PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1312339)

Clipboard (0)
None

Related Articles

1.  Image Processing Techniques for Assessing Contractility in Isolated Adult Cardiac Myocytes 
We describe a computational framework for the comprehensive assessment of contractile responses of enzymatically dissociated adult cardiac myocytes. The proposed methodology comprises the following stages: digital video recording of the contracting cell, edge preserving total variation-based image smoothing, segmentation of the smoothed images, contour extraction from the segmented images, shape representation by Fourier descriptors, and contractility assessment. The different stages are variants of mathematically sound and computationally robust algorithms very well established in the image processing community. The physiologic application of the methodology is evaluated by assessing overall contraction in enzymatically dissociated adult rat cardiocytes. Our results demonstrate the effectiveness of the proposed approach in characterizing the true, two-dimensional, “shortening” in the contraction process of adult cardiocytes. We compare the performance of the proposed method to that of a popular edge detection system in the literature. The proposed method not only provides a more comprehensive assessment of the myocyte contraction process but also can potentially eliminate historical concerns and sources of errors caused by myocyte rotation or translation during contraction. Furthermore, the versatility of the image processing techniques makes the method suitable for determining myocyte shortening in cells that usually bend or move during contraction. The proposed method can be utilized to evaluate changes in contractile behavior resulting from drug intervention, disease modeling, transgeneity, or other common applications to mammalian cardiocytes.
doi:10.1155/2009/352954
PMCID: PMC2829623  PMID: 20224633
2.  Image Processing Techniques for Assessing Contractility in Isolated Neonatal Cardiac Myocytes 
We describe a computational framework for the quantitative assessment of contractile responses of isolated neonatal cardiac myocytes. To the best of our knowledge, this is the first report on a practical and accessible method for the assessment of contractility in neonatal cardiocytes. The proposed methodology is comprised of digital video recording of the contracting cell, signal preparation, representation by polar Fourier descriptors, and contractility assessment. The different processing stages are variants of mathematically sound and computationally robust algorithms very well established in the scientific community. The described computational approach provides a comprehensive assessment of the neonatal cardiac myocyte contraction without the need of elaborate instrumentation. The versatility of the methodology allows it to be employed in determining myocyte contractility almost simultaneously with the acquisition of the Ca2+ transient and other correlates of cell contraction. The proposed methodology can be utilized to evaluate changes in contractile behavior resulting from drug intervention, disease models, transgeneity, or other common applications of neonatal cardiocytes.
doi:10.1155/2011/729732
PMCID: PMC3151489  PMID: 21826135
3.  Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block 
Journal of Clinical Investigation  2006;116(9):2413-2422.
The role of cardiocytes in physiologic removal of apoptotic cells and the subsequent effect of surface binding by anti-SSA/Ro and -SSB/La antibodies was addressed. Initial experiments evaluated induction of apoptosis by extrinsic and intrinsic pathways. Nuclear injury and the translocation of SSA/Ro and SSB/La antigens to the fetal cardiocyte plasma membrane were common downstream events of Fas and TNF receptor ligation, requiring caspase activation. As assessed by phase-contrast and confirmed by confocal microscopy, coculturing of healthy cardiocytes with cardiocytes rendered apoptotic via extrinsic pathways revealed a clearance mechanism that to our knowledge has not previously been described. Cultured fetal cardiocytes expressed phosphatidylserine receptors (PSRs), as did cardiac tissue from a fetus with congenital heart block (CHB) and an age-matched control. Phagocytic uptake was blocked by anti-PSR antibodies and was significantly inhibited following preincubation of apoptotic cardiocytes with chicken and murine anti-SSA/Ro and -SSB/La antibodies, with IgG from an anti-SSA/Ro– and -SSB/La–positive mother of a CHB child, but not with anti–HLA class I antibody. In a murine model, anti-Ro60 bound and inhibited uptake of apoptotic cardiocytes from wild-type but not Ro60-knockout mice. Our results suggest that resident cardiocytes participate in physiologic clearance of apoptotic cardiocytes but that clearance is inhibited by opsonization via maternal autoantibodies, resulting in accumulation of apoptotic cells, promoting inflammation and subsequent scarring.
doi:10.1172/JCI27803
PMCID: PMC1533875  PMID: 16906225
4.  Microtubule Stabilization in Pressure Overload Cardiac Hypertrophy  
The Journal of Cell Biology  1997;139(4):963-973.
Increased microtubule density, for which microtubule stabilization is one potential mechanism, causes contractile dysfunction in cardiac hypertrophy. After microtubule assembly, α-tubulin undergoes two, likely sequential, time-dependent posttranslational changes: reversible carboxy-terminal detyrosination (Tyr-tubulin ↔ Glu-tubulin) and then irreversible deglutamination (Glu-tubulin → Δ2-tubulin), such that Glu- and Δ2-tubulin are markers for long-lived, stable microtubules. Therefore, we generated antibodies for Tyr-, Glu-, and Δ2-tubulin and used them for staining of right and left ventricular cardiocytes from control cats and cats with right ventricular hypertrophy. Tyr- tubulin microtubule staining was equal in right and left ventricular cardiocytes of control cats, but Glu-tubulin and Δ2-tubulin staining were insignificant, i.e., the microtubules were labile. However, Glu- and Δ2-tubulin were conspicuous in microtubules of right ventricular cardiocytes from pressure overloaded cats, i.e., the microtubules were stable. This finding was confirmed in terms of increased microtubule drug and cold stability in the hypertrophied cells. In further studies, we found an increase in a microtubule binding protein, microtubule-associated protein 4, on both mRNA and protein levels in pressure-hypertrophied myocardium. Thus, microtubule stabilization, likely facilitated by binding of a microtubule-associated protein, may be a mechanism for the increased microtubule density characteristic of pressure overload cardiac hypertrophy.
