Search tips
Search criteria

Results 1-25 (764018)

Clipboard (0)

Related Articles

1.  Current knowledge about the hydrophilic and nanostructured SLActive surface 
This review summarizes the present documentation for the SLActive surface, a hydrophilic and nanostructured surface produced by Straumann Company in Switzerland, and covers the results from 15 in vitro, 17 in vivo, and 16 clinical studies. The SLActive surface is a development of the large grit-blasted and acid-etched SLA surface, and is further processed to a high degree of hydrophilicity. In general, the in vitro and in vivo studies of the SLActive surface demonstrate a stronger cell and bone tissue response than for the predecessor, the SLA surface, produced by the same company. However, in most studies, this difference disappears after 6–8 weeks. In the clinical studies, a stronger bone response was reported for the SLActive surface during the early healing phase when compared with the SLA surface. However, the later biological response was quite similar for the two surfaces and both demonstrated very good clinical results.
PMCID: PMC3652359  PMID: 23674916
SLActive; surface; in vitro; in vivo; clinical results
2.  Mechanisms Regulating Increased Production of Osteoprotegerin by Osteoblasts Cultured on Microstructured Titanium Surfaces 
Biomaterials  2009;30(20):3390-3396.
Osteoblasts grown on microstructured Ti surfaces enhance osteointegration by producing local factors that regulate bone formation as well as bone remodeling, including the RANK ligand decoy receptor osteoprotegerin (OPG). The objective of this study was to explore the mechanism by which surface microstructure and surface energy mediate their stimulatory effects on OPG expression. Titanium disks were manufactured to present different surface morphologies: a smooth pretreatment surface (PT, Ra<0.2μm), microstructured sandblasted/acid etched surface (SLA, Ra=3-4μm), and a microstructured Ti plasma-sprayed surface (TPS, Ra=4μm). Human osteoblast-like MG63 cells were cultured on these substrates and the regulation of OPG production by TGF-β1, PKC, and α2β1 integrin signaling determined. Osteoblasts produced increased amounts of OPG as well as active and latent TGF-β1 and had increased PKC activity when grown on SLA and TPS. Exogenous TGF-β1 increased OPG production in a dose-dependent manner on all surfaces, and this was prevented by adding blocking antibody to the TGF-β type II receptor or by reducing TGF-β1 binding to the receptor by adding exogenous soluble type II receptor. The PKC inhibitor chelerythrine inhibited the production of OPG in a dose-dependent manner, but only in cultures on SLA and TPS. shRNA knockdown of α2 or a double knockdown of α2β1 also reduced OPG, as well as production of TGF-β1. These results indicate that substrate dependent OPG production is regulated by TGF-β1, PKC, and α2β1 and suggest a mechanism by which α2β1-signaling increases PKC, resulting in TGF-β1 production and TGF-β1 then acts on its receptor to increase transcription of OPG.
PMCID: PMC2700751  PMID: 19395022
Osteoblast; TGF-β1; Osteoprotegerin; Titanium; Microtopography
3.  Microstructured Titanium Regulates Interleukin Production by Osteoblasts, an Effect Modulated by Exogenous BMP-2 
Acta biomaterialia  2012;9(3):5821-5829.
Microtextured implant surfaces increase osteoblast differentiation in vitro and enhance bone-to-implant contact in vivo and clinically. These implants may be used in combination with recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance peri-implant bone formation. However, the effect of surface modifications alone or in combination with rhBMP-2 on osteoblast-produced inflammatory microenvironment is unknown. MG63 cells were cultured on tissue culture polystyrene or titanium substrates: smooth pretreated (PT, Ra=0.2μm), sandblasted/acid-etched (SLA, Ra=3.2μm), or hydrophilic-SLA (modSLA). Expression and protein production of pro-inflammatory interleukins (IL1b, IL6, IL8, IL17) and anti-inflammatory interleukins (IL10) were measured in cells with or without rhBMP-2. To determine which BMP signaling pathways were involved, cultures were incubated with BMP pathway inhibitors to blocking Smad (dorsomorphin), TAB/TAK1 ((5Z)-7-oxozeaenol), or PKA (H-8) signaling. Culture on rough SLA and modSLA surfaces decreased pro-inflammatory interleukins and increased anti-inflammatory IL10. This effect was negated in cells treated with rhBMP-2, which caused an increase in pro-inflammatory interleukins and a decrease in anti-inflammatory interleukins through TAB/TAK signaling. The results suggest that surface microtexture modulates the inflammatory process during osseointegration, an effect that may enhance healing. However, rhBMP-2 in combination with microtextured titanium implants can influence the effect of cells on these surfaces, and may adversely affect cells involved in osseointegration.
