PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (852504)

Clipboard (0)
None

Related Articles

1.  Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6−/− mice 
Journal of lipid research  2008;49(4):823.
Elucidation of the metabolic pathways of triacylglycerol (TAG) synthesis is critical to the understanding of chronic metabolic disorders such as obesity, cardiovascular disease, and diabetes. sn-Glycerol-3-phosphate acyltransferase (GPAT) and sn-1-acylglycerol-3-phosphate acyltransferase (AGPAT) catalyze the first and second steps in de novo TAG synthesis. AGPAT6 is one of eight AGPAT isoforms identified through sequence homology, but the enzyme activity for AGPAT6 has not been confirmed. We found that in liver and brown adipose tissue from Agpat6-deficient (Agpat6−/−) mice, N-ethylmaleimide (NEM)-sensitive GPAT specific activity was 65% lower than in tissues from wild-type mice, but AGPAT specific activity was similar. Overexpression of Agpat6 in Cos-7 cells increased an NEM-sensitive GPAT specific activity, but AGPAT specific activity was not increased. Agpat6 and Gpat1 overexpression in Cos-7 cells increased the incorporation of [14C]oleate into diacylglycerol (DAG) or into DAG and TAG, respectively, suggesting that the lysophosphatidic acid, phosphatidic acid, and DAG intermediates initiated by each of these isoforms lie in different cellular pools. Together, these data show that “Agpat6−/− mice” are actually deficient in a novel NEM-sensitive GPAT, GPAT4, and indicate that the alterations in lipid metabolism in adipose tissue, liver, and mammary epithelium of these mice are attributable to the absence of GPAT4
doi:10.1194/jlr.M700592-JLR200
PMCID: PMC2819352  PMID: 18192653
triacylglycerol; phospholipid; lipodystrophy; acyl-coenzyme A; steatosis; sn-l-acylglycerol-3-phosphate O-acyltransferase-deficient mice
2.  Identification and Characterisation of a Novel Pathogenic Mutation in the Human Lipodystrophy Gene AGPAT2 
JIMD Reports  2012;9:73-80.
Loss-of-function mutations in AGPAT2, encoding 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), produce congenital generalised lipodystrophy (CGL). We screened the AGPAT2 gene in two siblings who presented with pseudoacromegaly, diabetes and severe dyslipidaemia and identified a novel mutation in AGPAT2 causing a single amino acid substitution, p.Cys48Arg. We subsequently investigated the molecular pathogenic mechanism linking both this mutation and the previously reported p.Leu228Pro mutation to clinical disease. Wild-type and mutant AGPAT2 were expressed in control and AGPAT2-deficient preadipocyte cell lines. mRNA and protein expression was determined, and the ability of each AGPAT2 species to rescue adipocyte differentiation in AGPAT2-deficient cells was assessed. Protein levels of both p.Cys48Arg and p.Leu228Pro AGPAT2 were significantly reduced compared with that of wild-type AGPAT2 despite equivalent mRNA levels. Stable expression of wild-type AGPAT2 partially rescued adipogenesis in AGPAT2 deficient preadipocytes, whereas stable expression of p.Cys48Arg or p.Leu228Pro AGPAT2 did not. In conclusion, unusually severe dyslipidaemia and pseudoacromegaloid overgrowth in patients with diabetes should alert physicians to the possibility of lipodystrophy. Both the previously unreported pathogenic p.Cys48Arg mutation in AGPAT2, and the known p.Leu228Pro mutation result in decreased AGPAT2 protein expression in developing adipocytes. It is most likely that the CGL seen in homozygous carriers of these mutations is largely accounted for by loss of protein expression.
doi:10.1007/8904_2012_181
PMCID: PMC3565662  PMID: 23430550
3.  Molecular Mechanisms of Hepatic Steatosis and Insulin Resistance in the AGPAT2 Deficient Mouse Model of Congenital Generalized Lipodystrophy 
Cell metabolism  2009;9(2):165-176.
SUMMARY
Mutations in 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2) cause congenital generalized lipodystrophy. To understand the molecular mechanisms underlying the metabolic complications associated with AGPAT2 deficiency, Agpat2 null mice were generated. Agpat2−/− mice develop severe lipodystrophy affecting both white and brown adipose tissue, severe insulin resistance, diabetes, and hepatic steatosis. The expression of lipogenic genes and rates of de novo fatty acid biosynthesis were increased ~4-fold in Agpat2−/− mouse livers. The mRNA and protein levels of monoacylglycerol acyltransferase isoform 1 were markedly increased in the livers of Agpat2−/− mice suggesting that the alternative monoacylglycerol pathway for triglyceride biosynthesis is activated in the absence of AGPAT2. Feeding a fat-free diet reduced liver triglycerides by ~50% in Agpat2−/− mice. These observations suggest that both dietary fat and hepatic triglyceride biosynthesis via a novel monoacylglycerol pathway may contribute to hepatic steatosis in Agpat2−/− mice.
doi:10.1016/j.cmet.2009.01.002
PMCID: PMC2673980  PMID: 19187773
AGPAT; LPAAT; MGAT; phosphatidic acid phosphatases; acyltransferase; phospholipids; lipodystrophy; hepatic steatosis
4.  Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesityS 
Journal of lipid research  2006;47(4):745-754.