PMCID: PMC2139973  PMID: 9362514
5.  Myocardial contractility in the echo lab: molecular, cellular and pathophysiological basis 
In the standard accepted concept, contractility is the intrinsic ability of heart muscle to generate force and to shorten, independently of changes in the preload or afterload with fixed heart rates. At molecular level the crux of the contractile process lies in the changing concentrations of Ca2+ ions in the myocardial cytosol. Ca2+ ions enter through the calcium channel that opens in response to the wave of depolarization that travels along the sarcolemma. These Ca2+ ions "trigger" the release of more calcium from the sarcoplasmic reticulum (SR) and thereby initiate a contraction-relaxation cycle.
In the past, several attempts were made to transfer the pure physiological concept of contractility, expressed in the isolated myocardial fiber by the maximal velocity of contraction of unloaded muscle fiber (Vmax), to the in vivo beating heart. Suga and Sagawa achieved this aim by measuring pressure/volume loops in the intact heart: during a positive inotropic intervention, the pressure volume loop reflects a smaller end-systolic volume and a higher end-systolic pressure, so that the slope of the pressure volume relationship moves upward and to the left. The pressure volume relationship is the most reliable index for assessing myocardial contractility in the intact circulation and is almost insensitive to changes in preload and after load. This is widely used in animal studies and occasionally clinically. The limit of the pressure volume relationship is that it fails to take into account the frequency-dependent regulation of contractility: the frequency-dependent control of transmembrane Ca2+ entry via voltage-gated Ca2+ channels provides cardiac cells with a highly sophisticated short-term system for the regulation of intracellular Ca2+ homeostasis. An increased stimulation rate increases the force of contraction: the explanation is repetitive Ca2+ entry with each depolarization and, hence, an accumulation of cytosolic calcium. As the heart fails, there is a change in the gene expression from the normal adult pattern to that of fetal life with an inversion of the normal positive slope of the force-frequency relation: systolic calcium release and diastolic calcium reuptake process is lowered at the basal state and, instead of accelerating for increasing heart rates, slows down. Since the force-frequency relation uncovers initial alteration of contractility, as an intermediate step between normal and abnormal contractility at rest, a practical index to measure it is mandatory.
Measuring end-systolic elastance for increasing heart rates is impractical: increasing heart rates with atrial pacing has to be adjunct to the left ventricular conductance catheter, to the left ventricular pressure catheter, to the vena cava balloon, and to afterload changes. Furthermore, a noninvasive index is needed. Noninvasive measurement of the pressure/volume ratio for increasing heart rates during stress in the echo lab could be the practical answer to this new clinical demand in the current years of a dramatic increase in the number of heart failure patients.
doi:10.1186/1476-7120-3-27
PMCID: PMC1242240  PMID: 16150150
6.  Role of the Urokinase Plasminogen Activator Receptor in Mediating Impaired Efferocytosis of Anti-SSA/Ro Bound Apoptotic Cardiocytes: Implications in the Pathogenesis of Congenital Heart Block 
Circulation research  2010;107(3):374-387.
Rationale
Binding of maternal anti-Ro/La antibodies to cognate antigen expressed on apoptotic cardiocytes decreases clearance by healthy cardiocytes, which may contribute to the development of autoimmune associated congenital heart block and fatal cardiomyopathy.
Objective
Given recent evidence implicating the urokinase plasminogen activator receptor (uPAR) as a “don’t eat me” signal during efferocytosis, experiments addressed whether surface bound anti-Ro antibodies inhibit apoptotic cell removal via an effect on the expression/function of the urokinase-type plasminogen activator protease (uPA)/uPAR system.
Methods and Results
As assessed by flow cytometry and confocal microscopy, uPAR colocalizes and interacts with Ro60 on the surface of apoptotic human fetal cardiocytes. Blocking of uPAR enhances phagocytosis of apoptotic cardiocytes by healthy cardiocytes and reverses the anti-Ro60 dependent impaired clearance of apoptotic cardiocytes. Binding of anti-Ro60 antibodies to apoptotic cardiocytes results in increased uPAR expression as well as enhanced uPA activity. The binding of anti-Ro60 did not alter other surface molecules involved in cell recognition (calreticulin, CD31 or CD47).
Conclusions
These data suggest that increased uPAR expression and uPA activity induced by anti-Ro60 binding to the apoptotic fetal cardiocyte provide a molecular basis by which these antibodies inhibit efferocytosis and ultimately lead to scar of the fetal conduction system and working myocardium.
doi:10.1161/CIRCRESAHA.109.213629
PMCID: PMC3951117  PMID: 20558828
Congenital heart block; Anti-SSA/Ro60; uPA/uPAR; Apoptosis
7.  Two-dimensional Strain Imaging of Controlled Rabbit Hearts 
Ultrasound in medicine & biology  2009;35(9):1488-1501.
Ultrasound strain imaging using two-dimensional (2-D) speckle tracking has been proposed to quantitatively assess changes in myocardial contractility due to ischemia. Its performance must be demonstrated in a controlled model system as a step toward routine clinical application. In this study, a well-controlled 2-D cardiac elasticity imaging technique was developed using two coplanar and orthogonal linear probes simultaneously imaging an isolated retroperfused rabbit heart. Acute ischemia was generated by left anterior descending (LAD) artery ligation. An excitation-contraction decoupler, 2,3-butanedione monoxime, was applied at a 4mM concentration to reversibly reduce myocardial contractility. Results using a single probe demonstrate that directional changes in the in-plane principal deformation axes can help locate the bulging area due to LAD ligation, which matched well with corresponding Evans Blue staining, and strains, or strain magnitude, based on principal stretches can characterize heart muscle contractility. These two findings using asymmetric displacement accuracy (i.e., normal single probe measurements with good axial but poor lateral estimates) were further validated using symmetric displacement accuracy (i.e., dual probe measurements using only accurate axial tracking estimates from each). However, the accuracy of 2-D cardiac strain imaging using a single probe depends on the probe’s orientation due to the large variance in lateral displacement estimates.
doi:10.1016/j.ultrasmedbio.2009.04.007
PMCID: PMC2731831  PMID: 19616362
cardiac strain; 2-D speckle tracking; principal stretch; Langendorff
8.  3D Traction Forces in Cancer Cell Invasion 
PLoS ONE  2012;7(3):e33476.
