using microarrays (RIp-chip, for RBP Immunoprecipitation followed by analysis with DNA chips).
Many biological processes involve the establishment of complex programs of gene expression, in which the levels of hundreds of mRNAs are dynamically regulated. Although the genome-wide function of TFs in these processes has been studied extensively, much less is known about the contribution of RBPs, and especially about how the activity of TFs and RBPs is coordinated. Sexual differentiation of the fission yeast Schizosaccharomyces pombe culminates in meiosis and sporulation and is driven by an extensive gene expression program during which ∼40% of the genome (∼2000 genes) is regulated in complex temporal patterns. Transcriptional control is essential for the implementation of this program, and TFs responsible for the induction of most groups of upregulated genes have been identified. In particular, a transcription factor called Mei4p, which is itself transiently expressed during the meiotic divisions, induces the temporary expression of over 500 genes.
Here, we use genome-wide approaches to investigate the function of the Meu5p RBP, which is transiently induced by the Mei4p TF during the meiotic divisions. RIp-chip experiments identified >80 transcripts bound to Meu5p during meiosis, most of which were also targets of the Mei4p transcription factor. In meu5 mutants, Meu5p targets are expressed at low levels and have shorter half-lives, indicating that Meu5p stabilizes the transcripts it binds to. This stabilization has biological importance, as cells without meu5 are defective in spore formation.
Although the majority of Mei4p TF targets reach their peak in expression levels with similar kinetics, we noticed that the timing of their downregulation was heterogeneous. We could identify two discrete groups among Mei4p targets: a set of mRNAs with short (∼1 h) and sharp gene expression profiles (early decrease), and a group that displayed a broader expression pattern, with high levels of expression for 2–3 h (late decrease).
Most Meu5p RBP targets belonged to the late-decrease group, suggesting a simple model in which Meu5p might stabilize its targets, thus extending the duration of their expression. To test this idea, we followed gene expression in synchronized cultures of wild-type and meu5Δ meiotic cells. Although the expression of early decrease genes was not affected by the absence of meu5, late-decrease genes switched their profile to a pattern similar to that of early decrease genes. As transcription of meu5 is under the control of Mei4p, the TF Mei4p, the RBP Meu5p, and their common targets form a so-called feed-forward loop, in which a protein regulates a target both directly and indirectly through a second protein. This arrangement is common in transcriptional and protein phosphorylation networks.
Our results serve as a paradigm of how the coordination of the action of TFs and RBPs determines how RNA levels are dynamically regulated.
The function of transcription in dynamic gene expression programs has been extensively studied, but little is known about how it is integrated with RNA turnover at the genome-wide level. We investigated these questions using the meiotic gene expression program of Schizosaccharomyces pombe. We identified over 80 transcripts that co-purify with the meiotic-specific Meu5p RNA-binding protein. Their levels and half-lives were reduced in meu5 mutants, demonstrating that Meu5p stabilizes its targets. Most Meu5p-bound RNAs were also targets of the Mei4p transcription factor, which induces the transient expression of ∼500 meiotic genes. Although many Mei4p targets showed sharp expression peaks, Meu5p targets had broad expression profiles. In the absence of meu5, all Mei4p targets were expressed with similar kinetics, indicating that Meu5p alters the global features of the gene expression program. As Mei4p activates meu5 transcription, Mei4p, Meu5p and their common targets form a feed-forward loop, a motif common in transcriptional networks but not studied in the context of mRNA decay. Our data provide insight into the topology of regulatory networks integrating transcriptional and posttranscriptional controls.
PMCID: PMC2913401  PMID: 20531409
mRNA decay; RIp-chip; posttranscriptional control
16.  Genes of De Novo Pyrimidine Biosynthesis from the Hyperthermoacidophilic Crenarchaeote Sulfolobus acidocaldarius: Novel Organization in a Bipolar Operon 
Journal of Bacteriology  2002;184(16):4430-4441.
