PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1408163)

Clipboard (0)
None

Related Articles

1.  Hereditary haemorrhagic telangiectasia: a questionnaire based study to delineate the different phenotypes caused by endoglin and ALK1 mutations 
Journal of Medical Genetics  2003;40(8):585-590.
Background: Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia characterised by mucocutaneous telangiectasis, epistaxis, gastrointestinal haemorrhage, and arteriovenous malformations in the lung and brain. Causative mutations for HHT have been identified in two genes, endoglin and ALK1, which encode proteins involved in serine-threonine kinase signalling in the endothelial cell.
Methods: A number of people affected with HHT had completed a postal questionnaire as part of an international study to delineate the HHT phenotype. We identified questionnaires completed by subjects in whom we had identified a mutation in endoglin or ALK1. Further questionnaires were sent to families with known mutations. Data were only included from questionnaires returned by people known to carry disease causing mutations.
Results: Questionnaires were completed by 83 subjects with known mutations. Of these, 49 had endoglin mutations (HHT1) and 34 had ALK1 mutations (HHT2). Subjects with HHT1 reported an earlier onset of epistaxis (p=0.01) and telangiectasis (p=0.0001) than those with HHT2. Pulmonary arteriovenous malformations were only reported in the endoglin mutation group in our study (p<0.001).
Conclusions: Our questionnaire based study provides evidence that the HHT phenotype caused by mutations in endoglin (HHT1) is distinct from, and more severe than, HHT caused by mutations in ALK1 (HHT2). This has significant implications for diagnosis, screening, and treatment in the two different forms of HHT, as well as for understanding the pathogenesis of the disease.
doi:10.1136/jmg.40.8.585
PMCID: PMC1735540  PMID: 12920067
2.  Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response 
PLoS Genetics  2016;12(3):e1005935.
Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.
Author Summary
Endoglin is a transmembrane protein and an auxiliary receptor for TGF-β with an important role in the homeostasis of the vessel wall. However, endoglin was originally identified as a human cell surface antigen expressed in a pre-B leukemic cell line. Mutations in ENG are responsible for the Hereditary Hemorrhagic Telangiectasia type 1 (HHT1) or Rendu-Osler-Weber syndrome. HHT is a rare disease, with a prevalence of 1/5,000 to 1/8,000. It is an autosomal dominant disorder characterized by a multisystemic vascular dysplasia, recurrent hemorrhages and arteriovenous malformations in internal organs. Interestingly, endoglin expression is also triggered during the monocyte-macrophage differentiation process. In our laboratory, we described that up-regulation of endoglin during in vitro differentiation of blood monocytes is age-dependent and impaired in monocytes from HHT patients, suggesting a role of endoglin in macrophages. In the present work, we first analyzed endoglin expression during differentiation of peripheral blood monocytes to macrophages under in vitro and in vivo conditions. Next, to investigate endoglin’s role in macrophage function in vivo, a myeloid-lineage specific endoglin knock-out mouse line was generated (Engfl/flLysMCre). Endoglin deficiency in macrophages predisposed animals to spontaneous infections and led to delayed endotoxin-induced mortality. Phagocytic activity by peritoneal macrophages was reduced in the absence of endoglin and altered expression of TGF-β target genes was consistent with an altered balance of TGF-β signaling. The results show a novel role for endoglin in mouse macrophages, which if analogous in human macrophages, may explain, at least in part, the increased infection rates seen in HHT patients.
doi:10.1371/journal.pgen.1005935
PMCID: PMC4806930  PMID: 27010826
3.  Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia 
Journal of Medical Genetics  2003;40(12):865-871.
Background: Mutations of the transforming growth factor ß (TGFß) receptor components ENDOGLIN and ALK-1 cause the autosomal dominant vascular disorder hereditary haemorrhagic telangiectasia (HHT). Heterozygous mutations of the type II receptor BMPR2 underlie familial primary pulmonary hypertension.
Objective: To investigate kindreds presenting with both pulmonary hypertension and HHT.
Methods: Probands and families were identified by specialist pulmonary hypertension centres in five countries. DNA sequence analysis of ALK-1, ENDOGLIN, and BMPR2 was undertaken. Cellular localisation was investigated by heterologous overexpression of mutant constructs in both BAEC and HeLa cells. The impact of a novel sequence variant was assessed through comparative analysis and computer modelling.
Results: Molecular analysis of 11 probands identified eight missense mutations of ALK-1, one of which was observed in two families. Mutations were located within exons 5 to 10 of the ALK-1 gene. The majority of ALK-1 mutant constructs appeared to be retained within the cell cytoplasm, in the endoplasmic reticulum. A novel GS domain mutation, when overexpressed, reached the cell surface but is predicted to disrupt conformational changes owing to loss of a critical hydrogen bond. Two novel missense mutations were identified in ENDOGLIN.
