Search tips
Search criteria

Results 1-25 (711380)

Clipboard (0)

Related Articles

1.  Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. 
The anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 was analyzed. Aerobic conversion of 2-naphthalenesulfonate (2NS) by cells of strain BN6 stimulated the subsequent anaerobic reduction of the sulfonated azo dye amaranth at least 10-fold. In contrast, in crude extracts, the azo reductase activity was not stimulated. A mutant of strain BN6 which was not able to metabolize 2NS showed increased amaranth reduction rates only when the cells were resuspended in the culture supernatant of 2NS-grown BN6 wild-type cells. The same increase could be observed with different bacterial strains. This suggested the presence of an extracellular factor which was formed during the degradation of 2NS by strain BN6. The addition of 1,2-dihydroxynaphthalene, the first intermediate of the degradation pathway of 2NS, or its decomposition products to cell suspensions of the mutant of strain BN6 (2NS-) increased the activity of amaranth reduction. The presence of bacterial cells was needed to maintain the reduction process. Thus, the decomposition products of 1,2-dihydroxynaphthalene are suggested to act as redox mediators which are able to anaerobically shuttle reduction equivalents from the cells to the extracellular azo dye.
PMCID: PMC168674  PMID: 9293019
2.  The Function of Cytoplasmic Flavin Reductases in the Reduction of Azo Dyes by Bacteria 
A flavin reductase, which is naturally part of the ribonucleotide reductase complex of Escherichia coli, acted in cell extracts of recombinant E. coli strains under aerobic and anaerobic conditions as an “azo reductase.” The transfer of the recombinant plasmid, which resulted in the constitutive expression of high levels of activity of the flavin reductase, increased the reduction rate for different industrially relevant sulfonated azo dyes in vitro almost 100-fold. The flavin reductase gene (fre) was transferred to Sphingomonas sp. strain BN6, a bacterial strain able to degrade naphthalenesulfonates under aerobic conditions. The flavin reductase was also synthesized in significant amounts in the Sphingomonas strain. The reduction rates for the sulfonated azo compound amaranth were compared for whole cells and cell extracts from both recombinant strains, E. coli, and wild-type Sphingomonas sp. strain BN6. The whole cells showed less than 2% of the specific activities found with cell extracts. These results suggested that the cytoplasmic anaerobic “azo reductases,” which have been described repeatedly in in vitro systems, are presumably flavin reductases and that in vivo they have insignificant importance in the reduction of sulfonated azo compounds.
PMCID: PMC92004  PMID: 10742223
3.  Mineralization of the sulfonated azo dye Mordant Yellow 3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. 
Applied and Environmental Microbiology  1991;57(11):3144-3149.
Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases.
PMCID: PMC183939  PMID: 1781678
4.  Detection and Characterization of Conjugative Degradative Plasmids in Xenobiotic-Degrading Sphingomonas Strains 
Journal of Bacteriology  2004;186(12):3862-3872.
A systematic survey for the presence of plasmids in 17 different xenobiotic-degrading Sphingomonas strains was performed. In almost all analyzed strains, two to five plasmids with sizes of about 50 to 500 kb were detected by using pulsed-field gel electrophoresis. A comparison of plasmid preparations untreated or treated with S1 nuclease suggested that, in general, Sphingomonas plasmids are circular. Hybridization experiments with labeled gene probes suggested that large plasmids are involved in the degradation of dibenzo-p-dioxin, dibenzofuran, and naphthalenesulfonates in S. wittichii RW1, Sphingomonas sp. HH69, and S. xenophaga BN6, respectively. The plasmids which are responsible for the degradation of naphthalene, biphenyl, and toluene by S. aromaticivorans F199 (pNL1) and of naphthalenesulfonates by S. xenophaga BN6 (pBN6) were site-specifically labeled with a kanamycin resistance cassette. The conjugative transfer of these labeled plasmids was attempted with various bacterial strains as putative recipient strains. Thus, a conjugative transfer of plasmid pBN6 from S. xenophaga BN6 to a cured mutant of strain BN6 and to Sphingomonas sp. SS3 was observed. The conjugation experiments with plasmid pNL1 suggested a broader host range of this plasmid, because it was transferred without any obvious structural changes to S. yanoikuyae B1, Sphingomonas sp. SS3, and S. herbicidovorans. In contrast, major plasmid rearrangements were observed in the transconjugants after the transfer of plasmid pNL1 to Sphingomonas sp. HH69 and of pBN6 to Sphingomonas sp. SS3. No indications for the transfer of a Sphingomonas plasmid to bacteria outside of the Sphingomonadaceae were obtained.
