Search tips
Search criteria

Results 1-25 (76805)

Clipboard (0)

Related Articles

1.  CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization[S] 
Journal of Lipid Research  2015;56(1):109-121.
CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS239S240, we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immuno­blotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation.
PMCID: PMC4274058  PMID: 25421061
adipocytes; adipose tissue; adipose triglyceride lipase; Chanarin Dorfman syndrome; lipase; lipid droplets; lipolysis; perilipin
2.  Cellular Localization and Associations of the Major Lipolytic Proteins in Human Skeletal Muscle at Rest and during Exercise 
PLoS ONE  2014;9(7):e103062.
Lipolysis involves the sequential breakdown of fatty acids from triacylglycerol and is increased during energy stress such as exercise. Adipose triglyceride lipase (ATGL) is a key regulator of skeletal muscle lipolysis and perilipin (PLIN) 5 is postulated to be an important regulator of ATGL action of muscle lipolysis. Hence, we hypothesized that non-genomic regulation such as cellular localization and the interaction of these key proteins modulate muscle lipolysis during exercise. PLIN5, ATGL and CGI-58 were highly (>60%) colocated with Oil Red O (ORO) stained lipid droplets. PLIN5 was significantly colocated with ATGL, mitochondria and CGI-58, indicating a close association between the key lipolytic effectors in resting skeletal muscle. The colocation of the lipolytic proteins, their independent association with ORO and the PLIN5/ORO colocation were not altered after 60 min of moderate intensity exercise. Further experiments in cultured human myocytes showed that PLIN5 colocation with ORO or mitochondria is unaffected by pharmacological activation of lipolytic pathways. Together, these data suggest that the major lipolytic proteins are highly expressed at the lipid droplet and colocate in resting skeletal muscle, that their localization and interactions appear to remain unchanged during prolonged exercise, and, accordingly, that other post-translational mechanisms are likely regulators of skeletal muscle lipolysis.
PMCID: PMC4108417  PMID: 25054327
3.  Differential control of ATGL-mediated lipid droplet degradation by CGI-58 and G0S2 
Cell Cycle  2010;9(14):2719-2725.
Lipid droplets (LDs) are intracellular storage sites for triacylglyerols (TAGs) and steryl esters, and play essential roles in energy metabolism and membrane biosynthesis. Adipose triglyceride lipase (ATGL) is the key enzyme for TAG hydrolysis (lipolysis) in adipocytes and LD degradation in nonadipocyte cells. Lipase activity of ATGL in vivo largely depends on its C-terminal sequence as well as coactivation by CGI-58. Here we demonstrate that the C-terminal hydrophobic domain in ATGL is required for LD targeting and CGI-58-independent LD degradation. Overexpression of wild-type ATGL causes a dramatic decrease in LD size and number, whereas a mutant lacking the hydrophobic domain fails to localize to LDs and to affect their morphology. Interestingly, coexpression of CGI-58 is able to promote LD turnover mediated by this ATGL mutant. Recently we have discovered that G0S2 acts as an inhibitor of ATGL activity and ATGL-mediated lipolysis. Here we show that G0S2 binds to ATGL irrelevantly of its activity state or the presence of CGI-58. In G0S2-expressing cells, the combined expression of CGI-58 and ATGL is incapable of stimulating LD turnover. We propose that CGI-58 and G0S2 regulate ATGL via non-competing mechanisms.
PMCID: PMC3040957  PMID: 20676045
lipolysis; lipase; lipid droplet; triacylglycerol; fatty acid
Journal of cellular biochemistry  2008;105(6):1430-1436.
In adipocytes, lipid droplet (LD) size reflects a balance of triglyceride synthesis (lipogenesis) and hydrolysis (lipolysis). Perilipin A (Peri A), is the most abundant phosphoprotein on the surface of adipocyte LDs and has a crucial role in lipid storage and lipolysis. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the major rate-determining enzymes for lipolysis in adipocytes. Each of these proteins (Peri A, ATGL and HSL) have been demonstrated to regulate lipid storage and release in the adipocyte. However, in the absence of PKA stimulation (basal state), the lipases (ATGL and HSL) are located mainly in the cytoplasm, and their contribution to basal rates of lipolysis and influence on LD size are poorly understood. In this study, we utilize an adenoviral system to knockdown or overexpress ATGL and HSL in an engineered model system of adipocytes in the presence or absence of Peri A. We are able to demonstrate in our experimental model system, that in the basal state, LD size, triglyceride storage, and fatty acid release are mainly influenced by expression of ATGL. These results demonstrate for the first time the relative contributions of ATGL, HSL, and Peri A on determination of LD size in the absence of PKA-stimulation.