Cell invasion through a dense three-dimensional (3D) matrix is believed to depend on the ability of cells to generate traction forces. To quantify the role of cell tractions during invasion in 3D, we present a technique to measure the elastic strain energy stored in the matrix due to traction-induced deformations. The matrix deformations around a cell were measured by tracking the 3D positions of fluorescent beads tightly embedded in the matrix. The bead positions served as nodes for a finite element tessellation. From the strain in each element and the known matrix elasticity, we computed the local strain energy in the matrix surrounding the cell. We applied the technique to measure the strain energy of highly invasive MDA-MB-231 breast carcinoma and A-125 lung carcinoma cells in collagen gels. The results were compared to the strain energy generated by non-invasive MCF-7 breast and A-549 lung carcinoma cells. In all cases, cells locally contracted the matrix. Invasive breast and lung carcinoma cells showed a significantly higher contractility compared to non-invasive cells. Higher contractility, however, was not universally associated with higher invasiveness. For instance, non-invasive A-431 vulva carcinoma cells were the most contractile cells among all cell lines tested. As a universal feature, however, we found that invasive cells assumed an elongated spindle-like morphology as opposed to a more spherical shape of non-invasive cells. Accordingly, the distribution of strain energy density around invasive cells followed patterns of increased complexity and anisotropy. These results suggest that not so much the magnitude of traction generation but their directionality is important for cancer cell invasion.
doi:10.1371/journal.pone.0033476
PMCID: PMC3316584  PMID: 22479403
9.  Analysis of Mitochondrial 3D-Deformation in Cardiomyocytes during Active Contraction Reveals Passive Structural Anisotropy of Orthogonal Short Axes 
PLoS ONE  2011;6(7):e21985.
The cardiomyocyte cytoskeleton, composed of rigid and elastic elements, maintains the isolated cell in an elongated cylindrical shape with an elliptical cross-section, even during contraction-relaxation cycles. Cardiomyocyte mitochondria are micron-sized, fluid-filled passive spheres distributed throughout the cell in a crystal-like lattice, arranged in pairs sandwiched between the sarcomere contractile machinery, both longitudinally and radially. Their shape represents the extant 3-dimensional (3D) force-balance. We developed a novel method to examine mitochondrial 3D-deformation in response to contraction and relaxation to understand how dynamic forces are balanced inside cardiomyocytes. The variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows can be analyzed by Fourier transformation along a given cardiomyocyte axis to measure mitochondrial deformation along that axis. This technique enables precise detection of changes in dimension of ∼1% in ∼1 µm (long-axis) structures with 8 ms time-resolution. During active contraction (1 Hz stimulation), mitochondria deform along the length- and width-axes of the cell with similar deformation kinetics in both sarcomere and mitochondrial structures. However, significant deformation anisotropy (without hysteresis) was observed between the orthogonal short-axes (i.e., width and depth) of mitochondria during electrical stimulation. The same degree of deformation anisotropy was also found between the myocyte orthogonal short-axes during electrical stimulation. Therefore, the deformation of the mitochondria reflects the overall deformation of the cell, and the apparent stiffness and stress/strain characteristics of the cytoskeleton differ appreciably between the two cardiomyocyte orthogonal short-axes. This method may be applied to obtaining a better understanding of the dynamic force-balance inside cardiomyocytes and of changes in the spatial stiffness characteristics of the cytoskeleton that may accompany aging or pathological conditions.
doi:10.1371/journal.pone.0021985
PMCID: PMC3136939  PMID: 21779362
10.  Functional Modulation of Cardiac Form through Regionally Confined Cell Shape Changes 
PLoS Biology  2007;5(3):e53.
Developing organs acquire a specific three-dimensional form that ensures their normal function. Cardiac function, for example, depends upon properly shaped chambers that emerge from a primitive heart tube. The cellular mechanisms that control chamber shape are not yet understood. Here, we demonstrate that chamber morphology develops via changes in cell morphology, and we determine key regulatory influences on this process. Focusing on the development of the ventricular chamber in zebrafish, we show that cardiomyocyte cell shape changes underlie the formation of characteristic chamber curvatures. In particular, cardiomyocyte elongation occurs within a confined area that forms the ventricular outer curvature. Because cardiac contractility and blood flow begin before chambers emerge, cardiac function has the potential to influence chamber curvature formation. Employing zebrafish mutants with functional deficiencies, we find that blood flow and contractility independently regulate cell shape changes in the emerging ventricle. Reduction of circulation limits the extent of cardiomyocyte elongation; in contrast, disruption of sarcomere formation releases limitations on cardiomyocyte dimensions. Thus, the acquisition of normal cardiomyocyte morphology requires a balance between extrinsic and intrinsic physical forces. Together, these data establish regionally confined cell shape change as a cellular mechanism for chamber emergence and as a link in the relationship between form and function during organ morphogenesis.