PMCID: PMC3618455  PMID: 23123301
Microstructure; Inflammation; BMP (bone morphogenetic protein); Titanium
4.  MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization 
The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm) and sandblasting (Ra: approximately 1.0 μm), and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells.
PMCID: PMC3364553  PMID: 22675359
5.  Requirement for Both Micron and Submicron Scale Structure for Synergistic Responses of Osteoblasts to Substrate Surface Energy and Topography 
Biomaterials  2007;28(18):2821-2829.
Surface roughness and surface free energy are two important factors that regulate cell responses to biomaterials. Previous studies established that titanium substrates with micron-scale and submicron scale topographies promote osteoblast differentiation and osteogenic local factor production and that there is a synergistic response to microrough Ti surfaces that have retained their high surface energy via processing that limits hydrocarbon contamination. This study tested the hypothesis that the synergistic response of osteoblasts to these modified surfaces depends on both surface microstructure and surface energy.
Ti disks were manufactured to present three different surface structures: smooth pretreatment surfaces (PT) with Ra of 0.2 µm; acid-etched surfaces (A) with a submicron roughness Ra of 0.83 µm; and sandblasted/acid-etched surfaces (SLA) with Ra of 3–4 µm. Modified acid-etched (modA) and modified sandblasted/acid-etched (modSLA) titanium substrates, which have low contamination and present a hydroxylated/hydrated surface layer to retain high surface energy, were compared with regular low surface energy A and SLA surfaces. Human osteoblast-like MG63 cells were cultured on these substrates and their responses, including cell shape, growth, differentiation (alkaline phosphatase, osteocalcin), and local factor production (TGF-β1, PGE2, osteoprotegerin [OPG]) were analyzed (N=6 per variable). Data were normalized to cell number.
There were no significant differences between smooth PT and A surfaces except for a small increase in OPG. Compared to A surfaces, MG63 cells produced 30% more osteocalcin on modA, and 70% more on SLA. However, growth on modSLA increased osteocalcin by more than 250%, which exceeded the sum of independent effects of surface energy and topography. Similar effects were noted when levels of latent TGF-β1, PGE2 and OPG were measured in the conditioned media.
The results demonstrate a synergistic effect between high surface energy and topography of Ti substrates and show that both micron scale and submicron scale structural features are necessary.
PMCID: PMC2754822  PMID: 17368532
Titanium; Surface energy; Microstructure; Submicron roughness; Osteoblast differentiation
6.  Response of osteoblast-like cells cultured on zirconia to bone morphogenetic protein-2 
The aim of this study was to compare osteoblast behavior on zirconia and titanium under conditions cultured with bone morphogenetic protein-2.
MC3T3-E1 cells were cultured on sandblasted zirconia and sandblasted/etched titanium discs. At 24 hours after seeding MC3T3-E1, the demineralized bone matrix (DBM) gel alone and the DBM gel with bone morphogenetic protein-2 (BMP-2) were added to the culture medium. The surface topography was examined by confocal laser scanning microscopy. Cellular proliferation was measured at 1, 4, and 7 days after gel loading. Alkaline phosphatase activity was measured at 7 days after gel loading. The mRNA expression of ALPase, bone sialoprotein, type I collagen, runt-related transcription factor 2 (Runx-2), osteocalcin, and osterix were evaluated by real-time polymerase chain reaction at 4 days and 7 days.
At 1, 4, and 7 days after loading the DBM gel alone and the DBM gel with BMP-2, cellular proliferation on the zirconia and titanium discs was similar and that of the groups cultured with the DBM gel alone and the DBM gel with BMP-2 was not significantly different, except for titanium with BMP-2 gel. ALPase activity was higher in the cells cultured with BMP-2 than in the other groups, but there was no difference between the zirconia and titanium. In ALPase, bone sialoprotein, osteocalcin, Runx-2 and osterix gene expression, that of cells on zirconia or titanium with BMP-2 gel was much more highly increased than titanium without gel at day 7. The gene expression level of cells cultured on zirconia with BMP-2 was higher than that on titanium with BMP-2 at day 7.
The data in this study demonstrate that the osteoblastic cell attachment and proliferation of zirconia were comparable to those of titanium. With the stimulation of BMP-2, zirconia has a more pronounced effect on the proliferation and differentiation of the osteoblastic cells compared with titanium.
PMCID: PMC3213233  PMID: 22087413
Bone morphogenetic protein-2; Cell differentiation; Cell proliferation; Zirconium oxide
7.  The responses to surface wettability gradients induced by chitosan nanofilms on microtextured titanium mediated by specific integrin receptors 
Biomaterials  2012;33(30):7386-7393.