PMCID: PMC2593643  PMID: 18980248
perilipin; ATGL; HSL; lipid droplet; adipocyte; lipolysis
5.  Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation 
Physiological Reports  2013;1(4):e00084.
In adipose tissue, access of adipose triglyceride and hormone-sensitive lipases (ATGL and HSL) to the lipid droplet depends on PLIN1 phosphorylation, however, PLIN1 is not expressed in skeletal muscle and the phosphorylation of the expressed PLINs has yet to be investigated. Further, direct interactions between skeletal muscle PLINs and HSL are unknown. We investigated the isolated and combined effects of epinephrine and contraction on PLIN-to-lipase interactions as well as phosphorylation. Isolated rat solei were assigned to one of four 30 min in vitro conditions (25°C): (1) rest; (2) intermittent tetanic stimulation (60 Hz for 150 msec; train rate 20/min); (3) 5 nmol/L epinephrine; (4) intermittent tetanic stimulation and 5 nmol/L epinephrine. Immunoprecipitation of serine phosphorylated proteins followed by Western blotting for PLIN2, PLIN3, PLIN5, revealed that only PLIN2 is not phosphorylated under any of the experimental conditions. This is the first study to show that in whole rat skeletal muscle PLIN3 and PLIN5 are serine phosphorylated. The degree of serine phosphorylation remained unchanged following adrenergic and/or contractile stimulation. Oil red O staining of muscle sections for lipid content shows a significant decrease following each condition, confirming lipolysis occurred (P < 0.05). PLIN2, 3, and 5 all interact with HSL and ATGL, but these interactions were unchanged following treatments. Our results show that in skeletal muscle, PLIN2 is not serine phosphorylated at rest or with lipolytic stimulation and that while PLIN3, PLIN5 are serine phosphorylated at rest, the degree of phosphorylation does not change with lipolytic stimulation.
PMCID: PMC3831900  PMID: 24303154
ADRP; exercise; lipolysis; OXPAT; TIP47
6.  Cytoplasmic Receptor-Interacting Protein 140 (RIP140) interacts with perilipin to regulate lipolysis 
Cellular signalling  2011;23(8):1396-1403.
Receptor-interacting protein 140 (RIP140) is abundantly expressed in mature adipocyte and modulates gene expression involved in lipid and glucose metabolism. Protein kinase C epsilon and protein arginine methyltransferase 1 can sequentially stimulate RIP140 phosphorylation and then methylation, thereby promoting its export to the cytoplasm. Here we report a lipid signal triggering cytoplasmic accumulation of RIP140, and a new functional role for cytoplasmic RIP140 in adipocyte to regulate lipolysis. Increased lipid content, particularly an elevation in diacylglycerol levels, promotes RIP140 cytoplasmic accumulation and increased association with lipid droplets (LDs) by its direct interaction with perilipin. By interacting with RIP140, perilipin more efficiently recruits hormone-sensitive lipase (HSL) to LDs and enhances adipose triglyceride lipase (ATGL) forming complex with CGI-58, an activator of ATGL. Consequentially, HSL can more readily access its substrates, and ATGL is activated, ultimately enhancing lipolysis. In adipocytes, blocking cytoplasmic RIP140 accumulation reduces basal and isoproterenol-stimulated lipolysis and the pro-inflammatory potential of their conditioned media (i.e. activating NF-κB and inflammatory genes in macrophages). These results show that in adipocytes with high lipid contents, RIP140 increasingly accumulates in the cytoplasm and enhances triglyceride catabolism by directly interacting with perilipin. The study suggests that reducing nuclear export of RIP140 might be a useful means of controlling adipocyte lipolysis.
PMCID: PMC3095660  PMID: 21504789
adipocyte; post-translational modification; diacylglyceride; lipid droplet; lipase; lipid; RIP140
7.  The G0/G1 Switch Gene 2 Regulates Adipose Lipolysis through Association with Adipose Triglyceride Lipase 
Cell metabolism  2010;11(3):194-205.
Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme for triacylglycerol (TAG) hydrolysis in adipocytes. The precise mechanisms whereby ATGL is regulated remain uncertain. Here we demonstrate that a protein encoded by G0/G1 switch gene 2 (G0S2) is a selective regulator of ATGL. G0S2 is highly expressed in adipose tissue and differentiated adipocytes. When overexpressed in HeLa cells, G0S2 localizes to lipid droplets and prevents their degradation mediated by ATGL. Moreover, G0S2 specifically interacts with ATGL, requiring the hydrophobic domain of G0S2 and the patatin-like domain of ATGL. More importantly, interaction with G0S2 inhibits the TAG hydrolase activity of ATGL. Furthermore, knockdown of endogenous G0S2 accelerates basal and stimulated lipolysis in adipocytes, while overexpression of G0S2 diminishes the rate of lipolysis in both adipocytes and adipose tissue explants. Thus, G0S2 functions to attenuate ATGL action both in vitro and in vivo, underlying a novel mechanism for the regulation of TAG hydrolysis.
PMCID: PMC3658843  PMID: 20197052
8.  Efficient Phagocytosis Requires Triacylglycerol Hydrolysis by Adipose Triglyceride Lipase* 
The Journal of Biological Chemistry  2010;285(26):20192-20201.
Macrophage phagocytosis is an essential biological process in host defense and requires large amounts of energy. To date, glucose is believed to represent the prime substrate for ATP production in macrophages. To investigate the relative contribution of free fatty acids (FFAs) in this process, we determined the phagocytosis rates in normal mouse macrophages and macrophages of adipose triglyceride lipase (ATGL)-deficient mice. ATGL was shown to be the rate-limiting enzyme for the hydrolysis of lipid droplet-associated triacylglycerol (TG) in many tissues. Here, we demonstrate that Atgl−/− macrophages fail to efficiently hydrolyze cellular TG stores leading to decreased cellular FFA concentrations and concomitant accumulation of lipid droplets, even in the absence of exogenous lipid loading. The reduced availability of FFAs results in decreased cellular ATP concentrations and impaired phagocytosis suggesting that fatty acids must first go through a cycle of esterification and re-hydrolysis before they are available as energy substrate. Exogenously added glucose cannot fully compensate for the phagocytotic defect in Atgl−/− macrophages. Hence, phagocytosis was also decreased in vivo when Atgl−/− mice were challenged with bacterial particles. These findings imply that phagocytosis in macrophages depends on the availability of FFAs and that ATGL is required for their hydrolytic release from cellular TG stores. This novel mechanism links ATGL-mediated lipolysis to macrophage function in host defense and opens the way to explore possible roles of ATGL in immune response, inflammation, and atherosclerosis.
PMCID: PMC2888432  PMID: 20424161
ATP; Fatty Acid Metabolism; Glucose; Lipase; Lipid Droplet; Macrophage; Phagocytosis; Triacylglycerol
9.  Repression of exogenous gene expression by the retinoic acid target gene G0S2 
International Journal of Oncology  2013;42(5):1743-1753.
The G0/G1 switch gene 2 (G0S2) is rapidly induced by all-trans-retinoic acid (RA)-treatment of acute promyelocytic leukemia (APL) and other cells. G0S2 regulates lipolysis via inhibition of adipose triglyceride lipase (ATGL). This study found that retinoic acid receptor (RAR), but not retinoid X receptor (RXR) agonists induced G0S2 expression in APL cells. Novel G0S2 functions were uncovered that included repression of exogenous gene expression and transcriptional activity. Transient G0S2 transfection repressed the activities of multiple reporter constructs (including the retinoid-regulated species RARβ, UBE1L and G0S2); this occurred in diverse cell contexts. This inhibition was antagonized by siRNA-mediated G0S2 knockdown. To determine the inhibitory effects were not due to transient G0S2 expression, G0S2 was stably overex-pressed in cells without appreciable basal G0S2 expression. As expected, this repressed transcriptional activities. Intriguingly, transfection of G0S2 did not affect endogenous RARβ, UBE1L or G0S2 expression. Hence, only exogenously expressed genes were affected by G0S2. The domain responsible for this repression was localized to the G0S2 hydrophobic domain (HD). This was the same region responsible for the ability of G0S2 to inhibit ATGL activity. Whether an interaction with ATGL accounted for this new G0S2 activity was studied. Mimicking the inhibition of ATGL by oleic acid treatment that increased lipid droplet size or ATGL siRNA knockdown did not recapitulate G0S2 repressive effects. Engineered gain of ATGL expression did not rescue G0S2 transcriptional repression either. Thus, transcriptional repression by G0S2 did not depend on the ability of G0S2 to inhibit ATGL. Subcellular localization studies revealed that endogenous and exogenously-expressed G0S2 proteins were localized to the cytoplasm, particularly in the perinuclear region. Expression of a mutant G0S2 species that lacked the HD domain altered cytosolic G0S2 localization. This linked G0S2 subcellular localization to G0S2 transcriptional repression. The potential mechanisms responsible for this G0S2 repression are examined.