Author Summary
As organs develop, they acquire a characteristic shape; the factors governing this complex process, however, are not understood. Shape may be sculpted by cell movement, cell division, or changes in cell size and shape, all of which can be influenced by the local environment. Here we investigate heart formation to understand how organs develop. The heart appears as a simple tube early in development; later, the tube walls bulge outward to form the cardiac chambers. Using transgenic zebrafish in which we can watch individual cardiac cells, we found that cells change size and shape, enlarging and elongating to form the bulges in the heart tube and eventually the chambers. Since the heart is beating as it develops, we asked whether cardiac function influences cell shape. Using zebrafish mutants with functional defects, we found that both blood flow and cardiac contractility influence cardiac cell shape. We propose that a balance of the cell's internal forces (through contractility) with external forces (such as blood flow) is necessary to create the cell shapes that generate chamber curvatures. Disruption of this balance may underlie the aberrations observed in some types of heart disease.
Cardiac function depends upon properly shaped heart chambers. Here the authors show that blood flow and contractility independently regulate cell shape changes in the emerging ventricle.
doi:10.1371/journal.pbio.0050053
PMCID: PMC1802756  PMID: 17311471
11.  Strain measurement in the left ventricle during systole with deformable image registration ✩ 
Medical image analysis  2008;13(2):354-361.
The objective of this study was to validate a deformable image registration technique, termed Hyperelastic Warping, for left ventricular strain measurement during systole using cine-gated, nontagged MR images with strains measured from tagged MRI. The technique combines deformation from high resolution, non-tagged MR image data with a detailed computational model, including estimated myocardial material properties, fiber direction, and active fiber contraction, to provide a comprehensive description of myocardial contractile function. A normal volunteer (male, age 30) with no history of cardiac pathology was imaged with a 1.5 T Siemens Avanto clinical scanner using a TrueFISP imaging sequence and a 32-channel cardiac coil. Both tagged and non-tagged cine MR images were obtained. The Hyperelastic Warping solution was evolved using a series of non-tagged images in ten intermediate phases from end-diastole to end-systole. The solution may be considered as ten separate warping problems with multiple templates and targets. At each stage, an active contraction was initially applied to a finite element model, and then image-based warping penalty forces were utilized to generate the final registration. Warping results for circumferential strain (R2 = 0.75) and radial strain (R2 = 0.78) were strongly correlated with results obtained from tagged MR images analyzed with a Harmonic Phase (HARP) algorithm. Results for fiber stretch, LV twist, and transmural strain distributions were in good agreement with experimental values in the literature. In conclusion, Hyperelastic Warping provides a unique alternative for quantifying regional LV deformation during systole without the need for tags.
doi:10.1016/j.media.2008.07.004
PMCID: PMC2873141  PMID: 18948056
Strain; Left ventricle; Systole; Deformable image registration; Soft tissue mechanics; Finite element; Magnetic resonance imaging
12.  Connection between Oligomeric State and Gating Characteristics of Mechanosensitive Ion Channels 
PLoS Computational Biology  2013;9(5):e1003055.
The mechanosensitive channel of large conductance (MscL) is capable of transducing mechanical stimuli such as membrane tension into an electrochemical response. MscL provides a widely-studied model system for mechanotransduction and, more generally, for how bilayer mechanical properties regulate protein conformational changes. Much effort has been expended on the detailed experimental characterization of the molecular structure and biological function of MscL. However, despite its central significance, even basic issues such as the physiologically relevant oligomeric states and molecular structures of MscL remain a matter of debate. In particular, tetrameric, pentameric, and hexameric oligomeric states of MscL have been proposed, together with a range of detailed molecular structures of MscL in the closed and open channel states. Previous theoretical work has shown that the basic phenomenology of MscL gating can be understood using an elastic model describing the energetic cost of the thickness deformations induced by MscL in the surrounding lipid bilayer. Here, we generalize this elastic model to account for the proposed oligomeric states and hydrophobic shapes of MscL. We find that the oligomeric state and hydrophobic shape of MscL are reflected in the energetic cost of lipid bilayer deformations. We make quantitative predictions pertaining to the gating characteristics associated with various structural models of MscL and, in particular, show that different oligomeric states and hydrophobic shapes of MscL yield distinct membrane contributions to the gating energy and gating tension. Thus, the functional properties of MscL provide a signature of the oligomeric state and hydrophobic shape of MscL. Our results suggest that, in addition to the hydrophobic mismatch between membrane proteins and the surrounding lipid bilayer, the symmetry and shape of the hydrophobic surfaces of membrane proteins play an important role in the regulation of protein function by bilayer membranes.
Author Summary
A fundamental property of living cells is their ability to detect mechanical stimuli. Microbes, in particular, often transition between different chemical environments, leading to osmotic shock and concurrent changes in membrane tension. The tension of microbial cell membranes is detected and controlled by membrane molecules such as the widely-studied mechanosensitive channels which, depending on the tension exerted by the surrounding lipid bilayer, switch between closed and open states. Thus, the biological function of mechanosensitive channels relies on an interplay between bilayer mechanical properties and protein structure. Using a physical model of cell membranes it was shown previously that the basic phenomenology of mechanosensitive gating can be understood in terms of the bilayer deformations induced by mechanosensitive channels. We have generalized this physical model to allow for the molecular structures of mechanosensitive channels reported in recent experiments. Our methodology allows the calculation of protein-induced membrane deformations for arbitrary oligomeric states of membrane proteins. We predict that distinct oligomeric states and hydrophobic shapes of mechanosensitive channels lead to distinct functional responses to membrane tension. Our results suggest that the shape of membrane proteins, and resulting structure of membrane deformations, plays a crucial role in the regulation of protein function by bilayer membranes.
doi:10.1371/journal.pcbi.1003055
PMCID: PMC3656111  PMID: 23696720
13.  Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data 
This paper proposes an original approach for the statistical analysis of longitudinal shape data. The proposed method allows the characterization of typical growth patterns and subject-specific shape changes in repeated time-series observations of several subjects. This can be seen as the extension of usual longitudinal statistics of scalar measurements to high-dimensional shape or image data.