Conclusions: The association of pulmonary arterial hypertension and HHT identifies an important disease complication and appears most common among subjects with defects in ALK-1 receptor signalling. Future studies should focus on detailed molecular analysis of the common cellular pathways disrupted by mutations of ALK-1 and BMPR2 that cause inherited pulmonary vascular disease.
doi:10.1136/jmg.40.12.865
PMCID: PMC1735342  PMID: 14684682
4.  Clinical and genetic analyses of three Korean families with hereditary hemorrhagic telangiectasia 
BMC Medical Genetics  2011;12:130.
Background
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant vascular disorder, characterized by recurrent epistaxis, mucocutaneous telangiectases, and arteriovenous malformations (AVMs) in various visceral organs. Endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1; ALK1), receptors for transforming growth factor-β (TGF-β) superfamily, have been identified as the principal HHT-causing genes.
Methods
Three unrelated Korean HHT patients and their asymptomatic as well as symptomatic family members were genetically diagnosed by sequencing whole exons and their flanking regions of ENG and ACVRL1. Functionality of an aberrant translation start codon, which is created by a substitution mutation at the 5'-untranslated region (UTR) of ENG found in a HHT family, was tested by transient in vitro transfection assay. Decay of the mutant transcripts was also assessed by allele-specific expression analysis.
Results
Two ENG and one ACVRL1 mutations were identified: a known ENG mutation (c.360+1G > A; p.Gly74_Tyr120del); a novel ENG mutation (c.1-127C > T); and a novel ACVRL1 mutation (c.252_253insC; p.Val85fsX168). We further validated that the 5'-UTR ENG mutation prevents translation of ENG from the biological translation initiation site of the mutant allele, and leads to degradation of the mutant transcripts.
Conclusions
This is the first experimental demonstration that a 5'-UTR mutation can prevent translation of ENG among HHT patients, and further supports the previous notion that haploinsufficiency is the primary mechanism of HHT1. Our data also underscore the importance of including exons encoding 5' UTR for HHT mutation screening.
doi:10.1186/1471-2350-12-130
PMCID: PMC3202234  PMID: 21967607
5.  Life expextancy of parents with Hereditary Haemorrhagic Telangiectasia 
Background
Hereditary Haemorrhagic Telangiectasia (HHT) is an autosomal dominant disease associated with epistaxis, arteriovenous malformations and telangiectasias. Disease complications may result in premature death.
Method
We investigated life-expectancies of parents of HHT patients compared with their non-HHT partners using self- or telephone-administered questionnaires sent to their children. Patients were extracted from the databases of 2 participating HHT Centres: the Toronto HHT Database (Toronto, Canada) and the St. Antonius Hospital HHT Database (Nieuwegein, The Netherlands).
Results
Two hundred twenty five/407 (55 %) of respondents were included creating HHT- (n = 225) and control groups (n = 225) of equal size. Two hundred thirteen/225 (95 %) of the HHT group had not been screened for organ involvement of the disease prior to death. The life expectancy in parents with HHT was slightly lower compared to parents without (median age at death 73.3 years in patients versus 76.6 years in controls, p0.018). Parents with ACVRL 1 mutations had normal life expectancies, whereas parents with Endoglin mutations died 7.1 years earlier than controls (p = 0.024). Women with Endoglin mutations lived a median of 9.3 years shorter than those without (p = 0.04). Seven/123 (5 %) of deaths were HHT related with a median age at death of 61.5 years (IQ range 54.4–67.7 years).
Conclusion
Our study showed that the life expectancy of largely unscreened HHT patients was lower than people without HHT. Female patients with Endoglin mutations were most strikingly at risk of premature death from complications. These results emphasize the importance of referring patients with HHT for screening of organ involvement and timely intervention to prevent complications.
doi:10.1186/s13023-016-0427-x
PMCID: PMC4841052  PMID: 27102204
Hereditary Haemorrhagic Telangiectasia; Genetics; Mortality; Pulmonary medicine; Vascular disease
6.  Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease 
Journal of Medical Genetics  2006;43(2):97-110.
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterised by epistaxis, telangiectases, and multiorgan vascular dysplasia. The two major types of disease, HHT1 and HHT2, are caused by mutations in the ENG (endoglin) and ACVRL1 genes, respectively. The corresponding endoglin and ALK‐1 proteins are specific endothelial receptors of the transforming growth factor β superfamily essential for maintaining vascular integrity. Many mutations have been identified in ENG and ACVRL1 genes and support the haploinsufficiency model for HHT. Two more genes have recently been implicated in HHT: MADH4 mutated in a combined syndrome of juvenile polyposis and HHT (JPHT), and an unidentified HHT3 gene linked to chromosome 5. Current knowledge on the genetics of HHT is summarised, including the pathways that link the genes responsible for HHT and the potential mechanisms underlying the pathogenesis of the disease.
doi:10.1136/jmg.2005.030833
PMCID: PMC2603035  PMID: 15879500
ACVRL1; ALK‐1; ENG; hereditary haemorrhagic telangiectasia; vascular disorders
7.  Investigation of Endoglin Wild-Type and Missense Mutant Protein Heterodimerisation Using Fluorescence Microscopy Based IF, BiFC and FRET Analyses 
PLoS ONE  2014;9(7):e102998.