PMCID: PMC3661193  PMID: 23546556
retinoic acid; G0/G1 switch gene 2; transcriptional repression
10.  Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets 
Journal of Cell Science  2012;125(17):4067-4076.
Perilipin family proteins (Plins) coat the surface of intracellular neutral lipid storage droplets in various cell types. Studies across diverse species demonstrate that Plins regulate lipid storage metabolism through recruitment of lipases and other regulatory proteins to lipid droplet surfaces. Mammalian genomes have distinct Plin gene members and additional protein forms derived from specific mRNA splice variants. However, it is not known if the different Plins have distinct functional properties. Using biochemical, cellular imaging and flow cytometric analyses, we now show that within individual cells of various types, the different Plin proteins preferentially sequester to separate pools of lipid storage droplets. By examining ectopically expressed GFP fusions and all endogenous Plin protein forms, we demonstrate that different Plins sequester to different types of lipid droplets that are composed of either triacylcerides or cholesterol esters. Furthermore, Plins with strong association preferences to triacylceride (or cholesterol ester) droplets can re-direct the relative intracellular triacylceride–cholesterol ester balance toward the targeted lipid. Our data suggest diversity of Plin function, alter previous assumptions about shared collective actions of the Plins, and indicate that each Plin can have separate and unique functions.
PMCID: PMC3482316  PMID: 22685330
PLIN; ADRP; TIP47; LSDP5; S3-12; Triacylglyceride; Cholesterol; Fatty acids; Lipolysis
11.  Adipose Triglyceride Lipase 
Diabetes  2006;55(1):148.
Adipose triglyceride lipase (ATGL) is a recently described adipose-enriched protein with triglyceride-specific lipase activity. ATGL shares the greatest sequence homology with adiponutrin, a nutritionally regulated protein of unclear biological function. Here we present a functional analysis of ATGL and adiponutrin and describe their regulation by insulin. Retroviral-mediated overexpression of ATGL in 3T3-L1 adipocytes increased basal and isoproterenol-stimulated glycerol and nonesterified fatty acid (NEFA) release, whereas siRNA-mediated knockdown of ATGL had the opposite effect. In contrast, siRNA-mediated knockdown of adiponutrin in 3T3-L1 adipocytes had no effect on glycerol or NEFA release. In mice, both ATGL and adiponutrin are nutritionally regulated in adipose tissue, with ATGL being upregulated and adiponutrin being downregulated by fasting. In 3T3-L1 adipocytes, insulin decreased ATGL and increased adiponutrin expression in a dose- and time-dependent manner, suggesting that insulin directly mediates this nutritional regulation. In addition, adipose expression of ATGL was increased by insulin deficiency and decreased by insulin replacement in streptozotocin-induced diabetic mice and was increased in fat-specific insulin receptor knockout mice, whereas adiponutrin showed the opposite pattern. These data suggest that murine ATGL but not adiponutrin contributes to net adipocyte lipolysis and that ATGL and adiponutrin are oppositely regulated by insulin both in vitro and in vivo.
PMCID: PMC2819178  PMID: 16380488
12.  COPI Complex Is a Regulator of Lipid Homeostasis 
PLoS Biology  2008;6(11):e292.
Lipid droplets are ubiquitous triglyceride and sterol ester storage organelles required for energy storage homeostasis and biosynthesis. Although little is known about lipid droplet formation and regulation, it is clear that members of the PAT (perilipin, adipocyte differentiation related protein, tail interacting protein of 47 kDa) protein family coat the droplet surface and mediate interactions with lipases that remobilize the stored lipids. We identified key Drosophila candidate genes for lipid droplet regulation by RNA interference (RNAi) screening with an image segmentation-based optical read-out system, and show that these regulatory functions are conserved in the mouse. Those include the vesicle-mediated Coat Protein Complex I (COPI) transport complex, which is required for limiting lipid storage. We found that COPI components regulate the PAT protein composition at the lipid droplet surface, and promote the association of adipocyte triglyceride lipase (ATGL) with the lipid droplet surface to mediate lipolysis. Two compounds known to inhibit COPI function, Exo1 and Brefeldin A, phenocopy COPI knockdowns. Furthermore, RNAi inhibition of ATGL and simultaneous drug treatment indicate that COPI and ATGL function in the same pathway. These data indicate that the COPI complex is an evolutionarily conserved regulator of lipid homeostasis, and highlight an interaction between vesicle transport systems and lipid droplets.