Triglyceride synthesis in most mammalian tissues involves the sequential addition of fatty acids to a glycerol backbone, with unique enzymes required to catalyze each acylation step. Acylation at the sn-2 position requires 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) activity. To date, seven Agpat genes have been identified based on activity and/or sequence similarity, but their physiological functions have not been well established. We have generated a mouse model deficient in AGPAT6, which is normally expressed at high levels in brown adipose tissue (BAT), white adipose tissue (WAT), and liver. Agpat6-deficient mice exhibit a 25% reduction in body weight and resistance to both diet-induced and genetically induced obesity. The reduced body weight is associated with increased energy expenditure, reduced triglyceride accumulation in BAT and WAT, reduced white adipocyte size, and lack of adipose tissue in the subdermal region. In addition, the fatty acid composition of triacylglycerol, diacylglycerol, and phospholipid is altered, with proportionally greater polyunsaturated fatty acids at the expense of monounsaturated fatty acids. Thus, Agpat6 plays a unique role in determining triglyceride content and composition in adipose tissue and liver that cannot be compensated by other members of the Agpat family.
doi:10.1194/jlr.M500553-JLR200
PMCID: PMC2901549  PMID: 16436371
acyltransferase; gene-trap; adipose tissue; energy expenditure; 1-acylglycerol-3-phosphate O-acyltransferase
5.  Expression Variants of the Lipogenic AGPAT6 Gene Affect Diverse Milk Composition Phenotypes in Bos taurus 
PLoS ONE  2014;9(1):e85757.
Milk is composed of a complex mixture of lipids, proteins, carbohydrates and various vitamins and minerals as a source of nutrition for young mammals. The composition of milk varies between individuals, with lipid composition in particular being highly heritable. Recent reports have highlighted a region of bovine chromosome 27 harbouring variants affecting milk fat percentage and fatty acid content. We aimed to further investigate this locus in two independent cattle populations, consisting of a Holstein-Friesian x Jersey crossbreed pedigree of 711 F2 cows, and a collection of 32,530 mixed ancestry Bos taurus cows. Bayesian genome-wide association mapping using markers imputed from the Illumina BovineHD chip revealed a large quantitative trait locus (QTL) for milk fat percentage on chromosome 27, present in both populations. We also investigated a range of other milk composition phenotypes, and report additional associations at this locus for fat yield, protein percentage and yield, lactose percentage and yield, milk volume, and the proportions of numerous milk fatty acids. We then used mammary RNA sequence data from 212 lactating cows to assess the transcript abundance of genes located in the milk fat percentage QTL interval. This analysis revealed a strong eQTL for AGPAT6, demonstrating that high milk fat percentage genotype is also additively associated with increased expression of the AGPAT6 gene. Finally, we used whole genome sequence data from six F1 sires to target a panel of novel AGPAT6 locus variants for genotyping in the F2 crossbreed population. Association analysis of 58 of these variants revealed highly significant association for polymorphisms mapping to the 5′UTR exons and intron 1 of AGPAT6. Taken together, these data suggest that variants affecting the expression of AGPAT6 are causally involved in differential milk fat synthesis, with pleiotropic consequences for a diverse range of other milk components.
doi:10.1371/journal.pone.0085757
PMCID: PMC3897493  PMID: 24465687
6.  Studies of association of AGPAT6 variants with type 2 diabetes and related metabolic phenotypes in 12,068 Danes 
BMC Medical Genetics  2013;14:113.
Background
Type 2 diabetes, obesity and insulin resistance are characterized by hypertriglyceridemia and ectopic accumulation of lipids in liver and skeletal muscle. AGPAT6 encodes a novel glycerol-3 phosphate acyltransferase, GPAT4, which catalyzes the first step in the de novo triglyceride synthesis. AGPAT6-deficient mice show lower weight and resistance to diet- and genetically induced obesity. Here, we examined whether common or low-frequency variants in AGPAT6 associate with type 2 diabetes or related metabolic traits in a Danish population.
Methods
Eleven variants selected by a candidate gene approach capturing the common and low-frequency variation of AGPAT6 were genotyped in 12,068 Danes from four study populations of middle-aged individuals. The case–control study involved 4,638 type 2 diabetic and 5,934 glucose-tolerant individuals, while studies of quantitative metabolic traits were performed in 5,645 non-diabetic participants of the Inter99 Study.
Results
None of the eleven AGPAT6 variants were robustly associated with type 2 diabetes in the Danish case–control study. Moreover, none of the AGPAT6 variants showed association with measures of obesity (waist circumference and BMI), serum lipid concentrations, fasting or 2-h post-glucose load levels of plasma glucose and serum insulin, or estimated indices of insulin secretion or insulin sensitivity.
Conclusions
Common and low-frequency variants in AGPAT6 do not significantly associate with type 2 diabetes susceptibility, or influence related phenotypic traits such as obesity, dyslipidemia or indices of insulin sensitivity or insulin secretion in the population studied.
doi:10.1186/1471-2350-14-113
PMCID: PMC4231429  PMID: 24156295
Type 2 diabetes; Genetics; Insulin resistance; Human; Lipid droplets; AGPAT6; GPAT4
7.  Membrane topology of human AGPAT3 (LPAAT3) 
Integral membrane lysophospholipid acyltransferases (AT) are involved in many reactions that produce phospholipids and triglycerides. Enzymes that utilize lysophosphatidic acid (LPA) as an acceptor substrate have been termed LPAATs, and several are members of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) gene family. Amino acid sequence comparisons with other acyltransferases reveal that AGPATs contain four conserved motifs (I–IV), whose invariant residues appear to be important for catalysis and/or substrate recognition. Although the enzymatic activities of many AGPATs are known, for many members their structural organization within membranes and their exact biological functions are unclear. Recently, a new function for AGPATs was discovered when it was determined that human AGPAT3/LPAAT3 is involved in the structure and function of the Golgi complex. Here we have determined the topological orientation of human AGPAT3/LPAAT3. AGPAT3/LPAAT3 possesses two transmembrane domains, one of which separates motifs I and II, which are thought to form a functional unit that is critical for enzymatic activity. This is a surprising result but similar to a recent study on the topology of human LPAAT 1. The data is consistent with a structural arrangement in which motif I is located in the cytoplasm and motif II is in the endoplasmic reticulum and Golgi lumen, suggesting a different model for AGPAT3/LPAAT3’s enzymatic mechanism.
doi:10.1016/j.bbrc.2010.05.149
PMCID: PMC2902680  PMID: 20537980
Golgi complex; 1-acylglycerol-3-phosphate O-acyltransferase; AGPAT3; lysophosphatidic acid acyltransferase; LPAAT3; membrane topology
8.  Glycerophosphate/Acylglycerophosphate Acyltransferases 
Biology  2014;3(4):801-830.