Sequencing a 8,519-bp segment of the Sulfolobus acidocaldarius genome revealed the existence of a tightly packed bipolar pyrimidine gene cluster encoding the enzymes of de novo UMP synthesis. The G+C content of 35.3% is comparable to that of the entire genome, but intergenic regions exhibit a considerably lower percentage of strong base pairs. Coding regions harbor the classical excess of purines on the coding strand, whereas intergenic regions do not show this bias. Reverse transcription-PCR and primer extension experiments demonstrated the existence of two polycistronic messengers, pyrEF-orf8 and pyrBI-orf1-pyrCD-orf2-orf3-orf4, initiated from a pair of divergent and partially overlapping promoters. The gene order and the grouping in two wings of a bipolar operon constitute a novel organization of pyr genes that also occurs in the recently determined genome sequences of Sulfolobus solfataricus P2 and Sulfolobus tokodaii strain 7; the configuration appears therefore characteristic of Sulfolobus. The quasi-leaderless pyrE and pyrB genes do not bear a Shine-Dalgarno sequence, whereas the initiation codon of promoter-distal genes is preceded at an appropriate distance by a sequence complementary to the 3′ end of 16S rRNA. The polycistronic nature of the pyr messengers and the existence of numerous overlaps between contiguous open reading frames suggests the existence of translational coupling. pyrB transcription was shown to be approximately twofold repressed in the presence of uracil. The mechanism underlying this modulation is as yet unknown, but it appears to be of a type different from the various attenuation-like mechanisms that regulate pyrB transcription in bacteria. In contrast, the pyrE-pyrB promoter/control region harbors direct repeats and imperfect palindromes reminiscent of target sites for the binding of a hypothetical regulatory protein(s).
PMCID: PMC135248  PMID: 12142413
17.  Gonococcal transferrin-binding protein 2 facilitates but is not essential for transferrin utilization. 
Journal of Bacteriology  1994;176(11):3162-3170.
Pathogenic Neisseria species have been shown to scavenge iron from transferrin (Tf), although the mechanism is not yet fully understood. Two iron-repressible proteins that exhibit Tf-binding activity have been identified. This work describes the cloning and sequencing of tbpB, a 2.1-kb gene in N. gonorrhoeae that encodes Tbp2, an 85-kDa iron-repressible lipoprotein. Transcriptional interruption of tbpB had a strong polar effect on tbpA, the structural gene for Tbp1 that is located immediately downstream from tbpB. Such tbpB mutants did not express either Tbp2 or Tbp1, did not bind Tf to whole cells, did not grow on Tf plates, and did not take up iron from Tf. A mutant in which most of tbpB was deleted, presumably leaving tbpA under transcriptional control of the tbpB promoter, was constructed. This mutant did not express Tbp2 but expressed wild-type levels of Tbp1 and possessed the phenotype of reduced binding of Tf, decreased iron uptake from Tf, but normal growth on Tf plates. Mutants expressing Tbp2 and not Tbp1 bound less Tf, did not grow on Tf plates, and did not take up iron from Tf. These results suggest that tbpB and tbpA are polycistronic. Tbp2 apparently facilitates binding of Tf but is not essential for acquisition of iron from Tf under these in vitro conditions.
PMCID: PMC205484  PMID: 8195069
18.  Trypanosomal TBP Functions with the Multisubunit Transcription Factor tSNAP To Direct Spliced-Leader RNA Gene Expression 
Molecular and Cellular Biology  2005;25(16):7314-7322.
Protein-coding genes of trypanosomes are mainly transcribed polycistronically and cleaved into functional mRNAs in a process that requires trans splicing of a capped 39-nucleotide RNA derived from a short transcript, the spliced-leader (SL) RNA. SL RNA genes are individually transcribed from the only identified trypanosome RNA polymerase II promoter. We have purified and characterized a sequence-specific SL RNA promoter-binding complex, tSNAPc, from the pathogenic parasite Trypanosoma brucei, which induces robust transcriptional activity within the SL RNA gene. Two tSNAPc subunits resemble essential components of the metazoan transcription factor SNAPc, which directs small nuclear RNA transcription. A third subunit is unrelated to any eukaryotic protein and identifies tSNAPc as a unique trypanosomal transcription factor. Intriguingly, the unusual trypanosome TATA-binding protein (TBP) tightly associates with tSNAPc and is essential for SL RNA gene transcription. These findings provide the first view of the architecture of a transcriptional complex that assembles at an RNA polymerase II-dependent gene promoter in a highly divergent eukaryote.