The method is based on the estimation of continuous subject-specific growth trajectories and the comparison of such temporal shape changes across subjects. Differences between growth trajectories are decomposed into morphological deformations, which account for shape changes independent of the time, and time warps, which account for different rates of shape changes over time.
Given a longitudinal shape data set, we estimate a mean growth scenario representative of the population, and the variations of this scenario both in terms of shape changes and in terms of change in growth speed. Then, intrinsic statistics are derived in the space of spatiotemporal deformations, which characterize the typical variations in shape and in growth speed within the studied population. They can be used to detect systematic developmental delays across subjects.
In the context of neuroscience, we apply this method to analyze the differences in the growth of the hippocampus in children diagnosed with autism, developmental delays and in controls. Result suggest that group differences may be better characterized by a different speed of maturation rather than shape differences at a given age. In the context of anthropology, we assess the differences in the typical growth of the endocranium between chimpanzees and bonobos. We take advantage of this study to show the robustness of the method with respect to change of parameters and perturbation of the age estimates.
doi:10.1007/s11263-012-0592-x
PMCID: PMC3744347  PMID: 23956495
longitudinal data; statistics; shape regression; growth; spatiotemporal registration; time warp
14.  In Vivo Dynamic Deformation of the Mitral Valve Annulus 
Annals of biomedical engineering  2009;37(9):1757-1771.
Though mitral valve (MV) repair surgical procedures have increased in the United States [Gammie, J. S., et al. Ann. Thorac. Surg. 87(5):1431–1437, 2009; Nowicki, E. R., et al. Am. Heart J. 145(6):1058–1062, 2003], studies suggest that altering MV stress states may have an effect on tissue homeostasis, which could impact the long-term outcome [Accola, K. D., et al. Ann. Thorac. Surg. 79(4):1276–1283, 2005; Fasol, R., et al. Ann. Thorac. Surg. 77(6):1985–1988, 2004; Flameng, W., P. Herijgers, and K. Bogaerts. Circulation 107(12):1609–1613, 2003; Gillinov, A. M., et al. Ann. Thorac. Surg. 69(3):717–721, 2000]. Improved computational modeling that incorporates structural and geometrical data as well as cellular components has the potential to predict such changes; however, the absence of important boundary condition information limits current efforts. In this study, novel high definition in vivo annular kinematic data collected from surgically implanted sonocrystals in sheep was fit to a contiguous 3D spline based on quintic-order hermite shape functions with C2 continuity. From the interpolated displacements, the annular axial strain and strain rate, bending, and twist along the entire annulus were calculated over the cardiac cycle. Axial strain was shown to be regionally and temporally variant with minimum and maximum values of −10 and 4%, respectively, observed. Similarly, regionally and temporally variant strain rate values, up to 100%/s contraction and 120%/s elongation, were observed. Both annular bend and twist data showed little deviation from unity with limited regional variations, indicating that most of the energy for deformation was associated with annular axial strain. The regionally and temporally variant strain/strain rate behavior of the annulus are related to the varied fibrous-muscle structure and contractile behavior of the annulus and surrounding ventricular structures, although specific details are still unavailable. With the high resolution shape and displacement information described in this work, high fidelity boundary conditions can be prescribed in future MV finite element models, leading to new insights into MV function and strategies for repair.
doi:10.1007/s10439-009-9749-3
PMCID: PMC3017467  PMID: 19585241
Heart valves; Mitral valve; Mitral valve annulus; Biomechanics; Deformation; Cardiac kinematics
15.  The role of cell death and myofibrillar damage in contractile dysfunction of long-term cultured adult cardiomyocytes exposed to doxorubicin 
Cytotechnology  2009;61(1-2):25-36.
In failing hearts cardiomyocytes undergo alterations in cytoskeleton structure, contractility and viability. It is not known presently, how stress-induced changes of myofibrils correlate with markers for cell death and contractile function in cardiomyocytes. Therefore, we have studied the progression of contractile dysfunction, myofibrillar damage and cell death in cultured adult cardiomyocytes exposed to the cancer therapy doxorubicin. We demonstrate, that long-term cultured adult cardiomyocytes, a well-established model for the study of myofibrillar structure and effects of growth factors, can also be used to assess contractility and calcium handling. Adult rat ventricular myocytes (ARVM) were isolated and cultured for a total of 14 days in serum containing medium. The organization of calcium-handling proteins and myofibrillar structure in freshly isolated and in long-term cultured adult cardiomyocytes was studied by immunofluorescence and electron microscopy. Excitation contraction-coupling was analyzed by fura 2 and video edge detection in electrically paced cardiomyocytes forming a monolayer, and cell death and viability was measured by TUNEL assay, LDH release, MTT assay, and Western blot for LC3. Adult cardiomyocytes treated with Doxo showed apoptosis and necrosis only at supraclinical concentrations. Treated cells displayed merely alterations in cytoskeleton organization and integrity concomitant with contractile dysfunction and up-regulation of autophagosome formation, but no change in total sarcomeric protein content. We propose, that myofibrillar damage contributes to contractile dysfunction prior to cell death in adult cardiomyocytes exposed to clinically relevant concentrations of anthracyclines.
doi:10.1007/s10616-009-9238-4
PMCID: PMC2795142  PMID: 19890731
Cardiomyocytes; Doxorubicin; Contractility; Apoptosis; Necrosis; Autophagy
16.  MicroRNA-21 Targets Sprouty2 and Promotes Cellular Outgrowths 
Molecular Biology of the Cell  2008;19(8):3272-3282.