The homodimeric transmembrane receptor endoglin (CD105) plays an important role in angiogenesis. This is highlighted by mutations in its gene, causing the vascular disorder HHT1. The main role of endoglin function has been assigned to the modulation of transforming growth factor β and bone morphogenetic protein signalling in endothelial cells. Nevertheless, other functions of endoglin have been revealed to be involved in different cellular functions and in other cell types than endothelial cells. Compared to the exploration of its natural function, little experimental data have been gathered about the mode of action of endoglin HHT mutations at the cellular level, especially missense mutations, and to what degree these might interfere with normal endoglin function. In this paper, we have used fluorescence-based microscopic techniques, such as bimolecular fluorescence complementation (BiFC), immunofluorescence staining with the endoglin specific monoclonal antibody SN6, and protein interaction studies by Förster Resonance Energy Transfer (FRET) to investigate the formation and cellular localisation of possible homo- and heterodimers composed of endoglin wild-type and endoglin missense mutant proteins. The results show that all of the investigated missense mutants dimerise with themselves, as well as with wild-type endoglin, and localise, depending on the position of the affected amino acid, either in the rough endoplasmic reticulum (rER) or in the plasma membrane of the cells. We show that the rER retained mutants reduce the amount of endogenous wild-type endoglin on the plasma membrane through interception in the rER when transiently or stably expressed in HMEC-1 endothelial cells. As a result of this, endoglin modulated TGF-β1 signal transduction is also abrogated, which is not due to TGF-β receptor ER trafficking interference. Protein interaction analyses by FRET show that rER located endoglin missense mutants do not perturb protein processing of other membrane receptors, such as TβRII, ALK5 or ALK1.
doi:10.1371/journal.pone.0102998
PMCID: PMC4117486  PMID: 25080347
8.  Directional Next-Generation RNA Sequencing and Examination of Premature Termination Codon Mutations in Endoglin/Hereditary Haemorrhagic Telangiectasia 
Molecular Syndromology  2013;4(4):184-196.
Hereditary haemorrhagic telangiectasia (HHT) is a disease characterised by abnormal vascular structures, and most commonly caused by mutations in ENG, ACVRL1 or SMAD4 encoding endothelial cell-expressed proteins involved in TGF-β superfamily signalling. The majority of mutations reported on the HHT mutation database are predicted to lead to stop codons, either due to frameshifts or direct nonsense substitutions. The proportion is higher for ENG (67%) and SMAD4 (65%) than for ACVRL1 (42%), p < 0.0001. Here, by focussing on ENG, we report why conventional views of these mutations may need to be revised. Of the 111 stop codon-generating ENG mutations, on ExPASy translation, all except one were premature termination codons (PTCs), sited at least 50-55 bp upstream of the final exon-exon boundary of the main endoglin isoform, L-endoglin. This strongly suggests that the mutated RNA species will undergo nonsense-mediated decay. We provide new in vitro expression data to support dominant negative activity of stable truncated endoglin proteins but suggest these will not generate HHT: the single natural stop codon mutation in L-endoglin (sited within 50-55 nucleotides of the final exon-exon boundary) is unlikely to generate functional protein since it replaces the entire transmembrane domain, as would 8 further natural stop codon mutations, if the minor S-endoglin isoform were implicated in HHT pathogenesis. Finally, next-generation RNA sequencing data of 7 different RNA libraries from primary human endothelial cells demonstrate that multiple intronic regions of ENG are transcribed. The potential consequences of heterozygous deletions or duplications of such regions are discussed. These data support the haploinsufficiency model for HHT pathogenesis, explain why final exon mutations have not been detected to date in HHT, emphasise the potential need for functional examination of non-PTC-generating mutations, and lead to proposals for an alternate stratification system of mutational types for HHT genotype-phenotype correlations.