Microtexture and chemistry of implant surfaces are important variables for modulating cellular responses. Surface chemistry and wettability are connected directly. While each of these surface properties can influence cell response, it is difficult to decouple their specific contributions. To address this problem, the aims of this study were to develop a surface wettability gradient with a specific chemistry without altering micron scale roughness and to investigate the role of surface wettability on osteoblast response. Microtextured sandblasted/acid-etched (SLA, Sa = 3.1 μm) titanium disks were treated with oxygen plasma to increase reactive oxygen density on the surface. At 0, 2, 6, 10, and 24 h after removing them from the plasma, the surfaces were coated with chitosan for 30 min, rinsed and dried. Modified SLA surfaces are denoted as SLA/h in air prior to coating. Surface characterization demonstrated that this process yielded differing wettability (SLA0 < SLA2 < SLA10 < SLA24) without modifying the micron scale features of the surface. Cell number was reduced in a wettability-dependent manner, except for the most water-wettable surface, SLA24. There was no difference in alkaline phosphatase activity with differing wettability. Increased wettability yielded increased osteocalcin and osteoprotegerin production, except on the SLA24 surfaces. mRNA for integrins α1, α2, α5, β1, and β3 was sensitive to surface wettability. However, surface wettability did not affect mRNA levels for integrin α3. Silencing β1 increased cell number with reduced osteocalcin and osteoprotegerin in a wettability-dependent manner. Surface wettability as a primary regulator enhanced osteoblast differentiation, but integrin expression and silencing β1 results indicate that surface wettability regulates osteoblast through differential integrin expression profiles than microtexture does. The results may indicate that both microtexture and wettability with a specific chemistry have important regulatory effects on osseointegration. Each property had different effects, which were mediated by different integrin receptors.
PMCID: PMC3781581  PMID: 22835642
Wettability; Oxygen plasma; Chitosan; Titanium; Osteoblast; Integrin
8.  The roles of Wnt signaling modulators Dickkopf-1 (Dkk1) and Dickkopf-2 (Dkk2) and cell maturation state in osteogenesis on microstructured titanium surfaces 
Biomaterials  2009;31(8):2015-2024.
Osteoblast differentiation on tissue culture polystyrene (TCPS) requires Wnt/beta-catenin signaling, regulating modulators of the Wnt pathway like Dickkopf-1 (Dkk1) and Dkk2. Osteoblast differentiation is increased on microstructured titanium (Ti) surfaces compared to TCPS; therefore, we hypothesized that surface topography and hydrophilicity affect Dkk1 and Dkk2 expression and that their roles in osteoblast differentiation on Ti differs depending on cell maturation state. Human osteoblast-like MG63 cells, normal human osteoblasts (HOBs), and human mesenchymal stem cells (MSCs), as well as MG63 cells stably silenced for Dkk1 or Dkk2 were grown for 6 days on TCPS and Ti surfaces (PT [Ra<0.2 μm], SLA [Ra = 4 μm], modSLA [hydrophilic-SLA]). Dkk1 and Dkk2 mRNA and protein increased on SLA and modSLA for all cell types, but exogenous rhDkk1 and rhDkk2 affected MSCs differently than MG63 cells and HOBs. Silencing Dkk1 reduced MG63 cell number on TCPS and PT, but increased differentiation on these substrates. Silencing Dkk2 reduced stimulatory effects of SLA and modSLA on osteoblast differentiation; Dkk2 but not Dkk1 restored these effects. Antibodies to Dkk1 or Dkk2 specifically blocked substrate-dependent changes caused by the proteins, demonstrating their autocrine action. This indicates major roles for Dkk1 and the canonical Wnt pathway in early-stage differentiation, and for Dkk2 and Wnt/Ca2+-dependent signaling in late-stage differentiation on microstructured and hydrophilic surfaces, during osseointegration.
PMCID: PMC3618462  PMID: 20004015
Osseointegration; Titanium; Osteoblast; Mesenchymal stem cell; Surface roughness; Cell signaling
9.  Osteoconductive phosphoserine-modified poly(ε-lysine) dendrons: synthesis, titanium oxide surface functionalization and response of osteoblast-like cell lines 
The lack of direct bonding between the surface of an implant and the mineralized bony tissue is among the main causes of aseptic loosening in titanium-based implants. Surface etching and ceramic coatings have led to improved osteointegration, but their clinical performance is still limited either by partial bonding or by coating delamination. In this work, a solid-phase synthesis method has been optimized to produce poly(ε-lysine) dendrons, the outermost branching generation of which is functionalized by phosphoserine (PS), a known catalyst of the biomineralization process. The dendrons were deposited onto etched titanium oxide surfaces as a near-to-monolayer film able to induce the formation of a homogeneous calcium phosphate phase in a simulated body fluid over 3 days. The dendron films also stimulated MG63 and SAOS-2 osteoblast-like cells to proliferate at a rate significantly higher than etched titanium, with SAOS-2 also showing a higher degree of differentiation over 14 days. PS-tethered dendron films were not affected by various sterilization methods and UV treatment appeared to improve the cell substrate potential of these films, thus suggesting their potential as a surface functionalization method for bone implants.