The posttranscriptional regulator, microRNA-21 (miR-21), is up-regulated in many forms of cancer, as well as during cardiac hypertrophic growth. To understand its role, we overexpressed it in cardiocytes where it revealed a unique type of cell-to-cell “linker” in the form of long slender outgrowths and branches. We subsequently confirmed that miR-21 directly targets and down-regulates the expression of Sprouty2 (SPRY2), an inhibitor of branching morphogenesis and neurite outgrowths. We found that β-adrenergic receptor (βAR) stimulation induces up-regulation of miR-21 and down-regulation of SPRY2 and is, likewise, associated with connecting cell branches. Knockdown of SPRY2 reproduced the branching morphology in cardiocytes, and vice versa, knockdown of miR-21 using a specific ‘miRNA eraser’ or overexpression of SPRY2 inhibited βAR-induced cellular outgrowths. These structures enclose sarcomeres and connect adjacent cardiocytes through functional gap junctions. To determine how this aspect of miR-21 function translates in cancer cells, we knocked it down in colon cancer SW480 cells. This resulted in disappearance of their microvillus-like protrusions accompanied by SPRY2-dependent inhibition of cell migration. Thus, we propose that an increase in miR-21 enhances the formation of various types of cellular protrusions through directly targeting and down-regulating SPRY2.
doi:10.1091/mbc.E08-02-0159
PMCID: PMC2488276  PMID: 18508928
17.  5-Fluorouracil induces apoptosis in rat cardiocytes through intracellular oxidative stress 
Background
Cardiotoxicity is a major complication of anticancer drugs, including anthracyclines and 5-fluorouracil(5-FU) and it can have detrimental effects both in patients and workers involved in the preparation of chemotherapy.
Methods
Specifically, we have assessed the effects of increasing concentrations of 5-FU and doxorubicin (DOXO) on proliferation of H9c2 rat cardiocytes and HT-29 human colon adenocarcinoma cells by MTT assay. Cells were treated for 24, 48 and 72 h with different concentrations of the two drugs alone or with 5-FU in combination with 10-4 M of levofolene (LF).
Results
5-FU induced a time- and dose-dependent growth inhibition in both cell lines. The 50% growth inhibition (IC:50) was reached at 72 h with concentrations of 4 μM and 400 μM on HT-29 and H9c2, respectively. The addition of LF to 5-FU enhanced this effect. On the other hand, the IC:50 of DOXO was reached at 72 h with concentrations of 0.118 μM on H9c2 and of 0.31 μM for HT-29. We have evaluated the cell death mechanism induced by 50% growth inhibitory concentrations of 5-FU or DOXO in cardiocytes and colon cancer cells. We have found that the treatment with 400 μM 5-FU induced apoptosis in 32% of H9c2 cells. This effect was increased by the addition of LF to 5-FU (38% of apoptotic cells). Apoptosis occurred in only about 10% of HT-29 cells treated with either 5-FU or 5-FU and LF in combination. DOXO induced poor effects on apoptosis of both H9c2 and HT-29 cells (5–7% apoptotic cells, respectively). The apoptosis induced by 5-FU and LF in cardiocytes was paralleled by the activation of caspases 3, 9 and 7 and by the intracellular increase of O2− levels.
Conclusions
These results suggest that cardiotoxic mechanism of chemotherapy agents are different and this disclose a new scenario for prevention of this complication.
doi:10.1186/1756-9966-31-60
PMCID: PMC3461434  PMID: 22812382
5-Fluorouracil; Doxorubicin; Apoptosis; ROS; Cardiotoxicity; Health workers
18.  Cooperative Gating and Spatial Organization of Membrane Proteins through Elastic Interactions 
PLoS Computational Biology  2007;3(5):e81.
Biological membranes are elastic media in which the presence of a transmembrane protein leads to local bilayer deformation. The energetics of deformation allow two membrane proteins in close proximity to influence each other's equilibrium conformation via their local deformations, and spatially organize the proteins based on their geometry. We use the mechanosensitive channel of large conductance (MscL) as a case study to examine the implications of bilayer-mediated elastic interactions on protein conformational statistics and clustering. The deformations around MscL cost energy on the order of 10 kBT and extend ∼3 nm from the protein edge, as such elastic forces induce cooperative gating, and we propose experiments to measure these effects. Additionally, since elastic interactions are coupled to protein conformation, we find that conformational changes can severely alter the average separation between two proteins. This has important implications for how conformational changes organize membrane proteins into functional groups within membranes.
Author Summary
Membranes form flexible boundaries between the interior of a cell and its surrounding environment. Proteins that reside in the membrane are responsible for transporting materials and transmitting signals across these membranes to regulate processes crucial for cellular survival. These proteins respond to stimuli by altering their shape to perform specific tasks, such as channel proteins, which allow the flow of ions in only one conformation. However, the membrane is not just a substrate for these proteins, rather it is an elastic medium that bends and changes thickness to accommodate the proteins embedded in it. Thus, the membrane plays a role in the function of many proteins by affecting which conformation is energetically favorable. Using a physical model that combines membrane elastic properties with the structure of a typical membrane protein, we show that the membrane can communicate structural and hence conformational information between membrane proteins in close proximity. Hence, proteins can “talk” and “respond” to each other using the membrane as a generic “voice.” We show that these membrane-mediated elastic forces can ultimately drive proteins of the same shape to cluster together, leading to spatial organization of proteins within the membrane.