PMCID: PMC419928  PMID: 15175300
5.  Oxygen-Insensitive Nitroreductases NfsA and NfsB of Escherichia coli Function under Anaerobic Conditions as Lawsone-Dependent Azo Reductases 
Quinones can function as redox mediators in the unspecific anaerobic reduction of azo compounds by various bacterial species. These quinones are enzymatically reduced by the bacteria and the resulting hydroquinones then reduce in a purely chemical redox reaction the azo compounds outside of the cells. Recently, it has been demonstrated that the addition of lawsone (2-hydroxy-1,4-naphthoquinone) to anaerobically incubated cells of Escherichia coli resulted in a pronounced increase in the reduction rates of different sulfonated and polymeric azo compounds. In the present study it was attempted to identify the enzyme system(s) responsible for the reduction of lawsone by E. coli and thus for the lawsone-dependent anaerobic azo reductase activity. An NADH-dependent lawsone reductase activity was found in the cytosolic fraction of the cells. The enzyme was purified by column chromatography and the amino-terminal amino acid sequence of the protein was determined. The sequence obtained was identical to the sequence of an oxygen-insensitive nitroreductase (NfsB) described earlier from this organism. Subsequent biochemical tests with the purified lawsone reductase activity confirmed that the lawsone reductase activity detected was identical with NfsB. In addition it was proven that also a second oxygen-insensitive nitroreductase of E. coli (NfsA) is able to reduce lawsone and thus to function under adequate conditions as quinone-dependent azo reductase.
PMCID: PMC161523  PMID: 12788749
6.  Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization 
Iranian Journal of Microbiology  2013;5(4):434-440.
Background and Objectives
Synthetic dyes are recalcitrant to degradation and toxic to different organisms. Decolorization of textile wastewaters is one of the major concerns since last decades. Physical-chemical treatments are very expensive and frequently producing large amounts of toxic wastes. Biological treatments can be more convenient. In the present study, an attempt has been made for decolorization of azo dyes using microbial process.
Material and Methods
Screening of microorganisms capable of azo dye decolorization was performed from activated sludge. The decolorization of various dyes (Reactive Black 5, Reactive Orange 16, Reactive Red 198, Direct Blue 71, Direct Yellow 12 and Direct Black 22) was determined by measuring the absorbance of culture supernatant at their λmax. Culture supernatants were also analyzed for UV-Vis absorption between 200-800 nm. The effect of aeration, temperature, different concentrations of glucose and NaCl was studied with an aim to determine the optimal conditions required for maximum decolorization.
The yeast (strain JKS4) which had high ability to decolorize different azo dyes was isolated. Under aerobic condition, the yeast strain showed 85.7% of decolorization at 200 mg/l Reactive Black 5 (as a model azo dye), 1% (w/v) glucose concentration and 35°C after 24 h. All the examined dyes were extensively decolorized (53.35-97.9%) after 24 h. With elongated incubation period, complete decolorization was observed in presence of all dyes. From the physiological properties and phylogenetic analysis based on the 26S rDNA sequences, strain JKS4 was classified into Candida palmioleophila.
Because of high decolorizing activity against various azo dyes commonly used in the textile industries, it is proposed that the isolated yeast may have a practical application in the biotransformation of various dye effluents.