Acyl-CoA:glycerol-3-phosphate acyltransferase (GPAT) and acyl-CoA: 1-acyl-glycerol-3-phosphate acyltransferase (AGPAT) are involved in the de novo synthesis of triacylglycerol (TAG) and glycerophospholipids. Many enzymes belonging to the GPAT/AGPAT family have recently been identified and their physiological or pathophysiological roles have been proposed. The roles of GPAT/AGPAT in the synthesis of TAG and obesity-related diseases were revealed through the identification of causative genes of these diseases or analyses of genetically manipulated animals. Recent studies have suggested that some isoforms of GPAT/AGPAT family enzymes are involved in the fatty acid remodeling of phospholipids. The enzymology of GPAT/AGPAT and their physiological/pathological roles in the metabolism of glycerolipids have been described and discussed in this review.
doi:10.3390/biology3040801
PMCID: PMC4280512  PMID: 25415055
acyltransferase; acyl-CoA; triacylglycerol; phospholipid; GPAT; AGPAT
9.  Gene networks driving bovine milk fat synthesis during the lactation cycle 
BMC Genomics  2008;9:366.
Background
The molecular events associated with regulation of milk fat synthesis in the bovine mammary gland remain largely unknown. Our objective was to study mammary tissue mRNA expression via quantitative PCR of 45 genes associated with lipid synthesis (triacylglycerol and phospholipids) and secretion from the late pre-partum/non-lactating period through the end of subsequent lactation. mRNA expression was coupled with milk fatty acid (FA) composition and calculated indexes of FA desaturation and de novo synthesis by the mammary gland.
Results
Marked up-regulation and/or % relative mRNA abundance during lactation were observed for genes associated with mammary FA uptake from blood (LPL, CD36), intracellular FA trafficking (FABP3), long-chain (ACSL1) and short-chain (ACSS2) intracellular FA activation, de novo FA synthesis (ACACA, FASN), desaturation (SCD, FADS1), triacylglycerol synthesis (AGPAT6, GPAM, LPIN1), lipid droplet formation (BTN1A1, XDH), ketone body utilization (BDH1), and transcription regulation (INSIG1, PPARG, PPARGC1A). Change in SREBF1 mRNA expression during lactation, thought to be central for milk fat synthesis regulation, was ≤2-fold in magnitude, while expression of INSIG1, which negatively regulates SREBP activation, was >12-fold and had a parallel pattern of expression to PPARGC1A. Genes involved in phospholipid synthesis had moderate up-regulation in expression and % relative mRNA abundance. The mRNA abundance and up-regulation in expression of ABCG2 during lactation was markedly high, suggesting a biological role of this gene in milk synthesis/secretion. Weak correlations were observed between both milk FA composition and desaturase indexes (i.e., apparent SCD activity) with mRNA expression pattern of genes measured.
Conclusion
A network of genes participates in coordinating milk fat synthesis and secretion. Results challenge the proposal that SREBF1 is central for milk fat synthesis regulation and highlight a pivotal role for a concerted action among PPARG, PPARGC1A, and INSIG1. Expression of SCD, the most abundant gene measured, appears to be key during milk fat synthesis. The lack of correlation between gene expression and calculated desaturase indexes does not support their use to infer mRNA expression or enzyme activity (e.g., SCD). Longitudinal mRNA expression allowed development of transcriptional regulation networks and an updated model of milk fat synthesis regulation.
doi:10.1186/1471-2164-9-366
PMCID: PMC2547860  PMID: 18671863
10.  PPARγ Regulates Genes Involved in Triacylglycerol Synthesis and Secretion in Mammary Gland Epithelial Cells of Dairy Goats 
PPAR Research  2013;2013:310948.
To explore the function of PPARγ in the goat mammary gland, we cloned the whole cDNA of the PPARγ gene. Homology alignments revealed that the goat PPARγ gene is conserved among goat, bovine, mouse, and human. Luciferase assays revealed that rosiglitazone enhanced the activity of the PPARγ response element (PPRE) in goat mammary epithelial cells (GMECs). After rosiglitazone (ROSI) treatment of GMECs, there was a significant (P < 0.05) increase in the expression of genes related to triacylglycerol synthesis and secretion: LPL, FASN, ACACA, PLIN3, FABP3, PLIN2, PNPLA2, NR1H3, SREBF1, and SCD. The decreases in expression observed after knockdown of PPARγ relative to the control group (Ad-NC) averaged 65%, 52%, 67%, 55%, 65%, 58%, 85%, 43%, 50%, and 24% for SCD, DGAT1, AGPAT6, SREBF1, ACACA, FASN, FABP3, SCAP, ATGL, and PLIN3, respectively. These results provide direct evidence that PPARγ plays a crucial role in regulating the triacylglycerol synthesis and secretion in goat mammary cells and underscore the functional importance of PPARγ in mammary gland tissue during lactation.