doi:10.1371/journal.pcbi.0030081
PMCID: PMC1864995  PMID: 17480116
19.  Cellular cardiomyoplasty with autologous skeletal myoblasts for ischemic heart disease and heart failure 
Cell transplantation to repair or regenerate injured myocardium is a new frontier in the treatment of cardiovascular disease. Even though it is based on many years of pre-clinical studies, much remains to be understood about this methodology, even as it progresses to the clinic. For example, controversies exist over the specific cells to be used, the dosages needed for tissue repair, how cells will affect the electrical activity of the myocardium, and even whether the cells can improve myocardial function after transplantation — all of which are briefly reviewed here. Autologous skeletal myoblasts appear to be the most well studied and best first generation cells for cardiac repair. Yet cardiocytes and, more recently, stem cells have been proposed as cell sources for this technology. Their advantages and limitations are also discussed. Although cellular cardiomyoplasty (cell transplantation for cardiac repair) shows great pre-clinical promise, its future will heavily depend on conducting carefully controlled, randomized clinical trials with appropriate endpoints. Utilizing biologically active cells provides both an opportunity for tissue repair and the potential for not yet understood outcomes. As with any frontier, many pioneers will attempt to conquer it. But also as with any frontier, there are pitfalls and consequences to be considered that may surpass those of previous endeavors. The future thus requires careful consideration and well-designed trials rather than haste. The promise for cell transplantation is too great to be spoiled by ill-designed attempts that forget to account for the biology of both the cells and the myocardium.
doi:10.1186/cvm-2-5-208
PMCID: PMC59528  PMID: 11806797
cell transplantation; clinical trials; myoblasts; myocardial repair; stem cells
20.  Coordination of fibronectin adhesion with contraction and relaxation in microvascular smooth muscle 
Cardiovascular Research  2012;96(1):73-80.
Aims
The regulation of vascular diameter by vasoconstrictors and vasodilators requires that vascular smooth muscle cells (VSMCs) be physically coupled to extracellular matrix (ECM) and neighbouring cells in order for a vessel to mechanically function and transfer force. The hypothesis was tested that integrin-mediated adhesion to the ECM is dynamically up-regulated in VSMCs during contractile activation in response to a vasoconstrictor and likewise down-regulated during relaxation in response to a vasodilator.
Methods and results
VSMCs were isolated from the Sprague-Dawley rat cremaster muscles. Atomic force microscopy (AFM) with fibronectin (FN)-functionalized probes was employed to investigate the biomechanical responses and adhesion of VSMCs. Responses to angiotensin II (Ang II; 10−6 M) and adenosine (Ado; 10−4 M) were recorded by measurements of cell cortical elasticity and cell adhesion. The results showed that Ang II caused an immediate increase in adhesion (+27%) between the probe and cell. Cell stiffness increased (+70%) in parallel with the adhesion change. Ado decreased adhesion (−15%) to FN and reduced (−30%) stiffness.
Conclusion
Changes in the receptor-mediated activation of the contractile apparatus cause parallel alterations in cell adhesion and cell cortical elasticity. These studies support the hypothesis that the regulation of cell adhesion is coordinated with contraction and demonstrate the dynamic nature of cell adhesion to the ECM. It is proposed that coordination of adhesion and VSMC contraction is an important mechanism that allows for an efficient transfer of force between the contractile apparatus of the cell and the extracellular environment.
doi:10.1093/cvr/cvs239
PMCID: PMC3584957  PMID: 22802110
Vascular smooth muscle cell; Vascular control; Cell adhesion; Cell elasticity; AFM
21.  Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes 
Summary
Background
Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes.
Material/Methods
Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively.
Results
Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10−6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes.
Conclusions
Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.
doi:10.12659/MSM.881843
PMCID: PMC3539556  PMID: 21709626
cardiac hypertrophy; PI3K/Akt; K channels; angiotensin converting enzyme inhibitor
22.  Measurement and analysis of traction force dynamics in response to vasoactive agonists 
Mechanical traction forces exerted by adherent cells on their surroundings serve an important role in a multitude of cellular and physiological processes including cell motility and multicellular rearrangements. For endothelial cells, contraction also provides a means to disrupt cell-cell junctions during inflammation to increase permeability between blood and interstitial tissue compartments. The degree of contractility exhibited by endothelial cells is influenced by numerous soluble factors, such as thrombin, histamine, lysophosphatidic acid, sphingosine-1-phosphate, and vascular endothelial growth factor (VEGF). Upon binding to cell surface receptors, these agents trigger changes in cytoskeletal organization, adhesion and myosin II activity to varying degrees. While conventional antibody-based biochemical assays are suitable for detecting relatively large changes in biomarkers of contractility in endpoint format, they cannot resolve subtle or rapid changes in contractility and cannot do so noninvasively. To overcome these limitations, we developed an approach to measure the contractile response of single cells exposed to contractility agonists with high spatiotemporal resolution. A previously developed traction force sensor, comprised of dense arrays of elastomeric microposts on which cells are cultured, was combined with custom, semi-automated software developed here to extract strain energy measurements from thousands of time-lapse images of micropost arrays deformed by adherent cells. Using this approach we corroborated the differential effects of known agonists of contractility and characterized the dynamics of their effects. All of these agonists produced a characteristic first-order rise and plateau in forces, except VEGF, which stimulated an early transient spike in strain energy followed by a sustained increase. This novel, two-phase contractile response was present in a subpopulation of cells, was mediated through both VEGFR2 and ROCK activation, and its magnitude was modulated by receptor internalization. Interestingly, the concentration of VEGF could shift the proportion of cells that responded with a spike versus only a gradual increase in forces. Furthermore, cells repeatedly exposed to VEGF were found to contract with different dynamics after pretreatment, suggesting that exposure history can impact the mechanical response. These studies highlight the importance of direct measures of traction force dynamics as a tool for studies of mechanotransduction.