Author Summary
Fat cells, and cells in general, convert fatty acids into triglycerides that are stored in droplets for future use. Despite the enormous importance of lipid droplets in obesity and other disease processes, we know very little about how lipid reserves in droplets are formed and how those reserves are drawn down. We have used the model fruit fly Drosophila to identify candidate regulators of lipid storage and utilization, and have shown that many of these candidates have functions that are conserved in mammals. We focused our attention on a vesicle-trafficking pathway that we show is required for the modulation of the types of regulatory and enzymatic proteins found on the lipid droplet surface. Interfering with the function of this trafficking system with either RNA interference or small-molecule compounds alters lipid storage. The understanding of this new pathway, as well as the specific reagents we used, may ultimately lead to new therapeutics.
A specific vesicle-trafficking machine is shown to be required for cells to use stored lipid, in bothDrosophila and mammalian cells.
PMCID: PMC2586367  PMID: 19067489
13.  Higher Levels of ATGL Are Associated with Exercise-Induced Enhancement of Lipolysis in Rat Epididymal Adipocytes 
PLoS ONE  2012;7(7):e40876.
In adipose cells, adipose triglyceride lipase (ATGL) catalyzes the first step in adipocyte triacylglyceride hydrolysis, thereby regulating both basal and hormone-stimulated lipolysis. However, little is known about the molecular mechanism(s) underlying habitual exercise-induced adaptive modulation of ATGL in white adipocytes via alteration in transcription regulator and lipolytic cofactors.
Methodology/Principal Results
Male Wistar rats were randomly divided into 2 groups a sedentary control group (CG) and a habitual exercise group (EG). The EG was subjected to running on a treadmill set at 5 days per week for 9 weeks. The CG was not subjected to running on a treadmill. In the EG, levels of ATGL mRNA and protein were elevated with a significant increase in lipolysis compared with the CG, accompanied by a significant increase in associations of CGI-58 with ATGL protein. Under these conditions, an upregulation of peroxisome proliferation-activated receptorg-2 (PPARg-2) was observed. In the EG, the addition of rosiglitazone further significantly increased the levels of ATGL protein compared with the CG. However, attenuated levels of the ATGL protein in adipocytes were obtained by the addition of insulin, which is known to inhibit the expression of ATGL, in both types of groups. Actually, levels of plasma insulin were significantly reduced in the EG compared with the CG.
These data suggest that elevated levels of ATGL are involved in the exercise-induced enhancement of lipolysis in primary adipocytes. The exact mechanism(s) underlying this phenomenon is associated, at least in part, with upregulated transcriptional activation of PPARg-2. In addition, exercise-induced lower circulation levels of insulin also correlate with habitual exercise-induced higher levels of ATGL in primary adipocytes.
PMCID: PMC3397928  PMID: 22815850
14.  β-adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation 
Autophagy  2013;9(8):1228-1243.
Hormone-stimulated lipolysis is a rapid way to mobilize fat from its storage depot for use in peripheral tissues. By convention, activation of cytosolic lipases via the β-adrenergic receptor (ADRB2)-cAMP signaling pathway is the only molecular mechanism considered to liberate fatty acids from triglycerides stored in lipid droplets (LDs) of cells. Herein, we provide evidence that, aside from the activation of cytosolic lipases, autophagy contributes to this hormone-stimulated lipolysis. The ADRB2-stimulated lipolysis was reduced after inhibition of early or late autophagy using either pharmacological inhibitors or shRNA-mediated autophagic gene knockdown. ADRB2 stimulation has caused a marked increase in the autophagy-targeted LDs for lysosomal degradation, which is dependent on the LD-associated RAB7 as evidenced by the use of both shRNA-mediated RAB7 knockdown and a dominant-negative RAB7 mutant. In addition, RAB7 is involved in unstimulated (basal) lipolysis, and mediates the enhanced basal lipolysis in PLIN1/perilipin 1 knockdown fat cells. In conclusion, our results showed a contribution of lipophagy to both basal and hormone-stimulated lipolysis and that RAB7 plays a pivotal role in the regulation of this autolysosome-mediated lipid degradation in fat cells.