doi:10.1159/000350208
PMCID: PMC3666459  PMID: 23801935
Alternative splicing; Nonsense-mediated decay; Pervasive transcription; Premature termination codons

9.  Gastric angiodysplasia in a hereditary hemorrhagic telangiectasia type 2 patient 
Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal-dominantly inherited disease that occurs in approximately one in 5000 to 8000 people. Clinical diagnosis of HHT is made when a person presents three of the following four criteria: family history, recurrent nosebleeds, mucocutaneous telangiectasis, and arteriovenous malformations (AVM) in the brain, lung, liver and gastrointestinal (GI) tract. Although epistaxis is the most common presenting symptom, AVMs affecting the lungs, brain and GI tract provoke a more serious outcome. Heterozygous mutations in endoglin, activin receptor-like kinase 1 (ACVRL1; ALK1), and SMAD4, the genes involved in the transforming growth factor-β family signaling cascade, cause HHT. We report here the case of a 63 year-old male patient who presented melena and GI bleeding episodes, proven to be caused by bleeding from multiple gastric angiodysplasia. Esophagogastroduodenoscopy revealed multiple angiodysplasia throughout the stomach. Endoscopic argon plasma coagulation was performed to control bleeding from a gastric angiodysplasia. The patient has been admitted several times with episodes of hemoptysis and hematochezia. One year ago, the patient was hospitalized due to right-sided weakness, which was caused by left basal ganglia hemorrhage as the part of HHT presentation. In family history, the patient’s mother and elder sister had died, due to intracranial hemorrhage, and his eldest son has been suffered from recurrent epistaxis for 20 years. A genetic study revealed a mutation in exon 3 of ALK1 (c.199C > T; p.Arg67Trp) in the proband and his eldest son presenting epistaxis.
doi:10.3748/wjg.v18.i15.1840
PMCID: PMC3332300  PMID: 22553411
Hereditary hemorrhagic telangiectasia; Angiodysplasia; Intracranial hemorrhage; Epistaxis; Activin receptor-like kinase 1
10.  Endoglin involvement in integrin-mediated cell adhesion as a putative pathogenic mechanism in hereditary hemorrhagic telangiectasia type 1 (HHT1) 
Frontiers in Genetics  2015;5:457.
Mutations in the endoglin gene (ENG) are responsible for ∼50% of all cases with hereditary hemorrhagic telangiectasia (HHT). Because of the absence of effective treatments for HHT symptoms, studies aimed at identifying novel biological functions of endoglin which could serve as therapeutic targets of the disease are needed. Endoglin is an endothelial membrane protein, whose most studied function has been its role as an auxiliary receptor in the TGF-β receptor complex. However, several lines of evidence suggest the involvement of endoglin in TGF-β-independent functions. Endoglin displays, within its zona pellucida domain, an RGD motif, which is a prototypic sequence involved in integrin-based interactions with other proteins. Indeed, we have recently described a novel role for endothelial endoglin in leukocyte trafficking and extravasation via its interaction with leukocyte integrins. In addition, functional, as well as protein and gene expression analysis have shown that ectopic endoglin represses the synthesis of several members of the integrin family and modulates integrin-mediated cell adhesions. This review focuses on the tight link between endoglin and integrins and how the role of endothelial endoglin in integrin-dependent cell adhesion processes can provide a better understanding of the pathogenic mechanisms leading to vascular lesions in endoglin haploinsufficient HHT1 patients.
doi:10.3389/fgene.2014.00457
PMCID: PMC4285797  PMID: 25709613
HHT; endoglin; integrins; cell adhesion; endothelial cells; inflammation; RGD
11.  Hereditary haemorrhagic telangiectasia: mutation detection, test sensitivity and novel mutations 
Journal of Medical Genetics  2006;43(9):722-728.
Background
Hereditary haemorrhagic telangiectasia (HHT) is a genetic disorder present in 1 in 8000 people and associated with arteriovenous malformations. Genetic testing can identify individuals at risk of developing the disease and is a useful diagnostic tool.
Objective
To present a strategy for mutation detection in families clinically diagnosed with HHT.
Methods
An optimised strategy for detecting mutations that predispose to HHT is presented. The strategy includes quantitative multiplex polymerase chain reaction, sequence analysis, RNA analysis, validation of missense mutations by amino acid conservation analysis for the ENG (endoglin) and ACVRL1 (ALK1) genes, and analysis of an ACVRL1 protein structural model. If no causative ENG or ACVRL1 mutation is found, proband samples are referred for sequence analysis of MADH4 (associated with a combined syndrome of juvenile polyposis and HHT).
Results
Data obtained over the past eight years were summarised and 16 novel mutations described. Mutations were identified in 155 of 194 families with a confirmed clinical diagnosis (80% sensitivity). Of 155 mutations identified, 94 were in ENG (61%), 58 in ACVRL1 (37%), and three in MADH4 (2%).