PMCID: PMC4385174  PMID: 25848518
Azo dyes; Decolorization; Candida palmioleophaila; Textile Wastewater
7.  Characterization of Azo Reduction Activity in a Novel Ascomycete Yeast Strain 
Several model azo dyes are reductively cleaved by growing cultures of an ascomycete yeast species, Issatchenkia occidentalis. In liquid media containing 0.2 mM dye and 2% glucose in a mineral salts base, more than 80% of the dyes are removed in 15 h, essentially under microaerophilic conditions. Under anoxic conditions, decolorization does not occur, even in the presence of pregrown cells. Kinetic assays of azo reduction activities in quasi-resting cells demonstrated the following: (i) while the optimum pH depends on dye structure, the optimum pH range was observed in the acidic range; (ii) the maximum decolorizing activity occurs in the late exponential phase; and (iii) the temperature profile approaches the typical bell-shaped curve. These results indirectly suggest the involvement of an enzyme activity in azo dye reduction. The decolorizing activity of I. occidentalis is still observed, although at a lower level, when the cells switch to aerobic respiration at the expense of ethanol after glucose exhaustion in the culture medium. Decolorization ceased when all the ethanol was consumed; this observation, along with other lines of evidence, suggests that azo dye reduction depends on cell growth. Anthraquinone-2-sulfonate, a redox mediator, enhances the reduction rates of the N,N-dimethylaniline-based dyes and reduces those of the 2-naphthol-based dyes, an effect which seems to be compatible with a thermodynamic factor. The dye reduction products were tested as carbon and nitrogen sources. 1-Amino-2-naphthol was used as a carbon and nitrogen source, and N,N-dimethyl-p-phenylenediamine was used only as a nitrogen source. Sulfanilic and metanilic acids did not support growth either as a carbon or nitrogen source.
PMCID: PMC383148  PMID: 15066823
8.  Decolourization of azo dyes by a newly isolated Klebsiella sp. strain Y3, and effects of various factors on biodegradation 
In this study, we isolated and characterized a new strain of Klebsiella sp. Y3, which was capable of decolourizing azo dyes under anaerobic conditions. The effects of physico-chemical parameters on the Methyl Red degradation by the strain were determined. The results indicated that strain Y3 exhibited a good decolourization ability in the range of pH from 4 to 9, temperature from 30 °C to 42 °C and salinity from 1% to 4%. A broad spectrum of azo dyes with different structures could be decolourized by the strain. The isolate decolourized Methyl Red, Congo Red, Orange I and Methyl Orange by almost 100% (100 mg/L) in 48 h. The culture exhibited an ability to decolourize repeated additions of dye, showing that the strain could be used for multiple cycles of biodegradation. Azo dyes at high concentrations could be tolerated and degraded by Y3. An almost complete mineralization of Methyl Red and Congo Red at the concentration of 800 mg/L was observed within 48 h. The high degradation potential of this bacterium supports its use in the treatment of industrial wastewater containing azo dyes.
PMCID: PMC4433957  PMID: 26019533
azo dyes; Klebsiella sp.; decolourization; biodegradation
9.  Localization of the Enzyme System Involved in Anaerobic Reduction of Azo Dyes by Sphingomonas sp. Strain BN6 and Effect of Artificial Redox Mediators on the Rate of Azo Dye Reduction 
The effect of different artificial redox mediators on the anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 or activated sludge was investigated. Reduction rates were greatly enhanced in the presence of sulfonated anthraquinones. For strain BN6, the presence of both cytoplasmic and membrane-bound azo reductase activities was shown.
PMCID: PMC1389254  PMID: 16535698
10.  Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes 
EXCLI Journal  2015;14:158-174.
Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic process completely detoxified all the selected textile azo dyes, further efforts should be made to implement such methods for large scale dye wastewater treatment technologies.
PMCID: PMC4553892  PMID: 26417357
Azo dyes; P. rettgeri strain HSL1; Pseudomonas sp. SUK1; bacterial consortium; decolorization; biodegradation; sequential microaerophilic/aerobic process; detoxification
11.  Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15 
SpringerPlus  2012;1(1):37.
Azo dyes constitute the largest and most versatile class of synthetic dyes used in the textile, pharmaceutical, food and cosmetics industries and represent major components in wastewater from these industrial dying processes. Biological decolorization of azo dyes occurs efficiently under low oxygen to anaerobic conditions. However, this process results in the formation of toxic and carcinogenic amines that are resistant to further detoxification under low oxygen conditions. Moreover, the ability to detoxify these amines under aerobic conditions is not a wide spread metabolic activity. In this study we describe the use of Brevibacterium sp. strain VN-15, isolated from an activated sludge process of a textile company, for the sequential decolorization and detoxification of the azo dyes Reactive Yellow 107 (RY107), Reactive Black 5 (RB5), Reactive Red 198 (RR198) and Direct Blue 71 (DB71). Tyrosinase activity was observed during the biotreatment process suggesting the role of this enzyme in the decolorization and degradation process, but no-activity was observed for laccase and peroxidase. Toxicity, measured using Daphnia magna, was completely eliminated.