PMCID: PMC3748194  PMID: 23708524
lipophagy; lipolysis; RAB7; autolysosome-mediated lipid degradation; 3T3-L1
15.  Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation 
The Journal of Cell Biology  2003;161(6):1093-1103.
Akey step in lipolytic activation of adipocytes is the translocation of hormone-sensitive lipase (HSL) from the cytosol to the surface of the lipid storage droplet. Adipocytes from perilipin-null animals have an elevated basal rate of lipolysis compared with adipocytes from wild-type mice, but fail to respond maximally to lipolytic stimuli. This defect is downstream of the β-adrenergic receptor–adenylyl cyclase complex. Now, we show that HSL is basally associated with lipid droplet surfaces at a low level in perilipin nulls, but that stimulated translocation from the cytosol to lipid droplets is absent in adipocytes derived from embryonic fibroblasts of perilipin-null mice. We have also reconstructed the HSL translocation reaction in the nonadipocyte Chinese hamster ovary cell line by introduction of GFP-tagged HSL with and without perilipin A. On activation of protein kinase A, HSL-GFP translocates to lipid droplets only in cells that express fully phosphorylatable perilipin A, confirming that perilipin is required to elicit the HSL translocation reaction. Moreover, in Chinese hamster ovary cells that express both HSL and perilipin A, these two proteins cooperate to produce a more rapidly accelerated lipolysis than do cells that express either of these proteins alone, indicating that lipolysis is a concerted reaction mediated by both protein kinase A–phosphorylated HSL and perilipin A.
PMCID: PMC2172984  PMID: 12810697
lipolysis; adipocytes; ADRP/adipophilin; HSL; lipid storage droplets
16.  Placental Lipases in Pregnancies Complicated by Gestational Diabetes Mellitus (GDM) 
PLoS ONE  2014;9(8):e104826.
Infants of women with gestational diabetes mellitus (GDM) are more likely to be born large for gestational age with a higher percentage body fat. Elevated maternal lipids may contribute to this. Placental lipases such as lipoprotein lipase (LPL), endothelial lipase (EL) and hormone sensitive lipase (HSL) are involved in transferring lipids from mother to fetus. Previous studies of expression of these lipases in placentae in women with diabetes in pregnancy have reported divergent results. Intracellular lipases such as adipose triglyceride lipase (ATGL), and HSL are central to lipid droplet metabolism. The activities of these lipases are both influenced by Perilipin 1, and ATGL is also activated by a co-factor comparative gene identification-58 (CGI-58) and inhibited by G0/G1 switch gene 2 (GS02). None of these modifying factors or ATGL have been examined previously in placenta. The purpose of this study was therefore to examine the expression of ATGL, HSL, LPL, EL, as well as Perilipin 1, GS02 and CGI-58 in term pregnancies complicated by GDM. mRNA and protein expression of the lipases were measured in placentae from 17 women with GDM and 17 normoglycaemic pregnancies, matched for maternal BMI and gestational age of delivery. ATGL mRNA expression was increased and HSL mRNA expression reduced in placentae from GDM although there was no differences in protein expression of any of the lipases. All lipases were localised to trophoblasts and endothelial cells. The expression of Perilipin 1 and CGI-58 mRNA was increased and GS02 not altered in GDM. These results suggest that there is no difference in expression in these four lipases between GDM and normoglycaemic placentae, and therefore altered lipid transfer via these lipases does not contribute to large for gestational age in infants of women with GDM.
PMCID: PMC4130608  PMID: 25118138
17.  PLIN2, the major perilipin regulated during sebocyte differentiation, controls sebaceous lipid accumulation in vitro and sebaceous gland size in vivo 
Biochimica et biophysica acta  2013;1830(10):4642-4649.
Lipid synthesis and storage are accomplished by lipid droplets (LDs). The perilipin family of LD-associated proteins, comprising 5 members (PLIN1-PLIN5), has been well characterized in adipocytes but not in sebocytes, epithelial cells in which LD formation is a key feature of the cellular differentiation.
Perilipin expression in the sebaceous gland cell line SZ95 and in human sebaceous glands was studied by qRT-PCR, Western blots, and immunohistochemistry. Lipid accumulation was evaluated by Nile red staining and mass spectrometry.