Conclusions
For most missense variants of ENG and ACVRL1 reported to date, study of amino acid conservation showed good concordance between prediction of altered protein function and disease occurrence. The 39 families (20%) yet to be resolved may carry ENG, ACVRL1, or MADH4 mutations too complex or difficult to detect, or mutations in genes yet to be identified.
doi:10.1136/jmg.2006.042606
PMCID: PMC2564570  PMID: 16690726
vascular disease; endoglin; ACVRL1; MADH4
12.  Contribution of oxidative stress to endothelial dysfunction in hereditary hemorrhagic telangiectasia 
Oxidative stress causes endothelial dysfunction and is implicated in the pathogenesis of cardiovascular diseases. Our studies suggested that reactive oxygen species (ROS) play a crucial role in hereditary hemorrhagic telangiectasia (HHT) disease, a vascular dysplasia affecting 1 in 5,000–8,000 people. Mutations in endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1) genes are responsible for HHT1 and HHT2 and are associated with arteriovenous malformations. ENG and ACVRL1 interact with endothelial nitric oxide synthase (eNOS) and regulate its activation. Mice heterozygous for these genes (Eng+/– and Acvrl1+/–) show reduced ENG or ACVRL1 protein levels in endothelial cells causing eNOS uncoupling, generation of ROS rather than nitric oxide (NO•), leading to impaired NO• mediated vasodilation. ROS production is increased in several organs of Eng+/– and Acvrl1+/– mice, including lungs, liver, and colon, affected in HHT. The major source of increased oxidative stress in these tissues is eNOS-derived ROS and not mitochondrial or NADPH oxidase-dependent ROS. Eng+/– and Acvrl1+/– mice also develop with age signs of pulmonary arterial hypertension attributable to eNOS-derived ROS, which was preventable by antioxidant treatment. To date, only one pilot study has been carried out in HHT patients, and it showed beneficial effects of antioxidant therapy on epistaxis. We suggest that more clinical studies are warranted to investigate whether antioxidants would prevent, delay or attenuate manifestations of disease in individuals with HHT, based on our experimental data in mouse models.
doi:10.3389/fgene.2015.00034
PMCID: PMC4327735  PMID: 25763011
HHT; reactive oxygen species; nitric oxide; eNOS; antioxidants
13.  Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain 
PLoS ONE  2011;6(10):e26431.
Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms.
doi:10.1371/journal.pone.0026431
PMCID: PMC3196573  PMID: 22028876
14.  Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia 
PLoS ONE  2015;10(7):e0132111.
Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations.
doi:10.1371/journal.pone.0132111
PMCID: PMC4503601  PMID: 26176610
15.  Visceral manifestations in hereditary haemorrhagic telangiectasia type 2 
Journal of Medical Genetics  2003;40(7):494-502.
Hereditary haemorrhagic telangiectasia (HHT) is a genetic vascular disorder characterised by epistaxis, telangiectases, and visceral manifestations. The two known disease types, HHT1 and HHT2, are caused by mutations in the endoglin (ENG) and ALK-1 genes, respectively. A higher frequency of pulmonary arteriovenous malformations (AVMs) has been reported for HHT1 while HHT2 is thought to be associated with a lower penetrance and milder disease manifestations. In this study, we present 10 families with an ALK-1 genotype. Visceral manifestations were detected in 24 (26%) of the 93 HHT2 patients from nine of the families and included gastrointestinal bleeding (14%), intrahepatic shunts (6%), and AVMs in the lung (4%) and brain (3%). Gastrointestinal bleeding, the most frequent visceral manifestation, was reported in six of the 10 families, mostly in patients over the age of 50. These patients also had frequent epistaxis and suffered from anaemia, often requiring blood transfusions. The identification of ALK-1 mutations in subjects with a suspected diagnosis and without clinical signs of HHT argue in favour of a molecular diagnosis. We also analysed the data published on 44 families with HHT2 and conclude that visceral manifestations occur in 26 of these families and affect 30% of HHT2 patients. This is considered an underestimate given incomplete and variable screening for lung, brain, and/or liver involvement in different clinical centres. These findings, however, stress the need for an early diagnosis of HHT that can be useful for the early control of associated visceral involvement.
doi:10.1136/jmg.40.7.494
PMCID: PMC1735537  PMID: 12843319
16.  Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia 
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplastic disorder, characterized by recurrent nosebleeds (epistaxis), multiple telangiectases and arteriovenous malformations (AVMs) in major organs. Mutations in Endoglin (ENG or CD105) and Activin receptor-like kinase 1 (ACVRL1 or ALK1) genes of the TGF-β superfamily receptors are responsible for HHT1 and HHT2 respectively and account for the majority of HHT cases. Haploinsufficiency in ENG and ALK1 is recognized at the underlying cause of HHT. However, the mechanisms responsible for the predisposition to and generation of AVMs, the hallmark of this disease, are poorly understood. Recent data suggest that dysregulated angiogenesis contributes to the pathogenesis of HHT and that the vascular endothelial growth factor, VEGF, may be implicated in this disease, by modulating the angiogenic–angiostatic balance in the affected tissues. Hence, anti-angiogenic therapies that target the abnormal vessels and restore the angiogenic–angiostatic balance are candidates for treatment of HHT. Here we review the experimental evidence for dysregulated angiogenesis in HHT, the anti-angiogenic therapeutic strategies used in animal models and some patients with HHT and the potential benefit of the anti-angiogenic treatment for ameliorating this severe, progressive vascular disease.
doi:10.3389/fgene.2015.00035
PMCID: PMC4324154  PMID: 25717337
angiogenesis; HHT; endoglin; Alk1; VEGF; anti-angiogenic therapy; anti-VEGF; inflammation
17.  A hereditary haemorrhagic telangiectasia family with pulmonary involvement is unlinked to the known HHT genes, endoglin and ALK-1 
Thorax  2000;55(8):685-690.