doi:10.1155/2013/310948
PMCID: PMC3654327  PMID: 23710163
11.  PROTEASOME INHIBITOR TREATMENT REDUCED FATTY ACID, TRIACYLGLYCEROL AND CHOLESTEROL SYNTHESIS 
In the present study, the beneficial effects of proteasome inhibitor treatment in reducing ethanol-induced steatosis were investigated. A microarray analysis was performed on the liver of rats injected with PS-341 (Bortezomib, Velcade®), and the results showed that proteasome inhibitor treatment significantly reduced the mRNA expression of SREBP-1c, and the downstream lipogenic enzymes, such as fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), which catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, the rate-limiting step in fatty acid synthesis. ELOVL6, which is responsible for fatty acids long chain elongation, was also significantly down regulated by proteasome inhibitor treatment. Moreover, PS-341 administration significantly reduced the expression of acyl-glycerol-3-phosphate acyltransferase (AGPAT), and diacylglycerol acyltransferase (DGAT), enzyme involved in triacylglycerol (TAG) synthesis. Finally, PS-341 was found to down regulate the enzymes 3-hydroxy-3-methylglutaryl-CoenzymeA synthase (HMG-CoA synthase) that is responsible for cholesterol synthesis. Proteasome inhibitor was also found to play a role in intestinal lipid adsorption because apolipoproteins A (apoA-I, apoAII, apoA-IV and ApoCIII) were down regulated by proteasome inhibitor treatment, especially ApoA-II that is known to be a marker of alcohol consumption. Proteasome inhibitor treatment also decreased apobec-1 complementation factor (ACF) leading to lower level of editing and production of ApoB protein. Moreover apolipoprotein C-III, a major component of chylomicrons was significantly down regulated. However, lipoprotein lipase (Lpl) and High density lipoprotein binding protein (Hdlbp) mRNA levels were increased by proteasome inhibitor treatment. These results suggested that proteasome inhibitor treatment could be used to reduce the alcohol-enhanced lipogenesis and alcohol-induced liver steatosis. A morphologic analysis, performed on the liver of rats fed ethanol for one month and treated with PS-341, showed that proteasome inhibitor treatment significantly decreased ethanol-induced liver steatosis. SREBP-1c, FAS and ACC were increased by ethanol feeding alone, but were significantly decreased when proteasome inhibitor was administered to rats fed ethanol. Our results also show that both mRNA and protein levels of these lipogenic enzymes, up regulated by ethanol, were then down regulated when proteasome inhibitor was administered to rats fed ethanol. It was also confirmed that alcohol feeding caused an increase in AGPAT and DGAT, which was prevented by proteasome inhibitor treatment of the animal fed ethanol. Chronic alcohol feeding did not affect the gene expression of HMG-CoA synthase. However, PS341 administration significantly reduced the HMG-CoA synthase mRNA levels, confirming the results obtained with the microarray analysis. C/EBP transcription factors alpha (CCAAT/enhancer-binding protein alpha) has been shown to positively regulate SREBP-1c mRNA expression, thus regulating lipogenesis. Proteasome inhibition caused a decrease in C/EBP alpha mRNA expression, indicating that C/EBP down regulation may be the mechanism by which proteasome inhibitor treatment reduced lipogenesis. In conclusion, our results indicate that proteasome activity is not only involved in down regulating fatty acid synthesis and triacylglycerol synthesis, but also cholesterol synthesis and intestinal lipid adsorption. Proteasome inhibitor, administrated at a non-toxic low dose, played a beneficial role in reducing lipogenesis caused by chronic ethanol feeding and these beneficial effects are obtained because of the specificity and reversibility of the proteasome inhibitor used.
doi:10.1016/j.yexmp.2012.03.006
PMCID: PMC4197193  PMID: 22445925
Fatty acid; Triacylglycerol and Cholesterol Synthesis; Proteasome inhibitor
12.  Rhodobacter capsulatus OlsA Is a Bifunctional Enyzme Active in both Ornithine Lipid and Phosphatidic Acid Biosynthesis▿ †  
Journal of Bacteriology  2007;189(23):8564-8574.
The Rhodobacter capsulatus genome contains three genes (olsA [plsC138], plsC316, and plsC3498) that are annotated as lysophosphatidic acid (1-acyl-sn-glycerol-3-phosphate) acyltransferase (AGPAT). Of these genes, olsA was previously shown to be an O-acyltransferase in the second step of ornithine lipid biosynthesis, which is important for optimal steady-state levels of c-type cytochromes (S. Aygun-Sunar, S. Mandaci, H.-G. Koch, I. V. J. Murray, H. Goldfine, and F. Daldal. Mol. Microbiol. 61:418-435, 2006). The roles of the remaining plsC316 and plsC3498 genes remained unknown. In this work, these genes were cloned, and chromosomal insertion-deletion mutations inactivating them were obtained to define their function. Characterization of these mutants indicated that, unlike the Escherichia coli plsC, neither plsC316 nor plsC3498 was essential in R. capsulatus. In contrast, no plsC316 olsA double mutant could be isolated, indicating that an intact copy of either olsA or plsC316 was required for R. capsulatus growth under the conditions tested. Compared to OlsA null mutants, PlsC316 null mutants contained ornithine lipid and had no c-type cytochrome-related phenotype. However, they exhibited slight growth impairment and highly altered total fatty acid and phospholipid profiles. Heterologous expression in an E. coli plsC(Ts) mutant of either R. capsulatus plsC316 or olsA gene products supported growth at a nonpermissive temperature, exhibited AGPAT activity in vitro, and restored phosphatidic acid biosynthesis. The more vigorous AGPAT activity displayed by PlsC316 suggested that plsC316 encodes the main AGPAT required for glycerophospholipid synthesis in R. capsulatus, while olsA acts as an alternative AGPAT that is specific for ornithine lipid synthesis. This study therefore revealed for the first time that some OlsA enzymes, like the enzyme of R. capsulatus, are bifunctional and involved in both membrane ornithine lipid and glycerophospholipid biosynthesis.