PLIN2 and PLIN3 are the most abundant perilipins in undifferentiated sebocytes. Induction of lipogenesis by linoleic acid (LA) resulted in increased transcript levels of all perilipins except for PLIN3 and in a time-dependent increase of PLIN2 protein. Nile red staining revealed that siRNA-mediated downregulation of PLIN2 significantly impaired basal and LA-induced lipid accumulation. Mass spectrometry revealed PLIN2 deficiency to cause a reduction in the amount of several specific lipid fractions, including di- and triacyl-glycerol esters, phosphatidylcholine lipids, and ceramides in sebocytes under basal conditions. In contrast, PLIN2 downregulation exerted a statistically significant inhibitory effect only on the accumulation of specific LA-induced triglycerides. PLIN2-deficient mice showed normal morphology of sebaceous glands. However, their sebaceous glands were significantly reduced in size and showed less cell proliferation.
PLIN2 is the major perilipin regulated during sebocyte differentiation in vitro. PLIN2 is also important for sebaceous lipid accumulation in vitro and regulates sebaceous gland size in vivo.
General significance
Our study provides the first systematic analysis of LD-associated proteins in sebocytes.
PMCID: PMC3998206  PMID: 23688400
Sebaceous glands; Lipid droplets; Perilipins
18.  Pleiotropic regulation of mitochondrial function by adipose triglyceride lipase-mediated lipolysis☆ 
Biochimie  2014;96(100):106-112.
Lipolysis is defined as the catabolism of triacylglycerols (TGs) stored in cellular lipid droplets. Recent discoveries of essential lipolytic enzymes and characterization of numerous regulatory proteins and mechanisms have fundamentally changed our perception of lipolysis and its impact on cellular metabolism. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme for TG catabolism in most cells and tissues. This review focuses on recent advances in understanding the (patho)physiological impact due to defective lipolysis by ATGL deficiency on mitochondrial (dys)function. Depending on the type of cells and tissues investigated, absence of ATGL has pleiotropic roles in mitochondrial function.
•ATGL is the rate-limiting enzyme in TG hydrolysis in most organs and cells.•Depending on cell and tissue type ATGL has pleiotropic roles in mitochondrial function.•This review highlights the newest understanding of the impact of ATGL deficiency on mitochondrial (dys)function.
PMCID: PMC3859496  PMID: 23827855
Adipose triglyceride lipase; Triacylglycerol; Lipotoxicity; Mitochondrial function; ATGL, adipose triglyceride lipase; BAT, brown adipose tissue; DG, diacylglycerol; ER, endoplasmic reticulum; FFA, free fatty acids; PGC-1, peroxisome proliferator-activated receptor gamma co-activator-1; PPAR, peroxisome proliferator-activated receptor; TG, triacylglycerol; WAT, white adipose tissue; Wt, wild-type
19.  Adipose triglyceride lipase activity is inhibited by long-chain acyl-coenzyme A 
Biochimica et Biophysica Acta  2014;1841(4):588-594.
Adipose triglyceride lipase (ATGL) is required for efficient mobilization of triglyceride (TG) stores in adipose tissue and non-adipose tissues. Therefore, ATGL strongly determines the availability of fatty acids for metabolic reactions. ATGL activity is regulated by a complex network of lipolytic and anti-lipolytic hormones. These signals control enzyme expression and the interaction of ATGL with the regulatory proteins CGI-58 and G0S2. Up to date, it was unknown whether ATGL activity is also controlled by lipid intermediates generated during lipolysis. Here we show that ATGL activity is inhibited by long-chain acyl-CoAs in a non-competitive manner, similar as previously shown for hormone-sensitive lipase (HSL), the rate-limiting enzyme for diglyceride breakdown in adipose tissue. ATGL activity is only marginally inhibited by medium-chain acyl-CoAs, diglycerides, monoglycerides, and free fatty acids. Immunoprecipitation assays revealed that acyl-CoAs do not disrupt the protein–protein interaction of ATGL and its co-activator CGI-58. Furthermore, inhibition of ATGL is independent of the presence of CGI-58 and occurs directly at the N-terminal patatin-like phospholipase domain of the enzyme. In conclusion, our results suggest that inhibition of the major lipolytic enzymes ATGL and HSL by long-chain acyl-CoAs could represent an effective feedback mechanism controlling lipolysis and protecting cells from lipotoxic concentrations of fatty acids and fatty acid-derived lipid metabolites.