BACKGROUND—Pulmonary arteriovenous malformations (PAVMs) occur in over 25% of patients with the autosomal dominant disorder hereditary haemorrhagic telangiectasia (HHT). Mutations in two genes, endoglin and ALK-1, are known to cause HHT. Each encodes a protein expressed on vascular endothelial cells and involved in signalling by members of the transforming growth factor (TGF)-β superfamily. To date, PAVMs have not been detected in ALK-1 families. There is evidence from a single HHT family without pulmonary involvement that a third HHT gene may exist. To establish the existence of a further HHT gene responsible for PAVMs, linkage analyses were performed on an expanded PAVM-HHT family in which HHT did not result from endoglin mutations.
METHODS—Family members were assessed clinically to assign HHT disease status and were screened for PAVMs. DNA was extracted from blood obtained from 20 individuals of known disease status. Short tandem repeat polymorphic markers spanning the intervals containing the endoglin and ALK-1 genes were amplified by the polymerase chain reaction using 33P-labelled oligonucleotide primers, separated by denaturing polyacrylamide gel electrophoresis (PAGE), and the resultant autoradiographs were examined for allele sizes. Linkage analyses were performed using MLINK and GENEHUNTER.
RESULTS—Twelve members spanning four generations were affected with HHT. Two had proven PAVMs, one with a classical appearance, the other exhibiting microscopic PAVMs exacerbated by pregnancy. Two point lod and multipoint lod scores significantly excluded linkage to endoglin and ALK-1 in this pedigree.
CONCLUSIONS—This study confirms the existence of a third HHT locus that accounts for disease in some HHT patients with pulmonary involvement.


doi:10.1136/thorax.55.8.685
PMCID: PMC1745830  PMID: 10899246
18.  Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative. 
Journal of Clinical Investigation  1997;100(10):2568-2579.
Endoglin (CD105), a component of the TGF-beta 1 receptor complex, is the target gene for the dominantly inherited vascular disorder hereditary hemorrhagic telangiectasia type 1 (HHT1). We have identified a novel endoglin splice site mutation, leading to an in-frame deletion of exon 3, in a new-born from a family with HHT. Expression of normal and mutant endoglin proteins was analyzed in umbilical vein endothelial cells from this baby and in activated monocytes from the affected father. In both samples, only normal dimeric endoglin (160 kD) was observed at the cell surface, at 50% of control levels. Despite an intact transmembrane region, mutant protein was only detectable by metabolic labeling, as an intracellular homodimer of 130 kD. In monocytes from three clinically affected HHT1 patients, with known mutations creating premature stop codons in exons 8 and 10, surface endoglin was also reduced by half and no mutant was detected. Overexpression into COS-1 cells of endoglin cDNA truncated in exons 7 and 11, revealed their intracellular expression, inability to be secreted and to form heterodimers at the cell surface. These results indicate that mutated forms of endoglin are transiently expressed intracellularly and not likely to act as dominant negative proteins, as proposed previously. A reduction in the level of functional endoglin is thus involved in the generation of HHT1, and associated arteriovenous malformations.
PMCID: PMC508458  PMID: 9366572
19.  A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5 
Journal of Medical Genetics  2005;42(7):577-582.
Patients with hereditary haemorrhagic telangiectasia (HHT, or Osler-Weber-Rendu syndrome) have variable presentation patterns and a high risk of preventable complications. Diagnostic tests for mutations in endoglin (HHT type 1) and ALK-1 (HHT type 2) are available. Some HHT patients are now known to have HHT-juvenile polyposis overlap syndrome due to Smad4 mutations. Families were ascertained following the presentation of probands for embolization of pulmonary arteriovenous malformations. Genome-wide linkage studies using over 700 polymorphic markers, and sequencing of candidate genes, were performed. In a previously described HHT family unlinked to endoglin or ALK-1, linkage to Smad4 was excluded, and no mutations were identified in the endoglin, ALK-1, or Smad4 genes. Two point LOD scores and recombination mapping identified a 5.4 cM HHT3 disease gene interval on chromosome 5 in which a single haplotype was inherited by all affected members of the pedigree. The remainder of the genome was excluded to a 2–5 cM resolution. We are currently studying a further family potentially linked to HHT3. We conclude that classical HHT with pulmonary involvement can result from mutations in an unidentified gene on chromosome 5. Identification of HHT3 should further illuminate HHT pathogenic mechanisms in which aberrant transforming growth factor (TGF)-ß signalling is implicated.