doi:10.1128/JB.01121-07
PMCID: PMC2168953  PMID: 17921310
13.  Mutations in Gng3lg and AGPAT2 in Berardinelli-Seip Congenital Lipodystrophy and Brunzell Syndrome: Phenotype Variability Suggests Important Modifier Effects 
Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder caused by mutations in AGPAT2 and Gng3lg. We screened for mutations in AGPAT2 and Gng3lg in 26 families with CGL and one family with Brunzell syndrome. We found mutations in either AGPAT2 or Gng3lg in all but four probands, including three novel mutations in AGPAT2, A712T (Lys215X), IVS3-1G→C, and C636A (Phe189X). In three siblings with Brunzell syndrome, we identified a splice site mutation (IVS4–2A→G) in AGPAT2, showing that AGPAT2 mutations can also cause Brunzell syndrome. Eighteen CGL patients from 15 families from the same region of northeastern Brazil were homozygous for a frameshift mutation (669insA of AF05149) in Gng3lg. Despite having the same mutation, the subjects had widely divergent clinical manifestations. In our subjects, there did not appear to be any distinguishing clinical characteristics between CGL subjects with AGPAT2 or Gng3lg mutations with the exception of mental retardation in carriers of Gng3lg. In summary, mutations in AGPAT2 and Gng3lg are approximately equally represented in CGL; despite harboring the same Gng3lg mutation, subjects may have widely divergent clinical manifestations, suggesting modifying influences of other genes and/or environment; and Brunzell syndrome may be caused by a mutation in AGPAT2.
doi:10.1210/jc.2003-030485
PMCID: PMC3390418  PMID: 15181077
14.  Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1 
Congenital generalized lipodystrophy (CGL) is an autosomal recessive disease characterized by the generalized scant of adipose tissue. CGL type 1 is caused by mutations in gene encoding 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2). A clinical and molecular genetic investigation was performed in affected and unaffected members of two families with CGL type 1. The AGPAT2 coding region was sequenced in index cases of the two families. The presence of the identified mutations in relevant parents was tested. We identified a novel nonsense mutation (c.685G>T, p.Glu229*) and a missense substitution (c.514G>A, p.Glu172Lys). The unaffected parents in both families were heterozygous carrier of the relevant mutation. The results expand genotype–phenotype spectrum in CGL1 and will have applications in prenatal and early diagnosis of the disease. This is the first report of Persian families identified with AGPAT2 mutations.
Highlights
► First diagnosis of congenital generalized lipodystrophy type 1 in Persian population. ► Molecular analysis identified a novel nonsense mutation and a missense substitution in the AGPAT2. ► The patients did not have diabetes mellitus or hyperinsulinemia. ► The mutations found are candidates for CGL screening. ► The results expand the knowledge about the genotype–phenotype correlations in CGL.
doi:10.1016/j.ejmg.2012.07.011
PMCID: PMC3471069  PMID: 22902344
Congenital generalized lipodystrophy; CGL; Berardinelli-Seip syndrome; AGPAT2
15.  Genome-Wide Association Study Identifies Novel Loci Associated with Circulating Phospho- and Sphingolipid Concentrations 
PLoS Genetics  2012;8(2):e1002490.
Phospho- and sphingolipids are crucial cellular and intracellular compounds. These lipids are required for active transport, a number of enzymatic processes, membrane formation, and cell signalling. Disruption of their metabolism leads to several diseases, with diverse neurological, psychiatric, and metabolic consequences. A large number of phospholipid and sphingolipid species can be detected and measured in human plasma. We conducted a meta-analysis of five European family-based genome-wide association studies (N = 4034) on plasma levels of 24 sphingomyelins (SPM), 9 ceramides (CER), 57 phosphatidylcholines (PC), 20 lysophosphatidylcholines (LPC), 27 phosphatidylethanolamines (PE), and 16 PE-based plasmalogens (PLPE), as well as their proportions in each major class. This effort yielded 25 genome-wide significant loci for phospholipids (smallest P-value = 9.88×10−204) and 10 loci for sphingolipids (smallest P-value = 3.10×10−57). After a correction for multiple comparisons (P-value<2.2×10−9), we observed four novel loci significantly associated with phospholipids (PAQR9, AGPAT1, PKD2L1, PDXDC1) and two with sphingolipids (PLD2 and APOE) explaining up to 3.1% of the variance. Further analysis of the top findings with respect to within class molar proportions uncovered three additional loci for phospholipids (PNLIPRP2, PCDH20, and ABDH3) suggesting their involvement in either fatty acid elongation/saturation processes or fatty acid specific turnover mechanisms. Among those, 14 loci (KCNH7, AGPAT1, PNLIPRP2, SYT9, FADS1-2-3, DLG2, APOA1, ELOVL2, CDK17, LIPC, PDXDC1, PLD2, LASS4, and APOE) mapped into the glycerophospholipid and 12 loci (ILKAP, ITGA9, AGPAT1, FADS1-2-3, APOA1, PCDH20, LIPC, PDXDC1, SGPP1, APOE, LASS4, and PLD2) to the sphingolipid pathways. In large meta-analyses, associations between FADS1-2-3 and carotid intima media thickness, AGPAT1 and type 2 diabetes, and APOA1 and coronary artery disease were observed. In conclusion, our study identified nine novel phospho- and sphingolipid loci, substantially increasing our knowledge of the genetic basis for these traits.
Author Summary
Phospho- and sphingolipids are integral to membrane formation and are involved in crucial cellular functions such as signalling, membrane fluidity, membrane protein trafficking, neurotransmission, and receptor trafficking. In addition to severe monogenic diseases resulting from defective phospho- and sphingolipid function and metabolism, the evidence suggests that variations in these lipid levels at the population level are involved in the determination of cardiovascular and neurologic traits and subsequent disease. We took advantage of modern laboratory methods, including microarray-based genotyping and electrospray ionization tandem mass spectrometry, to hunt for genetic variation influencing the levels of more than 350 phospho- and sphingolipid phenotypes. We identified nine novel loci, in addition to confirming a number of previously described loci. Several other genetic regions provided substantial evidence of their involvement in these traits. All of these loci are strong candidates for further research in the field of lipid biology and are likely to yield considerable insights into the complex metabolic pathways underlying circulating phospho- and sphingolipid levels. Understanding these mechanisms might help to illuminate factors leading to the development of common cardiovascular and neurological diseases and might provide molecular targets for the development of new therapies.
doi:10.1371/journal.pgen.1002490
PMCID: PMC3280968  PMID: 22359512
16.  The expression and regulation of enzymes mediating the biosynthesis of triglycerides and phospholipids in keratinocytes/epidermis 
Dermato-endocrinology  2011;3(2):70-76.