PMCID: PMC3565693  PMID: 23193106
biomineralization; dendrimer; surface modification; peptide; osteoblast
10.  The Effects of Different Wavelength UV Photofunctionalization on Micro-Arc Oxidized Titanium 
PLoS ONE  2013;8(7):e68086.
Many challenges exist in improving early osseointegration, one of the most critical factors in the long-term clinical success of dental implants. Recently, ultraviolet (UV) light-mediated photofunctionalization of titanium as a new potential surface treatment has aroused great interest. This study examines the bioactivity of titanium surfaces treated with UV light of different wavelengths and the underlying associated mechanism. Micro-arc oxidation (MAO) titanium samples were pretreated with UVA light (peak wavelength of 360 nm) or UVC light (peak wavelength of 250 nm) for up to 24 h. UVC treatment promoted the attachment, spread, proliferation and differentiation of MG-63 osteoblast-like cells on the titanium surface, as well as the capacity for apatite formation in simulated body fluid (SBF). These biological influences were not observed after UVA treatment, apart from a weaker effect on apatite formation. The enhanced bioactivity was substantially correlated with the amount of Ti-OH groups, which play an important role in improving the hydrophilicity, along with the removal of hydrocarbons on the titanium surface. Our results showed that both UVA and UVC irradiation altered the chemical properties of the titanium surface without sacrificing its excellent physical characteristics, suggesting that this technology has extensive potential applications and merits further investigation.
PMCID: PMC3702557  PMID: 23861853
11.  Surface Properties and Osteoblastic Cytocompatibility of Two Blasted and Acid-Etched Titanium Implant Systems with Distinct Microtopography 
The aim of this study is to compare two commercially available screw-type sandblasted and acid-etched (SLA) Ti implant systems from Eckermann Laboratorium S.L., with similar geometry and distinct microtopography, regarding surface properties and osteoblastic cytocompatibility.
Material and Methods
Implant I (referred as a conventional SLA system) and Implant II (a system patented as Eckcyte®) were characterized for macro and microtopograpphy, surface roughness and chemical composition. For the cytocompatibility studies, human bone marrow osteoblastic cells were seeded over the implants' surface, and the cell response was assessed for cell adhesion and proliferation, alkaline phosphatase (ALP) activity and matrix mineralization.
Implant I presented a rough surface with irregularly shaped and sized cavities among flatter-appearing areas, whereas Implant II exhibited a homogeneous rough microporous surface. Compared to Implant I, Implant II presented higher Ra values (0.8 [SD 0.008] μm and 1.21 [SD 0.15] μm, respectively, P < 0.05) and also increased values of Rz, Rt and Rsm, a more negative value of Rsk, and similar RKu values. XPS showed the expected presence of Ti, O, C and N; Al, Si, F, P and Ca were detected in low concentrations. Implant II exhibited significantly lower Al levels. Both implants supported the adhesion, proliferation and differentiation of osteoblastic cells. Implant II showed a thicker fibrilar cell layer and an earlier onset and more abundant matrix mineralization.
The homogeneous rough and microporous surface of Implant II is most probably a main contributor for its improved cell response.
PMCID: PMC3886090  PMID: 24422006
dental implants; surface properties; bone marrow; osteoblasts; differentiation cell; cell culture.
12.  Sex dependent regulation of osteoblast response to implant surface properties by systemic hormones 
Osseointegration depends on the implant surface, bone quality and the local and systemic host environment, which can differ in male and female patients. This study was undertaken in order to determine if male and female cells respond differently to titanium surfaces that have micron-scale roughness and if interactions of calciotropic hormones [1α,25(OH)2D3 and 17β-oestradiol (E2)] and microstructured surfaces on osteoblasts are sex dependent.
Osteoblasts from 6-week old Sprague-Dawley rats were cultured on tissue culture polystyrene (TCPS) or on titanium (Ti) disks with two different surface topographies, a smooth pretreated (PT) surface and a coarse grit-blasted/acid-etched (SLA) surface, and treated with 1α,25(OH)2D3, E2, or E2 conjugated to bovine serum albumin (E2-BSA).