doi:10.1136/jmg.2004.028712
PMCID: PMC1736109  PMID: 15994879
20.  5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia 
Background
Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by epistaxis, arteriovenous malformations, and telangiectases. The majority of the patients have a mutation in the coding region of the activin A receptor type II-like 1 (ACVRL1) or Endoglin (ENG) gene. However, in approximately 15% of cases, sequencing analysis and deletion/duplication testing fail to identify mutations in the coding regions of these genes. Knowing its vital role in transcription and translation control, we were prompted to investigate the 5'untranslated region (UTR) of ENG.
Methods and Results
We sequenced the 5'UTR of ENG for 154 HHT patients without mutations in ENG or ACVRL1 coding regions. We found a mutation (c.-127C > T), which is predicted to affect translation initiation and alter the reading frame of endoglin. This mutation was found in a family with linkage to the ENG, as well as in three other patients, one of which had an affected sibling with the same mutation. In vitro expression studies showed that a construct with the c.-127C > T mutation alters the translation and decreases the level of the endoglin protein. In addition, a c.-9G > A mutation was found in three patients, one of whom was homozygous for this mutation. Expression studies showed decreased protein levels suggesting that the c.-9G > A is a hypomorphic mutation.
Conclusions
Our results emphasize the need for the inclusion of the 5'UTR region of ENG in clinical testing for HHT.
doi:10.1186/1750-1172-6-85
PMCID: PMC3277489  PMID: 22192717
5'UTR region; ENG; c.-127C > T; c.-9G > A; homozygous
21.  Long Non-Coding RNA Expression Profiles in Hereditary Haemorrhagic Telangiectasia 
PLoS ONE  2014;9(3):e90272.
Hereditary Haemorrhagic Telangiectasia (HHT) is an autosomal dominantly inherited vascular disease characterized by the presence of mucocutaneous telangiectasia and arteriovenous malformations in visceral organs. HHT is predominantly caused by mutations in ENG and ACVRL1, which both belong to the TGF-β signalling pathway. The exact mechanism of how haploinsufficiency of ENG and ACVRL1 leads to HHT manifestations remains to be identified. As long non-coding RNAs (lncRNAs) are increasingly recognized as key regulators of gene expression and constitute a sizable fraction of the human transcriptome, we wanted to assess whether lncRNAs play a role in the molecular pathogenesis of HHT manifestations. By microarray technology, we profiled lncRNA transcripts from HHT nasal telangiectasial and non-telangiectasial tissue using a paired design. The microarray probes were annotated using the GENCODE v.16 dataset, identifying 4,810 probes mapping to 2,811 lncRNAs. Comparing HHT telangiectasial tissue with HHT non-telangiectasial tissue, we identified 42 lncRNAs that are differentially expressed (q<0.001). Using GREAT, a tool that assumes cis-regulation, we showed that differently expressed lncRNAs are enriched for genomic loci involved in key pathways concerning HHT. Our study identified lncRNAs that are aberrantly expressed in HHT telangiectasia and indicates that lncRNAs may contribute to regulate protein-coding loci in HHT. These results suggest that the lncRNA component of the transcriptome deserves more attention in HHT. A deeper understanding of lncRNAs and their role in telangiectasia formation possesses potential for discovering therapeutic targets in HHT.
doi:10.1371/journal.pone.0090272
PMCID: PMC3946172  PMID: 24603890
22.  Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges 
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by a multi-systemic vascular dysplasia and hemorrhage. The precise factors leading to these vascular malformations are not yet understood and robust animal models of HHT are essential to gain a detailed understanding of the molecular and cellular events that lead to clinical symptoms, as well as to test new therapeutic modalities. Most cases of HHT are caused by mutations in either endoglin (ENG) or activin receptor-like kinase 1 (ACVRL1, also known as ALK1). Both genes are associated with TGFβ/BMP signaling, and loss of function mutations in the co-receptor ENG are causal in HHT1, while HHT2 is associated with mutations in the signaling receptor ACVRL1. Significant advances in mouse genetics have provided powerful ways to study the function of Eng and Acvrl1 in vivo, and to generate mouse models of HHT disease. Mice that are null for either Acvrl1 or Eng genes show embryonic lethality due to major defects in angiogenesis and heart development. However mice that are heterozygous for mutations in either of these genes develop to adulthood with no effect on survival. Although these heterozygous mice exhibit selected vascular phenotypes relevant to the clinical pathology of HHT, the phenotypes are variable and generally quite mild. An alternative approach using conditional knockout mice allows us to study the effects of specific inactivation of either Eng or Acvrl1 at different times in development and in different cell types. These conditional knockout mice provide robust and reproducible models of arteriovenous malformations, and they are currently being used to unravel the causal factors in HHT pathologies. In this review, we will summarize the strengths and limitations of current mouse models of HHT, discuss how knowledge obtained from these studies has already informed clinical care and explore the potential of these models for developing improved treatments for HHT patients in the future.