Triglycerides and phospholipids play an important role in epidermal permability barrier formation and function. They are synthesized de novo in the epidermis via the glycerol-3-phosphate pathway, catalyzed sequentially by a group of enzymes that have multiple isoforms including glycerol-3-phosphate acyltransferase (GPAT), 1-acylglycerol-3-phosphate acyltransferase (AGPAT), Lipin and diacylglycerol acyltransferase (DGAT). Here we review the current knowledge of GPAT, AGPAT, Lipin and DGAT enzymes in keratinocytes/epidermis focusing on the expression levels of the various isoforms and their localization in mouse epidermis. Additionally, the factors regulating their gene expression, including calcium induced differentiation, PPAR and LXR activators, and the effect of acute permeability barrier disruption will be discussed.
doi:10.4161/derm.3.2.14995
PMCID: PMC3117005  PMID: 21695015
glycerol-3-phosphate acyltransferase; 1-acylglycerol-3-phosphate acyltransferase; lipin; diacylglycerol acyltransferase; human keratinocytes; epidermis
17.  Reduced Susceptibility of DNA Methyltransferase 1 Hypomorphic (Dnmt1N/+) Mice to Hepatic Steatosis upon Feeding Liquid Alcohol Diet 
PLoS ONE  2012;7(8):e41949.
Background
Methylation at C-5 (5-mdC) of CpG base pairs, the most abundant epigenetic modification of DNA, is catalyzed by 3 essential DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b). Aberrations in DNA methylation and Dnmts are linked to different diseases including cancer. However, their role in alcoholic liver disease (ALD) has not been elucidated.
Methodology/Principal Findings
Dnmt1 wild type (Dnmt1+/+) and hypomorphic (Dnmt1N/+) male mice that express reduced level of Dnmt1 were fed Lieber-DeCarli liquid diet containing ethanol for 6 weeks. Control mice were pair-fed calorie-matched alcohol-free liquid diet, and Dnmtase activity, 5-mdC content, gene expression profile and liver histopathology were evaluated. Ethanol feeding caused pronounced decrease in hepatic Dnmtase activity in Dnmt1+/+ mice due to decrease in Dnmt1 and Dnmt3b protein levels and upregulation of miR-148 and miR-152 that target both Dnmt1 and Dnmt3b. Microarray and qPCR analysis showed that the genes involved in lipid, xenobiotic and glutathione metabolism, mitochondrial function and cell proliferation were dysregulated in the wild type mice fed alcohol. Surprisingly, Dnmt1N/+ mice were less susceptible to alcoholic steatosis compared to Dnmt1+/+ mice. Expression of several key genes involved in alcohol (Aldh3b1), lipid (Ppara, Lepr, Vldlr, Agpat9) and xenobiotic (Cyp39a1) metabolism, and oxidative stress (Mt-1, Fmo3) were significantly (P<0.05) altered in Dnmt1N/+ mice relative to the wild type mice fed alcohol diet. However, CpG islands encompassing the promoter regions of Agpat9, Lepr, Mt1 and Ppara were methylation-free in both genotypes irrespective of the diet, suggesting that promoter methylation does not regulate their expression. Similarly, 5-mdC content of the liver genome, as measured by LC-MS/MS analysis, was not affected by alcohol diet in the wild type or hypomorphic mice.
Conclusions/Significance
Although feeding alcohol diet reduced Dnmtase activity, the loss of one copy of Dnmt1 protected mice from alcoholic hepatosteatosis by dysregulating genes involved in lipid metabolism and oxidative stress.
doi:10.1371/journal.pone.0041949
PMCID: PMC3414497  PMID: 22905112
18.  Genome-Wide Analysis of Glucocorticoid Receptor Binding Regions in Adipocytes Reveal Gene Network Involved in Triglyceride Homeostasis 
PLoS ONE  2010;5(12):e15188.
Glucocorticoids play important roles in the regulation of distinct aspects of adipocyte biology. Excess glucocorticoids in adipocytes are associated with metabolic disorders, including central obesity, insulin resistance and dyslipidemia. To understand the mechanisms underlying the glucocorticoid action in adipocytes, we used chromatin immunoprecipitation sequencing to isolate genome-wide glucocorticoid receptor (GR) binding regions (GBRs) in 3T3-L1 adipocytes. Furthermore, gene expression analyses were used to identify genes that were regulated by glucocorticoids. Overall, 274 glucocorticoid-regulated genes contain or locate nearby GBR. We found that many GBRs were located in or nearby genes involved in triglyceride (TG) synthesis (Scd-1, 2, 3, GPAT3, GPAT4, Agpat2, Lpin1), lipolysis (Lipe, Mgll), lipid transport (Cd36, Lrp-1, Vldlr, Slc27a2) and storage (S3-12). Gene expression analysis showed that except for Scd-3, the other 13 genes were induced in mouse inguinal fat upon 4-day glucocorticoid treatment. Reporter gene assays showed that except Agpat2, the other 12 glucocorticoid-regulated genes contain at least one GBR that can mediate hormone response. In agreement with the fact that glucocorticoids activated genes in both TG biosynthetic and lipolytic pathways, we confirmed that 4-day glucocorticoid treatment increased TG synthesis and lipolysis concomitantly in inguinal fat. Notably, we found that 9 of these 12 genes were induced in transgenic mice that have constant elevated plasma glucocorticoid levels. These results suggested that a similar mechanism was used to regulate TG homeostasis during chronic glucocorticoid treatment. In summary, our studies have identified molecular components in a glucocorticoid-controlled gene network involved in the regulation of TG homeostasis in adipocytes. Understanding the regulation of this gene network should provide important insight for future therapeutic developments for metabolic diseases.