Male and female cells responded similarly to Ti microstructure with respect to cell number and levels of osteocalcin, transforming growth factor-β1, osteoprotegerin and prostaglandin E2 in their conditioned media, exhibiting a more differentiated phenotype on SLA than on PT or TCPS. E2 and E2-BSA increased differentiation and local factor production, an effect that was microstructure dependent and found only in female osteoblasts. 1α,25(OH)2D3 increased osteoblast differentiation and local factor production in female and male cells, but the effect was more robust in male cells.
Male and female rat osteoblasts respond similarly to surface microstructure but exhibit sexual dimorphism in substrate-dependent responses to systemic hormones. Oestrogen affected only female cells while 1α,25(OH)2D3 had a greater effect on male cells. These results suggest that successful osseointegration in males and females may depend on the implant surface design and correct levels of calciotropic hormones.
PMCID: PMC3010104  PMID: 21208469
13.  The relationship of surface roughness and cell response of chemical surface modification of titanium 
Implant surface topography influences osteoblastic proliferation, differentiation and extracellular matrix protein expressions. Previous researches proved that chemical surface modification of titanium implants could be used to improve Bone-to-implant contact. In this study, the surface topography, chemistry and biocompatibility of polished titanium surfaces treated with mixed solution of three acids containing HCl, HF and H3PO4 with different etched conditions for example concentration, time and addition of calcium chloride were studied. Osteoblast cells (MG-63) were cultured on different groups of titanium surfaces. In order to investigate titanium surfaces, SEM, AFM and EDS analyses were carried out. The results showed that surfaces treated with HCl–HF–H3PO4 had higher roughness, lower cytotoxicity level and better biocompatibility than controls. Moreover, addition of calcium chloride into mixed solution of three acids containing HCl, HF and H3PO4 is an important, predominant and new technique for obtaining biofunction in metals for biomedical use including dentistry.
PMCID: PMC3368253  PMID: 22460230
14.  Double-Grating Displacement Structure for Improving the Light Extraction Efficiency of LEDs 
The Scientific World Journal  2012;2012:515468.
To improve the light extraction efficiency of light-emitting diodes (LEDs), grating patterns were etched on GaN and silver film surfaces. The grating-patterned surface etching enabled the establishment of an LED model with a double-grating displacement structure that is based on the surface plasmon resonance principle. A numerical simulation was conducted using the finite difference time domain method. The influence of different grating periods for GaN surface and silver film thickness on light extraction efficiency was analyzed. The light extraction efficiency of LEDs was highest when the grating period satisfied grating coupling conditions. The wavelength of the highest value was also close to the light wavelength of the medium. The plasmon resonance frequencies on both sides of the silver film were affected by silver film thickness. With increasing film thickness, plasmon resonance frequency tended toward the same value and light extraction efficiency reached its maximum. When the grating period for the GaN surface was 365 nm and the silver film thickness was 390 nm, light extraction efficiency reached a maximum of 55%.
PMCID: PMC3478720  PMID: 23118613
15.  Wettability and cellular response of UV light irradiated anodized titanium surface 
The object of this study was to investigate the effect of UV irradiation (by a general commercial UV sterilizer) on anodized titanium surface. Surface characteristics and cellular responses were compared between anodized titanium discs and UV irradiated anodized titanium discs.
Titanium discs were anodized and divided into the following groups: Group 1, anodized (control), and Group 2, anodized and UV irradiated for 24 hours. The surface characteristics including contact angle, roughness, phase of oxide layer, and chemical elemental composition were inspected. The osteoblast-like human osteogenic sarcoma (HOS) cells were cultured on control and test group discs. Initial cellular attachment, MTS-based cell proliferation assay, and ALP synthesis level were compared between the two groups for the evaluation of cellular response.
After UV irradiation, the contact angle decreased significantly (P<.001). The surface roughness and phase of oxide layer did not show definite changes, but carbon showed a considerable decrease after UV irradiation. Initial cell attachment was increased in test group (P=.004). Cells cultured on test group samples proliferated more actively (P=.009 at day 2, 5, and 7) and the ALP synthesis also increased in cells cultured on the test group (P=.016 at day 3, P=.009 at day 7 and 14).
UV irradiation induced enhanced wettability, and increased initial cellular responses of HOS cells on anodized titanium surface.
PMCID: PMC3141120  PMID: 21814613
UV light; Anodization; Wettability; Cell attachment; Proliferation; Differentiation
16.  Polyspecies biofilm formation on implant surfaces with different surface characteristics 
To investigate the microbial adherence and colonization of a polyspecies biofilm on 7 differently processed titanium surfaces.