doi:10.3389/fgene.2015.00025
PMCID: PMC4332371  PMID: 25741358
arteriovenous malformation; TGFβ signaling; vascular disease; angiogenesis; vascular development; Bmp/Smad signaling
23.  SMAD4 mutations found in unselected HHT patients 
Journal of Medical Genetics  2006;43(10):793-797.
Background
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant disease exhibiting multifocal vascular telangiectases and arteriovenous malformations. The majority of cases are caused by mutations in either the endoglin (ENG) or activin receptor‐like kinase 1 (ALK1, ACVRL1) genes; both members of the transforming growth factor (TGF)‐β pathway. Mutations in SMAD4, another TGF‐β pathway member, are seen in patients with the combined syndrome of juvenile polyposis (JP) and HHT (JP‐HHT).
Methods
We sought to determine if HHT patients without any apparent history of JP, who were undergoing routine diagnostic testing, would have mutations in SMAD4. We tested 30 unrelated HHT patients, all of whom had been referred for DNA based testing for HHT and were found to be negative for mutations in ENG and ALK1.
Results
Three of these people harboured mutations in SMAD4, a rate of 10% (3/30). The SMAD4 mutations were similar to those found in other patients with the JP‐HHT syndrome.
Conclusions
The identification of SMAD4 mutations in HHT patients without prior diagnosis of JP has significant and immediate clinical implications, as these people are likely to be at risk of having JP‐HHT with the associated increased risk of gastrointestinal cancer. We propose that routine DNA based testing for HHT should include SMAD4 for samples in which mutations in neither ENG nor ALK1 are identified. HHT patients with SMAD4 mutations should be screened for colonic and gastric polyps associated with JP.
doi:10.1136/jmg.2006.041517
PMCID: PMC2563178  PMID: 16613914
hereditary haemorrhagic telangiectasia (HHT); juvenile polyposis (JP); endoglin (ENG); activin receptor‐like kinase 1 (ALK1, ACVRL1); SMAD4
24.  Oxidative Stress Contributes to Endothelial Dysfunction in Mouse Models of Hereditary Hemorrhagic Telangiectasia 
Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase (ALK1; HHT2) genes, coding for transforming growth factor-β (TGF-β) superfamily receptors. We demonstrated previously that endoglin and ALK1 interact with endothelial NO synthase (eNOS) and affect its activation. Endothelial cells deficient in endoglin or ALK1 proteins show eNOS uncoupling, reduced NO, and increased reactive oxygen species (ROS) production. In this study, we measured NO and H2O2 levels in several organs of adult Eng and Alk1 heterozygous mice, to ascertain whether decreased NO and increased ROS production is a generalized manifestation of HHT. A significant reduction in NO and increase in ROS production were found in several organs, known to be affected in patients. ROS overproduction in mutant mice was attributed to eNOS, as it was L-NAME inhibitable. Mitochondrial ROS contribution, blocked by antimycin, was highest in liver while NADPH oxidase, inhibited by apocynin, was a major source of ROS in the other tissues. However, there was no difference in antimycin- and apocynin-inhibitable ROS production between mutant and control mice. Our results indicate that eNOS-derived ROS contributes to endothelial dysfunction and likely predisposes to disease manifestations in several organs of HHT patients.
doi:10.1155/2012/686972
PMCID: PMC3540964  PMID: 23320130
25.  Immunohistochemical analysis of a merkeloma observed in a patient affected by hereditary haemorrhagic telangiectasia 
BMJ Case Reports  2010;2010:bcr09.2009.2251.
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterised by epistaxis, telangiectases, and multiorgan vascular dysplasia. Mutations of the ENG and ACVRL1 genes cause at least 80% of cases. We report the first case of merkeloma found in a patient with HHT carrying an ENG mutation. We analysed the tumour with immunohistochemical methods using primary antibodies against CD105 (endoglin), TGF-β, Smad4, CD31 and CD34. Tumour cells were positive for Smad4, weakly positive for TGF-β, and negative for CD105. Vasal endothelial cells were highly positive for CD105, CD31 and CD34. No remarkable differences between cancer and normal cells in our patient or between the patient’s merkeloma and two control merkelomas were observed. The presence of a merkeloma in an HHT patient could be an occasional association, but to certainly assume it further investigations are needed.
doi:10.1136/bcr.09.2009.2251
PMCID: PMC3028296  PMID: 22315638

Results 1-25 (1408163)