PMCID: PMC3566399  PMID: 23396675
Azo dyes; Textile wastewater; Decolorization; Biodegradation; Detoxification; Brevibacterium; Tyrosinase; Carcinogenic aromatic amine
12.  Soybean peroxidase-mediated degradation of an azo dye– a detailed mechanistic study 
BMC Biochemistry  2013;14:35.
Peroxidases are emerging as an important class of enzymes that can be used for the efficient degradation of organic pollutants. However, detailed studies identifying the various intermediates produced and the mechanisms involved in the enzyme-mediated pollutant degradation are not widely published.
In the present study, the enzymatic degradation of an azo dye (Crystal Ponceau 6R, CP6R) was studied using commercially available soybean peroxidase (SBP) enzyme. Several operational parameters affecting the enzymatic degradation of dye were evaluated and optimized, such as initial dye concentration, H2O2 dosage, mediator amount and pH of the solution. Under optimized conditions, 40 ppm dye solution could be completely degraded in under one minute by SBP in the presence of H2O2 and a redox mediator. Dye degradation was also confirmed using HPLC and TOC analyses, which showed that most of the dye was being mineralized to CO2 in the process.
Detailed analysis of metabolites, based on LC/MS results, showed that the enzyme-based degradation of the CP6R dye proceeded in two different reaction pathways- via symmetric azo bond cleavage as well as asymmetric azo bond breakage in the dye molecule. In addition, various critical transformative and oxidative steps such as deamination, desulfonation, keto-oxidation are explained on an electronic level. Furthermore, LC/MS/MS analyses confirmed that the end products in both pathways were small chain aliphatic carboxylic acids.
PMCID: PMC4028748  PMID: 24308857
Azo dye; Degradation; Enzyme; Mediator; LC/MS; Metabolites
13.  Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress 
BMC Plant Biology  2012;12:140.
Dehydrins (DHNs) protect plant cells from desiccation damage during environmental stress, and also participate in host resistance to various pathogens. In this study, we aimed to identify and characterize the DHN gene families from Vitis vinifera and wild V. yeshanensis, which is tolerant to both drought and cold, and moderately resistant to powdery mildew.
Four DHN genes were identified in both V. vinifera and V. yeshanensis, which shared a high sequence identity between the two species but little homology between the genes themselves. These genes were designated DHN1, DHN2, DHN3 and DHN4. All four of the DHN proteins were highly hydrophilic and were predicted to be intrinsically disordered, but they differed in their isoelectric points, kinase selectivities and number of functional motifs. Also, the expression profiles of each gene differed appreciably from one another. Grapevine DHN1 was not expressed in vegetative tissues under normal growth conditions, but was induced by drought, cold, heat, embryogenesis, as well as the application of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). It was expressed earlier in V. yeshanensis under drought conditions than in V. vinifera, and also exhibited a second round of up-regulation in V. yeshanensis following inoculation with Erysiphe necator, which was not apparent in V. vinifera. Like DHN1, DHN2 was induced by cold, heat, embryogenesis and ABA; however, it exhibited no responsiveness to drought, E. necator infection, SA or MeJA, and was also expressed constitutively in vegetative tissues under normal growth conditions. Conversely, DHN3 was only expressed during seed development at extremely low levels, and DHN4 was expressed specifically during late embryogenesis. Neither DHN3 nor DHN4 exhibited responsiveness to any of the treatments carried out in this study. Interestingly, the presence of particular cis-elements within the promoter regions of each gene was positively correlated with their expression profiles.
The grapevine DHN family comprises four divergent members. While it is likely that their functions overlap to some extent, it seems that DHN1 provides the main stress-responsive function. In addition, our results suggest a close relationship between expression patterns, physicochemical properties, and cis-regulatory elements in the promoter regions of the DHN genes.