doi:10.1371/journal.pone.0015188
PMCID: PMC3004788  PMID: 21187916
19.  A role for 1-acylglycerol-3-phosphate-O-acyltransferase-1 in myoblast differentiation 
AGPAT isoforms catalyze the acylation of lysophosphatidic acid (LPA) to form phosphatidic acid (PA). AGPAT2 mutations are associated with defective adipogenesis. Muscle and adipose tissue share common precursor cells. We investigated the role of AGPAT isoforms in skeletal muscle development. We demonstrate that small interference RNA-mediated knockdown of AGPAT1 expression prevents the induction of myogenin, a key transcriptional activator of the myogenic program, and inhibits the expression of myosin heavy chain. This effect is rescued by transfection with AGPAT1 but not AGPAT2. Knockdown of AGPAT2 has no effect. The regulation of myogenesis by AGPAT1 is associated with alterations on actin cytoskeleton. The role of AGPAT1 on actin cytoskeleton is further supported by colocalization of AGPAT1 to areas of active actin polymerization. AGPAT1 overexpression was not associated with an increase in PA levels. Our observations strongly implicate AGPAT1 in the development of skeletal muscle, specifically to terminal differentiation. These findings are linked to the regulation of actin cytoskeleton.
doi:10.1016/j.diff.2010.05.006
PMCID: PMC3449212  PMID: 20561744
Cytoskeleton; Phosphatidic acid; AGPAT2; C2C12; Skeletal muscle; Actin
20.  A Patient with Congenital Generalized Lipodystrophy Due To a Novel Mutation in BSCL2: Indications for Secondary Mitochondrial Dysfunction 
JIMD Reports  2011;4:47-54.
Background: Congenital generalized lipodystrophy (CGL) results from mutations in AGPAT2, encoding 1-acyl-glycerol-3-phosphate-acyltransferase 2 (CGL1; MIM 608594), BSCL2, encoding seipin (CGL2; MIM 269700), CAV1, encoding caveolin1 (CGL3; MIM 612526) or PTRF, encoding polymerase I and transcript release factor (CGL4; MIM 613327). This study aims to investigate the genotype/phenotype relationship and search for a possible pathogenic mechanism in a patient with CGL.
Design: Case report.
Patients and Setting: A 7-day-old child of consanguineous Turkish parents presented with a generalized loss of subcutaneous fat. He had a strikingly enlarged liver, high serum triglycerides, and hyperglycaemia, suggestive for CGL.
Results: A novel homozygous mutation in the acceptor splice site of exon 5 of the BSCL2 gene was found in the genome of the proband. This mutation causes a complex RNA splicing defect and results in two different aberrant seipin proteins, which were normally expressed and localized to the endoplasmic reticulum like wild type protein. Analysis of the patient’s urine showed intermittent elevations of citric acid intermediates and persistently high concentrations of ethylmalonic acid, suggestive of a disturbance of the mitochondrial respiratory chain.
Conclusion: Here we report abnormal urinary organic acid levels, indicative of mitochondrial dysfunction, in a patient with CGL resulting from a novel mutation in BSCL2. Our findings suggest for the first time an association between CGL and secondary mitochondrial dysfunction.
Electronic supplementary material The online version of this article (doi:10.1007/8904_2011) contains supplementary material, which is available to authorized users.
doi:10.1007/8904_2011_86
PMCID: PMC3509903  PMID: 23430896
21.  Lysophosphatidic Acid Acyltransferase β (LPAATβ) Promotes the Tumor Growth of Human Osteosarcoma 
PLoS ONE  2010;5(12):e14182.
Background
Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated.
Methodology/Principal Findings
Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma.
Conclusions/Significance
Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially attractive given the availability of selective pharmacological inhibitors.
doi:10.1371/journal.pone.0014182
PMCID: PMC2995727  PMID: 21152068
22.  Alterations in Lipid Signaling Underlie Lipodystrophy Secondary to AGPAT2 Mutations 
Diabetes  2012;61(11):2922-2931.
Congenital generalized lipodystrophy (CGL), secondary to AGPAT2 mutation is characterized by the absence of adipocytes and development of severe insulin resistance. In the current study, we investigated the adipogenic defect associated with AGPAT2 mutations. Adipogenesis was studied in muscle-derived multipotent cells (MDMCs) isolated from vastus lateralis biopsies obtained from controls and subjects harboring AGPAT2 mutations and in 3T3-L1 preadipocytes after knockdown or overexpression of AGPAT2. We demonstrate an adipogenic defect using MDMCs from control and CGL human subjects with mutated AGPAT2. This defect was rescued in CGL MDMCs with a retrovirus expressing AGPAT2. Both CGL-derived MDMCs and 3T3-L1 cells with knockdown of AGPAT2 demonstrated an increase in cell death after induction of adipogenesis. Lack of AGPAT2 activity reduces Akt activation, and overexpression of constitutively active Akt can partially restore lipogenesis. AGPAT2 modulated the levels of phosphatidic acid, lysophosphatidic acid, phosphatidylinositol species, as well as the peroxisome proliferator–activated receptor γ (PPARγ) inhibitor cyclic phosphatidic acid. The PPARγ agonist pioglitazone partially rescued the adipogenic defect in CGL cells. We conclude that AGPAT2 regulates adipogenesis through the modulation of the lipome, altering normal activation of phosphatidylinositol 3-kinase (PI3K)/Akt and PPARγ pathways in the early stages of adipogenesis.