PMCID: PMC1190245  PMID: 16055739
19.  A novel gene organization: intronic snoRNA gene clusters from Oryza sativa 
Nucleic Acids Research  2002;30(14):3262-3272.
Based on the analysis of structural features and conserved elements, 27 novel snoRNA genes have been identified from rice. All of them belong to the C/D box-containing snoRNA family except for one that belongs to the H/ACA box type. The newly found genes fall into six clusters that comprise at least three snoRNA genes, and in one case as many as nine genes. Interestingly, four of the six clusters are located within the largest intron of a protein coding gene. The majority of intronic snoRNA gene clusters are simply formed by multiple copies of the same species of snoRNA gene that possess the identical functional elements. This implies a possible mechanism of duplication for the origin of repeating snoRNA coding regions in one intron. However, a few intronic snoRNA gene clusters consisting of different snoRNAs species were also observed. Polycistronic precursors from two independently transcribed clusters were demonstrated by RT–PCR and individual snoRNAs processed from the polycistronic precursors were positively determined by reverse transcription assay. Analyses of the intergenic spacers in the clusters showed that, in addition to a very high AT content, the processing signals in rice snoRNA polycistronic transcripts might be different from those of yeast. Our results demonstrate that, in both plants and mammals, numerous snoRNAs can be produced simultaneously from an mRNA precursor of a host gene despite the different arrangements. The intronic snoRNA gene cluster is a novel gene organization, which is so far unique to plants. The conservation of intronic snoRNA gene clusters in plants was further demonstrated by the study of a similar snoRNA gene organization in the first intron of a Hsp70 gene from wild rice and Zizania caduciflora.
PMCID: PMC135747  PMID: 12136108
20.  Nonsense-Mediated mRNA Decay Immunity Can Help Identify Human Polycistronic Transcripts 
PLoS ONE  2014;9(3):e91535.
Eukaryotic polycistronic transcription units are rare and only a few examples are known, mostly being the outcome of serendipitous discovery. We claim that nonsense-mediated mRNA decay (NMD) immune structure is a common characteristic of polycistronic transcripts, and that this immunity is an emergent property derived from all functional CDSs. The human RefSeq transcriptome was computationally screened for transcripts capable of eliciting NMD, and which contain an additional ORF(s) potentially capable of rescuing the transcript from NMD. Transcripts were further analyzed implementing domain-based strategies in order to estimate the potential of the candidate ORF to encode a functional protein. Consequently, we predict the existence of forty nine novel polycistronic transcripts.
Experimental verification was carried out utilizing two different types of analyses. First, five Gene Expression Omnibus (GEO) datasets from published NMD-inhibition studies were used, aiming to explore whether a given mRNA is indeed insensitive to NMD. All known bicistronic transcripts and eleven out of the twelve predicted genes that were analyzed, displayed NMD insensitivity using various NMD inhibitors. For three genes, a mixed expression pattern was observed presenting both NMD sensitivity and insensitivity in different cell types. Second, we used published global translation initiation sequencing data from HEK293 cells to verify the existence of translation initiation sites in our predicted polycistronic genes. In five of our genes, the predicted rescuing uORFs are indeed identified as translation initiation sites, and in two additional genes, one of two predicted rescuing uORF is verified. These results validate our computational analysis and reinforce the possibility that NMD-immune architecture is a parameter by which polycistronic genes can be identified. Moreover, we present evidence for NMD-mediated regulation controlling the production of one or more proteins encoded in the polycistronic transcript.
PMCID: PMC3951408  PMID: 24621851
21.  TATA-binding protein is limiting for both TATA-containing and TATA-lacking RNA polymerase III promoters in Drosophila cells. 
Molecular and Cellular Biology  1996;16(12):6909-6916.