PMCID: PMC3460772  PMID: 22882870
Grapevine; Dehydrin; Stress-induced expression; Powdery mildew; Promoter
14.  In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. 
A diesel fuel-contaminated aquifer was bioremediated in situ by the injection of oxidants (O2 and NO3-) and nutrients in order to stimulate microbial activity. After 3.5 years of remediation, an aquifer sample was excavated and the material was used (i) to isolate bacterial strains able to grow on selected hydrocarbons under denitrifying conditions and (ii) to construct a laboratory aquifer column in order to simulate the aerobic and denitrifying remediation processes. Five bacterial strains isolated from the aquifer sample were able to grow on toluene (strains T2 to T4, T6, and T10), and nine bacterial strains grew on toluene and m-xylene (strains M3 to M7 and M9 to M12). Strains T2 to T4, T6, and T10 were cocci, and strains M3 to M7 and M9 to M12 were rods. The morphological and physiological differences were also reflected in small sequence variabilities in domain III of the 23S rRNA and in the 16S rRNA. Comparative sequence analyses of the 16S rRNA of one isolate (T3 and M3) of each group revealed a close phylogenetic relationship for both groups of isolates to organisms of the genus Azoarcus. Two 16S rRNA-targeted oligonucleotide probes (Azo644 and Azo1251) targeting the experimental isolates, bacteria of the Azoarcus tolulyticus group, and Azoarcus evansii were used to investigate the significance of hydrocarbon-degrading Azoarcus spp. in the laboratory aquifer column. The number of bacteria in the column determined after DAPI (4',6-diamidino-2-phenylindole) staining was 5.8 x 10(8) to 1.1 x 10(9) cells g of aquifer material-1. About 1% (in the anaerobic zone of the column) to 2% (in the aerobic zone of the column) of these bacteria were detectable by using a combination of probes Azo644 and Azo1251, demonstrating that hydrocarbon-degrading Azoarcus spp. are significant members of the indigenous microbiota. More than 90% of the total number of bacteria were detectable by using probes targeting higher phylogenetic groups. Approximately 80% of these bacteria belonged to the beta subdivision of the class Proteobacteria (beta-Proteobacteria), and 10 to 16% belonged to the gamma-Proteobacteria. Bacteria of the alpha-Proteobacteria were present in high numbers (10%) only in the aerobic zone of the column.
PMCID: PMC168503  PMID: 9172330
15.  Azo Reductase Activity of Intact Saccharomyces cerevisiae Cells Is Dependent on the Fre1p Component of Plasma Membrane Ferric Reductase 
Unspecific bacterial reduction of azo dyes is a process widely studied in correlation with the biological treatment of colored wastewaters, but the enzyme system associated with this bacterial capability has never been positively identified. Several ascomycete yeast strains display similar decolorizing behaviors. The yeast-mediated process requires an alternative carbon and energy source and is independent of previous exposure to the dyes. When substrate dyes are polar, their reduction is extracellular, strongly suggesting the involvement of an externally directed plasma membrane redox system. The present work demonstrates that, in Saccharomyces cerevisiae, the ferric reductase system participates in the extracellular reduction of azo dyes. The S. cerevisiae Δfre1 and Δfre1 Δfre2 mutant strains, but not the Δfre2 strain, showed much-reduced decolorizing capabilities. The FRE1 gene complemented the phenotype of S. cerevisiae Δfre1 cells, restoring the ability to grow in medium without externally added iron and to decolorize the dye, following a pattern similar to the one observed in the wild-type strain. These results suggest that under the conditions tested, Fre1p is a major component of the azo reductase activity.
PMCID: PMC1168983  PMID: 16000801
16.  Genome Sequence of Sphingomonas xenophaga QYY, an Anthraquinone-Degrading Strain 
Genome Announcements  2013;1(1):e00031-12.
Sphingomonas xenophaga QYY is an efficient anthraquinone-degrading strain. Here, we present a 4.2-Mb assembly of the first genome sequence of S. xenophaga. We have annotated 36 coding sequences (CDSs) encoding aromatic catabolism and 216 CDSs responsible for toxic resistance and stress response, which may provide insights into the degradation of complex aromatics.
PMCID: PMC3569308  PMID: 23405319
17.  Purification and Characterization of 1-Naphthol-2-Hydroxylase from Carbaryl-Degrading Pseudomonas Strain C4▿  
Journal of Bacteriology  2007;189(7):2660-2666.