doi:10.2337/db12-0004
PMCID: PMC3478532  PMID: 22872237
23.  Trans-10, cis-12 conjugated linoleic acid reduces neutral lipid content and may affect cryotolerance of in vitro-produced crossbred bovine embryos 
Background
Due to high neutral lipids accumulation in the cytoplasm, in vitro-produced embryos from Bos primigenius indicus and their crosses are more sensitive to chilling and cryopreservation than those from Bos primigenius taurus. The objective of the present study was to evaluate the effects of trans-10, cis-12 conjugated linoleic acid (CLA) on the development and cryotolerance of crossbred Bos primigenius taurus x Bos primigenius indicus embryos produced in vitro, and cultured in the presence of fetal calf serum. Bovine zygotes (n = 1,692) were randomly assigned to one of the following treatment groups: 1) Control, zygotes cultured in Charles Rosenkrans 2 amino acid (CR2aa) medium (n = 815) or 2) CLA, zygotes cultured in CR2aa medium supplemented with 100 μmol/L of trans-10, cis-12 CLA (n = 877). Embryo development (cleavage and blastocyst rates evaluated at days 3 and 8 of culture, respectively), lipid content at morula stage (day 5) and blastocyst cryotolerance (re-expansion and hatching rates, evaluated 24 and 72 h post-thawing, respectively) were compared between groups. Additionally, selected mRNA transcripts were measured by Real–Time PCR in blastocyst stage.
Results
The CLA treatment had no effect on cleavage and blastocyst rates, or on mRNA levels for genes related to cellular stress and apoptosis. On the other hand, abundance of mRNA for the 1-acylglycerol-3-phosphate 0-acyltransferase-encoding gene (AGPAT), which is involved in triglycerides synthesis, and consequently neutral lipid content, were reduced by CLA treatment. A significant increase was observed in the re-expansion rate of embryos cultured with trans-10, cis-12 CLA when compared to control (56.3 vs. 34.4%, respectively, P = 0.002). However, this difference was not observed in the hatching rate (16.5 vs. 14.0%, respectively, P = 0.62).
Conclusions
The supplementation with trans-10, cis-12 CLA isomer in culture medium reduced the lipid content of in vitro produced bovine embryos by reducing the gene expression of 1-acylglycerol 3-phosphate 0-acyltransferase (AGPAT) enzyme. However, a possible improvement in embryo cryotolerance in response to CLA, as suggested by increased blastocyst re-expansion rate, was not confirmed by hatching rates.
doi:10.1186/2049-1891-5-33
PMCID: PMC4083350  PMID: 25002968
Blastocysts; CLA; Crossbred cattle; Cryopreservation; Lipid content
24.  Lipodystrophies: Disorders of adipose tissue biology 
Biochimica et biophysica acta  2009;1791(6):507-513.
The adipocytes synthesize and store triglycerides as lipid droplets surrounded by various proteins and phospholipids at its surface. Recently, the molecular basis of some of the genetic syndromes of lipodystrophies has been elucidated and some of these genetic loci have been found to contribute to lipid droplet formation in adipocytes. The two main types of genetic lipodystrophies are congenital generalized lipodystrophy (CGL) and familial partial lipodystrophy (FPL). So far, three CGL loci: 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), Berardinelli-Seip Congenital Lipodystrophy 2 (BSCL2) and caveolin 1 (CAV1) and four FPL loci: lamin A/C (LMNA), peroxisome proliferator-activated receptor γ (PPARG), v-AKT murine thymoma oncogene homolog 2 (AKT2) and zinc metalloprotease (ZMPSTE24), have been identified. AGPAT2 plays a critical role in the synthesis of glycerophospholipids and triglycerides required for lipid droplet formation. Another protein, seipin (encoded by BSCL2 gene), has been found to induce lipid droplet fusion. CAV1 is an integral component of caveolae and might contribute towards lipid droplet formation. PPARγ and AKT2 play important role in adipogenesis and lipid synthesis. In this review, we discuss and speculate about the contribution of various lipodystrophy genes and their products in the lipid droplet formation.
doi:10.1016/j.bbalip.2008.12.014
PMCID: PMC2693450  PMID: 19162222
Lipodystrophy; AGPAT2; BSCL2; CAV1; LMNA; PPARG; AKT2; ZMPSTE24; Lipid droplet; Acyltransferases
25.  Novel Subtype of Congenital Generalized Lipodystrophy Associated With Muscular Weakness and Cervical Spine Instability 
Congenital generalized lipodystrophy (CGL) is a rare auto-somal recessive disorder characterized by extreme paucity of adipose tissue from birth, and early onset of metabolic complications related to insulin resistance. Mutations in three genes, 1-acylglycerol 3-phosphate-O-acyltransferase 2 (AGPAT2), Berardinelli Seip Congenital Lipodystrophy 2 (BSCL2), and Caveolin-1 (CAV1) are associated with the three subtypes of this disorder, CGL1, CGL2 and CGL3, respectively. We report two siblings of Hispanic origin who displayed characteristic features of CGL such as generalized loss of subcutaneous fat from birth, acanthosis nigricans, acromegaloid habitus, umbilical prominence, hepatosplenomegaly, hypoleptinemia, dyslipidemia, and insulin resistance. However, no disease causing variants were detected in the DNA sequence of AGPAT2, BSCL2 or CAV1 genes. Further, whole body magnetic resonance imaging (MRI) in the two siblings revealed marked loss of subcutaneous, intraabdominal and intrathoracic fat like in other patients with CGL, but preservation of bone marrow fat which is invariably lost in all patients with CGL1 and CGL2, but not in the patient reported with CGL3. They also had generalized muscle weakness during infancy and early childhood associated with a nearly fivefold increase in serum creatine kinase (CK) levels, but with normal muscle biopsy and electrophysiologic studies. Both patients were also found to have atlantoaxial dislocation requiring surgical intervention. Thus, this pedigree represents a novel subtype of CGL characterized by generalized loss of body fat but with preservation of bone marrow fat, congenital muscular weakness and cervical spine instability. The genetic basis of this novel subtype remains to be determined.
doi:10.1002/ajmg.a.32457
PMCID: PMC2716114  PMID: 18698612
congenital generalized lipodystrophy; adipose tissue; insulin resistance; congenital myopathy; cervical spine instability

Results 1-25 (852504)