Material and Methods:
Six-species biofilms were formed anaerobically on 5-mm-diameter sterilized, saliva-preconditioned titanium discs. Material surfaces used were either machined, stained, acid-etched or sandblasted/acid-etched (SLA). Samples of the latter two materials were also provided in a chemically modified form, with increased wettability characteristics. Surface roughness and contact angles of all materials were determined. The discs were then incubated anaerobically for up to 16.5 h. Initial microbial adherence was evaluated after 20 min incubation and further colonization after 2, 4, 8, and 16.5 h using non-selective and selective culture techniques. Results at different time points were compared using ANOVA and Scheffé post hoc analysis.
The mean differences in microorganisms colonizing after the first 20 min were in a very narrow range (4.5 to 4.8 log CFU). At up to 16.5 h, the modified SLA surface exhibited the highest values for colonization (6.9±0.2 log CFU, p<0.05) but increasing growth was observed on all test surfaces over time. Discrepancies among bacterial strains on the differently crafted titanium surfaces were very similar to those described for total log CFU. F. nucleatum was below the detection limit on all surfaces after 4 h.
Within the limitations of this in vitro study, surface roughness had a moderate influence on biofilm formation, while wettability did not seem to influence biofilm formation under the experimental conditions described. The modified SLA surface showed the highest trend for bacterial colonization.
PMCID: PMC3881803  PMID: 23559112
Dental implants; Titanium; Biofilms; Surface properties; Wettability
17.  Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface 
BioMed Research International  2013;2013:832790.
The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8) on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT) and biomimetic calcium phosphate coated ATT (CaP). The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation.
PMCID: PMC3884630  PMID: 24455730
18.  Effect of cleaning and sterilization on titanium implant surface properties and cellular response 
Acta biomaterialia  2011;8(5):1966-1975.
Titanium (Ti) has been widely used as an implant material due to the excellent biocompatibility and corrosion resistance of its oxide surface. Biomaterials must be sterile before implantation, but the effects of sterilization on their surface properties have been less well studied. The effects of cleaning and sterilization on surface characteristics were bio-determined using contaminated and pure Ti substrata first manufactured to present two different surface structures: pretreated titanium (PT, Ra = 0.4 μm) (i.e. surfaces that were not modified by sandblasting and/or acid etching); (SLA, Ra = 3.4 μm). Previously cultured cells and associated extracellular matrix were removed from all bio-contaminated specimens by cleaning in a sonicator bath with a sequential acetone–isopropanol–ethanol–distilled water protocol. Cleaned specimens were sterilized with autoclave, gamma irradiation, oxygen plasma, or ultraviolet light. X-ray photoelectron spectroscopy (XPS), contact angle measurements, profilometry, and scanning electron microscopy were used to examine surface chemical components, hydrophilicity, roughness, and morphology, respectively. Small organic molecules present on contaminated Ti surfaces were removed with cleaning. XPS analysis confirmed that surface chemistry was altered by both cleaning and sterilization. Cleaning and sterilization affected hydrophobicity and roughness. These modified surface properties affected osteogenic differentiation of human MG63 osteoblast-like cells. Specifically, autoclaved SLA surfaces lost the characteristic increase in osteoblast differentiation seen on starting SLA surfaces, which was correlated with altered surface wettability and roughness. These data indicated that recleaned and resterilized Ti implant surfaces cannot be considered the same as the first surfaces in terms of surface properties and cell responses. Therefore, the reuse of Ti implants after resterilization may not result in the same tissue responses as found with never-before-implanted specimens.
PMCID: PMC3618465  PMID: 22154860
Titanium; Sterilization; Roughness; Hydrophilicity; MG63 cells
19.  Increase in the Contents of Ginsenosides in Raw Ginseng Roots in Response to Exposure to 450 and 470 nm Light from Light-Emitting Diodes 
Journal of Ginseng Research  2012;36(2):198-204.
An light-emitting diode (LED)-based light source was used as a monochromatic light source to determine the responses of raw ginseng roots (Panax ginseng Meyer) to specific emission spectra with respect to the production of ginsenosides. The ginsenoside content in the ginseng roots changed in response to the LED light treatments at 25℃ relative to the levels in the control roots that were treated in the dark or at 4℃ for 7 d. Ginseng roots were exposed to LEDs with four different peak emission wavelengths, 380, 450, 470, and 660 nm, in closed compartments. Compared with the control 4℃-treated roots, roots that were treated with 450 and 470 nm light showed a significantly increased production of ginsenosides (p<0.05), with increases of 64.9% and 74.1%, respectively. The contents of the ginsenosides Rb2, Rc, and Rg1 were significantly higher (p<0.05) in the 450 and 470 nm-treated root samples. The ratio of protopanaxadiol ginsenosides (Rb1, Rb2, Rc, and Rd) to protopanaxatriol ginsenosides (Rg1, Rg2, Re, and Rf) was significantly higher (p<0.05) in the 450 and 470 nm-treated root samples than in the control 4℃-treated roots. This is the first report that demonstrates the increase and conversion of ginsenosides in raw ginseng roots in response to exposure to LED light.