We have investigated the role of the TATA-binding protein (TBP) in modulating RNA polymerase (Pol) III gene activity. Epitope-tagged TBP (e-TBP) was both transiently and stably transfected in Drosophila Schneider S-2 cells to increase the total cellular level of TBP. Analysis of the transcripts synthesized from cotransfected tRNA and U6 RNA genes revealed that both types of RNA Pol III promoters were substantially stimulated by an increase in e-TBP in a dose-dependent manner. Furthermore, a TBP-dependent increase in the levels of endogenous tRNA transcripts was produced in the stable line induced to express the e-TBP. We further determined whether the ability of increased TBP to induce RNA Pol III gene expression was due to a direct effect of increased TBP complexes on RNA Pol III gene promoters or an indirect consequence of enhanced expression of RNA Pol II genes. A TBP expression plasmid (e-TBP332), containing a mutation within the highly conserved carboxy-terminal domain, was both transiently and stably transfected into S-2 cells. e-TBP332 augmented the transcription from two RNA Pol II gene promoters indistinguishably from that observed when e-TBP was expressed. In contrast, e-TBP332 was completely defective in its ability to stimulate either the tRNA or U6 RNA gene promoters. In addition, increasing levels of a truncated TBP protein containing only the carboxy-terminal region failed to induce either the tRNA or U6 RNA gene promoter, whereas it retained its ability to stimulate an RNA Pol II promoter. Thus, the TBP-dependent increase in RNA Pol II gene activity is not sufficient for enhanced RNA Pol III gene transcription; rather, a direct effect on RNA Pol III promoters is required. Furthermore, these results provide the first direct evidence that the amino-terminal region of TBP is important for the formation or function of TBP-containing complexes utilized by TATA-less and TATA-containing RNA Pol III promoters. Together, these studies demonstrate that TBP is limiting for the expression of both classes of RNA Pol III promoters in Drosophila cells and implicate an important role for TBP in regulating RNA Pol III gene expression.
PMCID: PMC231694  PMID: 8943346
22.  Monocistronic transcription is the physiological mechanism of sea urchin embryonic histone gene expression. 
Molecular and Cellular Biology  1981;1(7):661-671.
We have examined histone gene expression during the early stages of sea urchin embryogenesis. The five histone genes expressed at that time are contained in tandem repetitive segments. It has been suggested that adjacent coding regions and their intervening spacer sequences are transcribed into large polycistronic messenger ribonucleic acid (RNA) precursors. We have subcloned into pBR322 deoxyribonucleic acid (DNA) sequences mapping either in the coding region, the 5' spacer, or the 3' spacer of the H2B histone gene. These clones were used to produce radioiodinated hybridization probes. We measured the steady-state quantity of H2B messenger RNA as well as spacer-specific RNA in the total RNA from embryos taken at various stages of development from fertilization to hatching of blastulae (0 to 22 h post-fertilization). Small amounts of RNA hybridizing to both spacer probes could be found. However, we show that these RNAs form mismatched hybrids with the spacer DNA and therefore cannot originate from the spacers present in the histone genes. We conclude that there is no detectable transcription of the spacer regions on either side of the H2B histone gene. The detection limit for RNA complementary to the 5' spacer sequence corresponds to a maximum of about three RNA molecules per cell, an amount shown to be far less than the projected steady-state pool size of a putative polycistronic transcript, if such a precursor were to be the obligatory transcript of the histone genes. (This conclusion was derived by using the known rates of production of H2B mRNA throughout early development [R. E. Maxson and F. H. Wilt, Dev. Biol., in press].) The physiologically relevant transcript of the histone genes in early development is therefore monocistronic and probably identical to the messenger RNA itself.
PMCID: PMC369713  PMID: 9279379
23.  Acetyl Coenzyme A Stimulates RNA Polymerase II Transcription and Promoter Binding by Transcription Factor IID in the Absence of Histones 
Molecular and Cellular Biology  2000;20(6):1923-1930.
Protein acetylation has emerged as a means of controlling levels of mRNA synthesis in eukaryotic cells. Here we report that acetyl coenzyme A (acetyl-CoA) stimulates RNA polymerase II transcription in vitro in the absence of histones. The effect of acetyl-CoA on basal and activated transcription was studied in a human RNA polymerase II transcription system reconstituted from recombinant and highly purified transcription factors. Both basal and activated transcription were stimulated by the addition of acetyl-CoA to transcription reaction mixtures. By varying the concentrations of general transcription factors in the reaction mixtures, we found that acetyl-CoA decreased the concentration of TFIID required to observe transcription. Electrophoretic mobility shift assays and DNase I footprinting revealed that acetyl-CoA increased the affinity of the general transcription factor TFIID for promoter DNA in a TBP-associated factor (TAF)-dependent manner. Interestingly, acetyl-CoA also caused a conformational change in the TFIID-TFIIA-promoter complex as assessed by DNase I footprinting. These results show that acetyl-CoA alters the DNA binding activity of TFIID and indicate that this biologically important cofactor functions at multiple levels to control gene expression.