Pseudomonas sp. strain C4 metabolizes carbaryl (1-naphthyl-N-methylcarbamate) as the sole source of carbon and energy via 1-naphthol, 1,2-dihydroxynaphthalene, and gentisate. 1-Naphthol-2-hydroxylase (1-NH) was purified 9.1-fold to homogeneity from Pseudomonas sp. strain C4. Gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme is a homodimer with a native molecular mass of 130 kDa and a subunit molecular mass of 66 kDa. The enzyme was yellow, with absorption maxima at 274, 375, and 445 nm, indicating a flavoprotein. High-performance liquid chromatography analysis of the flavin moiety extracted from 1-NH suggested the presence of flavin adenine dinucleotide (FAD). Based on the spectral properties and the molar extinction coefficient, it was determined that the enzyme contained 1.07 mol of FAD per mol of enzyme. Although the enzyme accepts electrons from NADH, it showed maximum activity with NADPH and had a pH optimum of 8.0. The kinetic constants Km and Vmax for 1-naphthol and NADPH were determined to be 9.6 and 34.2 μM and 9.5 and 5.1 μmol min−1 mg−1, respectively. At a higher concentration of 1-naphthol, the enzyme showed less activity, indicating substrate inhibition. The Ki for 1-naphthol was determined to be 79.8 μM. The enzyme showed maximum activity with 1-naphthol compared to 4-chloro-1-naphthol (62%) and 5-amino-1-naphthol (54%). However, it failed to act on 2-naphthol, substituted naphthalenes, and phenol derivatives. The enzyme utilized one mole of oxygen per mole of NADPH. Thin-layer chromatographic analysis showed the conversion of 1-naphthol to 1,2-dihydroxynaphthalene under aerobic conditions, but under anaerobic conditions, the enzyme failed to hydroxylate 1-naphthol. These results suggest that 1-NH belongs to the FAD-containing external flavin mono-oxygenase group of the oxidoreductase class of proteins.
PMCID: PMC1855793  PMID: 17237179
18.  Microbial dynamics during azo dye degradation in a UASB reactor supplied with yeast extract 
Brazilian Journal of Microbiology  2015;45(4):1153-1160.
The present work aimed to investigate the microbial dynamics during the anaerobic treatment of the azo dye blue HRFL in bench scale upflow anaerobic sludge bed (UASB) reactor operated at ambient temperature. Sludge samples were collected under distinct operational phases, when the reactor were stable (low variation of color removal), to assess the effect of glucose and yeast extract as source of carbon and redox mediators, respectively. Reactors performance was evaluated based on COD (chemical oxygen demand) and color removal. The microbial dynamics were investigated by PCR-DGGE (Polimerase Chain Reaction - Denaturing Gradient of Gel Electrophoresis) technique by comparing the 16S rDNA profiles among samples. The results suggest that the composition of microorganisms changed from the beginning to the end of the reactor operation, probably in response to the presence of azo dye and/or its degradation byproducts. Despite the highest efficiency of color removal was observed in the presence of 500 mg/L of yeast extract (up to 93%), there were no differences regarding the microbial profiles that could indicate a microbial selection by the yeast extract addition. On the other hand Methosarcina barkeri was detected only in the end of operation when the best efficiencies on color removal occurred. Nevertheless the biomass selection observed in the last stages of UASB operation is probably a result of the washout of the sludge in response of accumulation of aromatic amines which led to tolerant and very active biomass that contributed to high efficiencies on color removal.
PMCID: PMC4323287  PMID: 25763018
azo dye; UASB reactor; PCR-DGGE; wastewater treatment; microbial profile
19.  Altering Catalytic Properties of 3-Chlorocatechol-Oxidizing Extradiol Dioxygenase from Sphingomonas xenophaga BN6 by Random Mutagenesis 
Journal of Bacteriology  2001;183(7):2322-2330.