PMCID: PMC3659579  PMID: 23717120
Panax ginseng; Ginsenosides; Light-emitting diode
20.  Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion 
Competition occurs between the osteoblasts in regional microenvironments and pathogens introduced during surgery, on the surface of bone implants, such as joint prostheses. The aim of this study was to modulate bacterial and osteoblast adhesion on implant surfaces by using a nanotube array. Titanium oxide (TiO2) nanotube arrays, 30 nm or 80 nm in diameter, were prepared by a two-step anodization on titanium substrates. Mechanically polished and acid-etched titanium samples were also prepared to serve as control groups. The standard strains of Staphylococcus epidermidis (S. epidermidis, American Type Culture Collection [ATCC]35984) and mouse C3H10T1/2 cell lines with osteogenic potential were used to evaluate the different responses to the nanotube arrays, in bacteria and eukaryotic cells. We found that the initial adhesion and colonization of S. epidermidis on the surface of the TiO2 nanotube arrays were significantly reduced and that the adhesion of C3H10T1/2 cells on the surface of the TiO2 nanotube arrays was significantly enhanced when compared with the control samples. Based on a surface analysis of all four groups, we observed increased surface roughness, decreased water contact angles, and an enhanced concentration of oxygen and fluorine atoms on the TiO2 nanotube surface. We conclude that the TiO2 nanotube surface can reduce bacterial colonization and enhance C3H10T1/2 cell adhesion; multiple physical and chemical properties of the TiO2 nanotube surface may contribute to these dual effects.
PMCID: PMC3747852  PMID: 23983463
bacterial adhesion; titanium implant; surface modification
21.  Mediation of Osteogenic Differentiation of Human Mesenchymal Stem Cells on Titanium Surfaces by a Wnt-Integrin Feedback Loop 
Biomaterials  2011;32(27):6399-6411.
Peri-implant bone formation depends on the ability of mesenchymal cells to colonize the implant surface and differentiate into osteoblasts. Human mesenchymal stem cells (HMSCs) undergo osteoblastic differentiation on microstructured titanium (Ti) surfaces in the absence of exogenous factors, but the mechanisms are unknown. Wnt proteins are associated with an osteoblast phenotype, but how Wnt signaling regulates HMSC differentiation on microstructured Ti surfaces is not known. HMSCs were cultured on tissue culture polystyrene or Ti (PT [Sa=0.33μm, θ=96°], SLA [Sa=2.5μm, θ=132°], modSLA [hydrophilic-SLA]). Expression of calcium-dependent Wnt ligand WNT5A increased and canonical Wnt pathway ligands decreased on microstructured Ti in a time-dependent manner. Treatment of HMSCs with canonical ligand Wnt3a preserved the mesenchymal phenotype on smooth surfaces. Treatment with Wnt5a increased osteoblastic differentiation. Expression of integrins ITGA1, ITGA2, and ITGAV increased over time and correlated with increased WNT5A expression. Treatment of HMSCs with Wnt5a, but not Wnt3a, increased integrin expression. Regulation of integrin expression due to surface roughness and energy was ablated in WNT5A-knockdown HMSCs. This indicates that surface properties regulate stem cell fate and induce osteoblast differentiation via the Wnt calcium-dependent pathway. Wnt5a enhances osteogenesis through a positive feedback with integrins and local factor regulation, particularly though BMP signaling.
PMCID: PMC3350791  PMID: 21636130
Cell signaling; Surface roughness; Titanium; Stem cell; Growth factors
22.  The effects of bluephase LED light on fibroblasts 
European Journal of Dentistry  2012;6(3):311-317.
The aim of this study was to evaluate the effect of Bluephase light emitting diode (LED) light on cell viability, colony-forming ability and proliferation in V79 cell culture and to determine how much the temperature of the nutrient medium rose.
The investigation included a low (L), soft start (S) and high (H) illumination mode for 20, 40 and 80 seconds. The viability was determined by the trypan blue exclusion test, colony-forming ability by counting colonies 7 days after exposure and cell proliferation by the cell counts on 5 post-exposure days. The temperature change during illumination was recorded (0.1°C sensitivity).