PMCID: PMC110810  PMID: 10688640
24.  Butyrate Induced IGF2 Activation Correlated with Distinct Chromatin Signatures Due to Histone Modification 
Histone modification has emerged as a very important mechanism regulating the transcriptional status of the genome. Insulin-like growth factor 2 (IGF2) is a peptide hormone controlling various cellular processes, including proliferation and apoptosis. H19 gene is closely linked to IGF2 gene, and IGF2 and H19 are reciprocally regulated imprinted genes. The epigenetic signature of H19 promoter (hypermethylation) on the paternal allele plays a vital role in allowing the expression of the paternal allele of IGF2.46 Our previous studies demonstrate that butyrate regulates the expression of IGF2 as well as genes encoding IGF Binding proteins. To obtain further understanding of histone modification and its regulatory potentials in controlling IGF2/H19 gene expression, we investigated the histone modification status of some key histones associated with the expression of IGF2/H19 genes in bovine cells using RNA-seq in combination with Chip-seq technology. A high-resolution map of the major chromatin modification at the IGF2/H19 locus induced by butyrate was constructed to illustrate the fundamental association of the chromatin modification landscape that may play a role in the activation of the IGF2 gene. High-definition epigenomic landscape mapping revealed that IGF2 and H19 have distinct chromatin modification patterns at their coding and promoter regions, such as TSSs and TTSs. Moreover, the correlation between the differentially methylated regions (DMRs) of IGF2/H19 locus and histone modification (acetylation and methylation) indicated that epigenetic signatures/markers of DNA methylation, histone methylation and histone acetylation were differentially distributed on the expressed IGF2 and silenced H19 genes. Our evidence also suggests that butyrate-induced regional changes of histone acetylation statusin the upstream regulation domain of H19 may be related to the reduced expression of H19 and strong activation of IGF2. Our results provided insights into the mechanism of butyrate-induced loss of imprinting (LOI) of IGF2 and regulation of gene expression by histone modification.
PMCID: PMC3623616  PMID: 23645985
bovine; butyrate; ChIP-seq; chromatin; histone modification; IGF2
25.  tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans 
Nucleic Acids Research  2010;38(17):5833-5843.
Nuclear-encoded tRNAs are universally transcribed by RNA polymerase III (Pol-III) and contain intragenic promoters. Transcription of vertebrate tRNASec however requires extragenic promoters similar to Pol-III transcribed U6 snRNA. Here, we present a comparative analysis of tRNASec transcription in humans and the parasitic protozoa Trypanosoma brucei, two evolutionary highly diverged eukaryotes. RNAi-mediated ablation of Pol-II and Pol-III as well as oligo-dT induced transcription termination show that the human tRNASec is a Pol-III transcript. In T. brucei protein-coding genes are polycistronically transcribed by Pol-II and processed by trans-splicing and polyadenylation. tRNA genes are generally clustered in between polycistrons. However, the trypanosomal tRNASec genes are embedded within a polycistron. Their transcription is sensitive to α-amanitin and RNAi-mediated ablation of Pol-II, but not of Pol-III. Ectopic expression of the tRNASec outside but not inside a polycistron requires an added external promoter. These experiments demonstrate that trypanosomal tRNASec, in contrast to its human counterpart, is transcribed by Pol-II. Synteny analysis shows that in trypanosomatids the tRNASec gene can be found in two different polycistrons, suggesting that it has evolved twice independently. Moreover, intron-encoded tRNAs are present in a number of eukaryotic genomes indicating that Pol-II transcription of tRNAs may not be restricted to trypanosomatids.
PMCID: PMC2943599  PMID: 20444878

Results 1-25 (1462415)