The 2,3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas xenophaga strain BN6 (BphC1) oxidizes 3-chlorocatechol by a rather unique distal ring cleavage mechanism. In an effort to improve the efficiency of this reaction, bphC1 was randomly mutated by error-prone PCR. Mutants which showed increased activities for 3-chlorocatechol were obtained, and the mutant forms of the enzyme were shown to contain two or three amino acid substitutions. Variant enzymes containing single substitutions were constructed, and the amino acid substitutions responsible for altered enzyme properties were identified. One variant enzyme, which contained an exchanged amino acid in the C-terminal part, revealed a higher level of stability during conversion of 3-chlorocatechol than the wild-type enzyme. Two other variant enzymes contained amino acid substitutions in a region of the enzyme that is considered to be involved in substrate binding. These two variant enzymes exhibited a significantly altered substrate specificity and an about fivefold-higher reaction rate for 3-chlorocatechol conversion than the wild-type enzyme. Furthermore, these variant enzymes showed the novel capability to oxidize 3-methylcatechol and 2,3-dihydroxybiphenyl by a distal cleavage mechanism.
PMCID: PMC95140  PMID: 11244073
20.  Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. 
Applied and Environmental Microbiology  1992;58(11):3598-3604.
Five 14C-radiolabeled azo dyes and sulfanilic acid were synthesized and used to examine the relationship between dye substitution patterns and biodegradability (mineralization to CO2) by a white-rot fungus and an actinomycete. 4-Amino-[U-14C]benzenesulfonic acid and 4-(3-sulfo-4-aminophenylazo)-[U-14C]benzenesulfonic acid were used as representative compounds having sulfo groups or both sulfo and azo groups. Such compounds are not known to be present in the biosphere as natural products. The introduction of lignin-like fragments into the molecules of 4-amino-[U-14C]benzenesulfonic acid and 4-(3-sulfo-4-aminophenylazo)-[U-14C]benzenesulfonic acid by coupling reactions with guaiacol (2-methoxyphenol) resulted in the formation of the dyes 4-(3-methoxy-4-hydroxyphenylazo)-[U-14C]benzenesulfonic acid and 4-(2-sulfo-3'-methoxy-4'-hydroxy-azobenzene-4-azo)-[U-14C]benzenesulf oni c acid, respectively. The synthesis of acid azo dyes 4-(2-hydroxy-1-naphthylazo)-[U-14C]benzenesulfonic acid and 4-(4-hydroxy-1-naphthylazo)-[U-14C]benzenesulfonic acid also allowed the abilities of these microorganisms to mineralize these commercially important compounds to be evaluated. Phanerochaete chrysosporium mineralized all of the sulfonated azo dyes, and the substitution pattern did not significantly influence the susceptibility of the dyes to degradation. In contrast, Streptomyces chromofuscus was unable to mineralize aromatics with sulfo groups and both sulfo and azo groups. However, it mediated the mineralization of modified dyes containing lignin-like substitution patterns. This work showed that lignocellulolytic fungi and bacteria can be used for the biodegradation of anionic azo dyes, which thus far have been considered among the xenobiotic compounds most resistant to biodegradation.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID: PMC183150  PMID: 1482182
21.  Isolation and Characterization of Paracoccus sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5 
The Scientific World Journal  2014;2014:410704.
A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L) within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v). UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2.
PMCID: PMC4030516  PMID: 24883397
22.  Microbial Populations Associated with Treatment of an Industrial Dye Effluent in an Anaerobic Baffled Reactor 
Fluorescent in situ hybridization (FISH) using 16S and 23S rRNA-targeted probes together with construction of an archaeal 16S ribosomal DNA (rDNA) clone library was used to characterize the microbial populations of an anaerobic baffled reactor successfully treating industrial dye waste. Wastewater produced during the manufacture of food dyes containing several different azo and other dye compounds was decolorized and degraded under sulfidogenic and methanogenic conditions. Use of molecular methods to describe microbial populations showed that a diverse group of Bacteria and Archaea was involved in this treatment process. FISH enumeration showed that members of the gamma subclass of the class Proteobacteria and bacteria in the Cytophaga-Flexibacter-Bacteroides phylum, together with sulfate-reducing bacteria, were prominent members of a mixed bacterial population. A combination of FISH probing and analysis of 98 archaeal 16S rDNA clone inserts revealed that together with the bacterial population, a methanogenic population dominated by Methanosaeta species and containing species of Methanobacterium and Methanospirillum and a relatively unstudied methanogen, Methanomethylovorans hollandica, contributed to successful anaerobic treatment of the industrial waste. We suggest that sulfate reducers, or more accurately sulfidogenic bacteria, together with M. hollandica contribute considerably to the treatment process through metabolism of dye-associated sulfonate groups and subsequent conversion of sulfur compounds to carbon dioxide and methane.