In each experimental condition, 90–95% of the cells were viable, which was in the same range as the controls. Colony-forming ability was not found to be significantly lower (P<.05). A significant decrease in proliferation was recorded on the 4th post-exposure day with S and H irrespective of time, on the 3rd day with S for 80 s and H for 40 and 80 s, and with S and H for 80 s on the 2nd day (P<.05).The temperature rise was significant with S (P<.05) and H (P<.05), irrespective of exposure duration.
Dependent on total energy density, LED blue light affects the mitotic activity of cells in its path to a certain extent. Altered mitotic activity was not noted with illumination at the low power mode (intensity of 421.7 ±1.1 mW/cm2). The greatest temperature rise was 8.3 °C and occurred at the highest intensity and exposure duration.
PMCID: PMC3420839  PMID: 22904660
Bluephase effects; LED light; fibroblasts
23.  Blue-Violet Laser Modification of Titania Treated Titanium: Antibacterial and Osteo-Inductive Effects 
PLoS ONE  2013;8(12):e84327.
Many studies on surface modifications of titanium have been performed in an attempt to accelerate osseointegration. Recently, anatase titanium dioxide has been found to act as a photocatalyst that expresses antibiotic properties and exhibits hydrophilicity after ultraviolet exposure. A blue-violet semiconductor laser (BV-LD) has been developed as near-ultraviolet light. The purpose of this study was to investigate the effects of exposure to this BV-LD on surface modifications of titanium with the goal of enhancing osteoconductive and antibacterial properties.
The surfaces of pure commercial titanium were polished with #800 waterproof polishing papers and were treated with anatase titania solution. Specimens were exposed using BV-LD (λ = 405 nm) or an ultraviolet light-emitting diode (UV-LED, λ = 365 nm) at 6 mW/cm2 for 3 h. The surface modification was evaluated physically and biologically using the following parameters or tests: surface roughness, surface temperature during exposure, X-ray diffraction (XRD) analysis, contact angle, methylene blue degradation tests, adherence of Porphyromonas gingivalis, osteoblast and fibroblast proliferation, and histological examination after implantation in rats.
No significant changes were found in the surface roughness or XRD profiles after exposure. BV-LD exposure did not raise the surface temperature of titanium. The contact angle was significantly decreased, and methylene blue was significantly degraded. The number of attached P. gingivalis organisms was significantly reduced after BV-LD exposure compared to that in the no exposure group. New bone was observed around exposed specimens in the histological evaluation, and both the bone-to-specimen contact ratio and the new bone area increased significantly in exposed groups.
This study suggested that exposure of titanium to BV-LD can enhance the osteoconductivity of the titanium surface and induce antibacterial properties, similar to the properties observed following exposure to UV-LED.
PMCID: PMC3866166  PMID: 24358355
24.  An automated statis perimeter/adaptometer using light emitting diodes. 
An automated static perimeter/adaptometer is described which measures thresholds with lights of 2 wavelengths. The instrument uses light-emitting diodes to produce the stimuli and is controlled by a small computer, making it very suitable for clinical testing of large numbers of patients. The use of 2 LEDs with different peak emission wavelengths (530 and 660 nm) permits an assessment of the relative state of rod and cone mechanisms in a particular region of the retina either during dark adaptation or when the eye is fully dark adapted.
PMCID: PMC1040091  PMID: 6860610
25.  Early Healing Events around Titanium Implant Devices with Different Surface Microtopography: A Pilot Study in an In Vivo Rabbit Model 
The Scientific World Journal  2012;2012:349842.
In the present pilot study, the authors morphologically investigated sandblasted, acid-etched surfaces (SLA) at very early experimental times. The tested devices were titanium plate-like implants with flattened wide lateral sides and jagged narrow sides. Because of these implant shape and placement site, the device gained a firm mechanical stability but the largest portion of the implant surface lacked direct contact with host bone and faced a wide peri-implant space rich in marrow tissue, intentionally created in order to study the interfacial interaction between metal surface and biological microenvironment. The insertion of titanium devices into the proximal tibia elicited a sequence of healing events. Newly formed bone proceeded through an early distance osteogenesis, common to both surfaces, and a delayed contact osteogenesis which seemed to follow different patterns at the two surfaces. In fact, SLA devices showed a more osteoconductive behavior retaining a less dense blood clot, which might be earlier and more easily replaced, and leading to a surface-conditioning layer which promotes osteogenic cell differentiation and appositional new bone deposition at the titanium surface. This model system is expected to provide a starting point for further investigations which clarify the early cellular and biomolecular events occurring at the metal surface.
PMCID: PMC3322675  PMID: 22545015

Results 1-25 (764018)