doi:10.1039/c0ib00156b
PMCID: PMC3112004  PMID: 21445393
Traction force; stress fiber; myosin; micropost array; VEGF
23.  Modulation of human uterine smooth muscle cell collagen contractility by thrombin, Y-27632, TNF alpha and indomethacin 
Background
Preterm labour occurs in approximately 10% of pregnancies and is a major cause of infant morbidity and mortality. However, the pathways involved in regulating contractility in normal and preterm labour are not fully elucidated. Our aim was to utilise a human myometrial contractility model to investigate the effect of a number of uterine specific contractility agents in this system. Therefore, we investigated the contractile response of human primary uterine smooth muscle cells or immortalised myometrial smooth muscle cells cultured within collagen lattices, to known mediators of uterine contractility, which included thrombin, the ROCK-1 inhibitor Y-27632, tumour necrosis factor alpha (TNF alpha) and the non-steroidal anti-inflammatory indomethacin.
Methods
Cell contractility was calculated over time, with the collagen gel contraction assay, utilising human primary uterine smooth muscle cells (hUtSMCs) and immortalised myometrial smooth muscle cells (hTERT-HM): a decrease in collagen gel area equated to an increase in contractility. RNA was isolated from collagen embedded cells and gene expression changes were analysed by real time fluorescence reverse transcription polymerase chain reaction. Scanning electron and fluorescence microscopy were employed to observe cell morphology and cell collagen gel interactions. Statistical analysis was performed using ANOVA followed by Tukey's post hoc tests.
Results
TNF alpha increased collagen contractility in comparison to the un-stimulated collagen embedded hUtSMC cells, which was inhibited by indomethacin, while indomethacin alone significantly inhibited contraction. Thrombin augmented the contractility of uterine smooth muscle cell and hTERT-HM collagen gels, this effect was inhibited by the thrombin specific inhibitor, hirudin. Y-27632 decreased both basal and thrombin-induced collagen contractility in the hTERT-HM embedded gels. mRNA expression of the thrombin receptor, F2R was up-regulated in hUtSMCs isolated from collagen gel lattices, following thrombin-stimulated contractility.
Conclusion
TNF alpha and thrombin increased uterine smooth muscle cell collagen contractility while indomethacin had the opposite effect. Thrombin-induced collagen contractility resulted in F2R activation which may in part be mediated by the ROCK-1 pathway. This study established the in vitro human myometrial model as a viable method to assess the effects of a range of uterotonic or uterorelaxant agents on contractility, and also permits investigation of the complex regulatory pathways involved in mediating myometrial contractility at labour.
doi:10.1186/1477-7827-7-2
PMCID: PMC2645409  PMID: 19133144
24.  A Generalized Learning Based Framework for Fast Brain Image Registration 
This paper presents a generalized learning based framework for improving both speed and accuracy of the existing deformable registration method. The key of our framework involves the utilization of a support vector regression (SVR) to learn the correlation between brain image appearances and their corresponding shape deformations to a template, for helping significantly cut down the computation cost and improve the robustness to local minima by using the learned correlation to instantly predict a good subject-specific deformation initialization for any given subject under registration. Our framework consists of three major parts: 1) training of SVR models based on the statistics of image samples and their shape deformations to capture intrinsic image-deformation correlations, 2) deformation prediction for a new subject with the trained SVR models to generate a subject-resemblance intermediate template by warping the original template with the predicted deformations, and 3) estimating of the residual deformation from the intermediate template to the subject for refined registration. Any existing deformable registration methods can be easily employed for training the SVR models and estimating the residual deformation. We have tested in this paper the two widely used deformable registration algorithms, i.e., HAMMER [1] and diffeomorphic demons [2], for demonstration of our proposed frameowrk. Experimental results show that, compared to the registration using the original methods (with no deformation prediction), our framework achieves a significant speedup (6X faster than HAMMER, and 3X faster than diffeomorphic demons), while maintaining comparable (or even slighly better) registration accuracy.
PMCID: PMC3021962  PMID: 20879329
25.  Sacrificial layer technique for axial force post assay of immature cardiomyocytes 
Biomedical microdevices  2013;15(1):171-181.
Immature primary and stem cell-derived cardiomyocytes provide useful models for fundamental studies of heart development and cardiac disease, and offer potential for patient specific drug testing and differentiation protocols aimed at cardiac grafts. To assess their potential for augmenting heart function, and to gain insight into cardiac growth and disease, tissue engineers must quantify the contractile forces of these single cells. Currently, axial contractile forces of isolated adult heart cells can only be measured by two-point methods such as carbon fiber technique s, which cannot be applied to neonatal and stem cell-derived heart cells because they are more difficult to handle and lack a persistent shape. Here we present a novel axial technique for measuring the contractile forces of isolated immature cardiomyocytes. We overcome cell manipulation and patterning challenges by using a thermoresponsive sacrificial support layer in conjunction with arrays of widely separated elastomeric microposts. Our approach has the potential to be high-throughput, is functionally analogous to current gold-standard axial force assays for adult heart cells, and prescribes elongated cell shapes without protein patterning. Finally, we calibrate these force posts with piezoresistive cantilevers to dramatically reduce measurement error typical for soft polymer-based force assays. We report quantitative measurements of peak contractile forces up to 146 nN with post stiffness standard error (26 nN) far better than that based on geometry and stiffness estimates alone. The addition of sacrificial layers to future 2D and 3D cell culture platforms will enable improved cell placement and the complex suspension of cells across 3D constructs.
doi:10.1007/s10544-012-9710-3
PMCID: PMC3545035  PMID: 23007494
Force posts; thermoresponsive; sacrificial layer; cardiomyocytes; PDMS; stem cells

Results 1-25 (1312339)