PMCID: PMC93005  PMID: 11425746
23.  Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process 
PLoS ONE  2015;10(10):e0138448.
Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5–8.0, 27(±2°C and 10.6–18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery.
PMCID: PMC4619775  PMID: 26496083
24.  Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway. 
Journal of Bacteriology  1993;175(21):6890-6901.
From a soil isolate, Pseudomonas strain C18, we cloned and sequenced a 9.8-kb DNA fragment that encodes dibenzothiophene-degrading enzymes. Nine open reading frames were identified and designated doxABDEFGHIJ. Collectively, we refer to these genes as the DOX pathway. At the nucleotide level, doxABD are identical to the ndoABC genes that encode naphthalene dioxygenase of Pseudomonas putida. The DoxG protein is 97% identical to NahC (1,2-dihydroxynaphthalene dioxygenase) of P. putida. DoxE has 37% identity with cis-toluene dihydrodiol dehydrogenase. DoxF is similar to the aldehyde dehydrogenases of many organisms. The predicted DoxHIJ proteins have no obvious sequence similarities to known proteins. Gas chromatography with a flame ionization detector and mass spectroscopy confirmed that the DOX proteins convert naphthalene to salicylate and converting phenanthrene to 1-hydroxy-2-naphthoic acid. doxI mutants convert naphthalene to trans-o-hydroxybenzylidenepyruvate, indicating that the DoxI protein is similar to NahE (trans-o-hydroxybenzylidenepyruvate hydratase-aldolase). Comparison of the DOX sequence with restriction maps of cloned naphthalene catabolic pathway (NAH) genes revealed many conserved restriction sites. The DOX gene arrangement is identical to that proposed for NAH, except that the NAH equivalent of doxH has not been recognized. DoxH may be involved in the conversion of 2-hydroxy-4-(2'-oxo-3,5-cyclohexadienyl)-buta-2,4-dienoat e to cis-o-hydroxybenzylidenepyruvate. doxJ encodes an enzyme similar to NahD (isomerase). Our findings indicate that a single genetic pathway controls the metabolism of dibenzothiophene, naphthalene, and phenanthrene in strain C18 and that the DOX sequence encodes a complete upper naphthalene catabolic pathway similar to NAH.
PMCID: PMC206814  PMID: 8226631
25.  Depurinating naphthalene–DNA adducts in mouse skin related to cancer initiation 
Free radical biology & medicine  2009;47(7):1075-1081.
Naphthalene has been shown to be a weak carcinogen in rats. To investigate its mechanism of metabolic activation and cancer initiation, mice were topically treated with naphthalene or one of its metabolites, 1-naphthol, 1,2-dihydrodiolnaphthalene (1,2-DDN), 1,2-dihydroxynaphthalene (1,2-DHN), and 1,2-naphthoquinone (1,2-NQ). After 4 h, the mice were sacrificed, the treated skin was excised, and the depurinating and stable DNA adducts were analyzed. The depurinating adducts were identified and quantified by ultraperformance liquid chromatography/tandem mass spectrometry, whereas the stable adducts were quantified by 32P-postlabeling. For comparison, the stable adducts formed when a mixture of the four deoxyribonucleoside monophosphates was treated with 1,2-NQ or enzyme-activated naphthalene were also analyzed. The depurinating adducts 1,2-DHN-1-N3Ade and 1,2-DHN-1-N7Gua arise from reaction of 1,2-NQ with DNA. Similarly, the major stable adducts appear to derive from the 1,2-NQ. The depurinating DNA adducts are, in general, the most abundant. Therefore, naphthalene undergoes metabolic activation to the electrophilic ortho-quinone, 1,2-NQ, which reacts with DNA to form depurinating adducts. This is the same mechanism as other weak carcinogens, such as the natural and synthetic estrogens, and benzene.
PMCID: PMC4424927  PMID: 19619639
Naphthalene; Depurinating naphthalene–DNA adducts; Stable naphthalene–DNA adducts; Metabolic activation of naphthalene; 1,2-Naphthalene quinone ultimate carcinogenic metabolite

Results 1-25 (711380)