Graphical abstract
•Long-chain acyl-CoAs inhibit ATGL in a non-competitive manner.•Inhibition occurs at the N-terminal region of ATGL and independent of CGI-58, the co-activator of ATGL.•Acyl-CoA mediated inhibition of lipolysis could represent a general feedback mechanism protecting cells from fatty acid overload.
PMCID: PMC3988850  PMID: 24440819
Adipose triglyceride lipase; Hormone-sensitive lipase; Lipolysis; Regulation; acyl-CoA
20.  Dynamics and Molecular Determinants of Cytoplasmic Lipid Droplet Clustering and Dispersion 
PLoS ONE  2013;8(6):e66837.
Perilipin-1 (Plin1), a prominent cytoplasmic lipid droplet (CLD) binding phosphoprotein and key physiological regulator of triglyceride storage and lipolysis in adipocytes, is thought to regulate the fragmentation and dispersion of CLD that occurs in response to β-adrenergic activation of adenylate cyclase. Here we investigate the dynamics and molecular determinants of these processes using cell lines stably expressing recombinant forms of Plin1 and/or other members of the perilipin family. Plin1 and a C-terminal CLD-binding fragment of Plin1 (Plin1CT) induced formation of single dense CLD clusters near the microtubule organizing center, whereas neither an N-terminal CLD-binding fragment of Plin1, nor Plin2 or Plin3 induced clustering. Clustered CLD coated by Plin1, or Plin1CT, dispersed in response to isoproterenol, or other agents that activate adenylate cyclase, in a process inhibited by the protein kinase A inhibitor, H89, and blocked by microtubule disruption. Isoproterenol-stimulated phosphorylation of CLD-associated Plin1 on serine 492 preceded their dispersion, and live cell imaging showed that cluster dispersion involved initial fragmentation of tight clusters into multiple smaller clusters, which then fragmented into well-dispersed individual CLD. siRNA knockdown of the cortical actin binding protein, moesin, induced disaggregation of tight clusters into multiple smaller clusters, and inhibited the reaggregation of dispersed CLD into tight clusters. Together these data suggest that the clustering and dispersion processes involve a complex orchestration of phosphorylation-dependent, microtubule-dependent and independent, and microfilament dependent steps.
PMCID: PMC3692517  PMID: 23825572
21.  Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb 
Physiological Reports  2014;2(10):e12154.
Contraction‐mediated lipolysis increases the association of lipid droplets and mitochondria, indicating an important role in the passage of fatty acids from lipid droplets to mitochondria in skeletal muscle. PLIN3 and PLIN5 are of particular interest to the lipid droplet–mitochondria interaction because PLIN3 is able to move about within cells and PLIN5 associates with skeletal muscle mitochondria. This study primarily investigated: 1) if PLIN3 is detected in skeletal muscle mitochondrial fraction; and 2) if mitochondrial protein content of PLIN3 and/or PLIN5 changes following stimulated contraction. A secondary aim was to determine if PLIN3 and PLIN5 associate and whether this changes following contraction. Male Long Evans rats (n = 21; age, 52 days; weight = 317 ± 6 g) underwent 30 min of hindlimb stimulation (10 msec impulses, 100 Hz/3 sec at 10–20 V; train duration 100 msec). Contraction induced a ~50% reduction in intramuscular lipid content measured by oil red‐O staining of red gastrocnemius muscle. Mitochondria were isolated from red gastrocnemius muscle by differential centrifugation and proteins were detected by western blotting. Mitochondrial PLIN5 content was ~1.6‐fold higher following 30 min of contraction and PLIN3 content was detected in the mitochondrial fraction, and unchanged following contraction. An association between PLIN3 and PLIN5 was observed and remained unaltered following contraction. PLIN5 may play a role in mitochondria during lipolysis, which is consistent with a role in facilitating/regulating mitochondrial fatty acid oxidation. PLIN3 and PLIN5 may be working together on the lipid droplet and mitochondria during contraction‐induced lipolysis.
This study investigates the mitochondrial enrichment of lipid droplet proteins, PLIN3 and PLIN5 in response to muscle contraction in rat hindlimb. Both PLIN3 and PLIN5 are detected in the mitochondrial fraction, but in response to 30 min electrically stimulated contraction designed to elicit muscle lipolysis, PLIN3 content does not change from resting values, but PLIN5 increased ~1.6 fold. This suggests an acute role for PLIN5 in mitochondria during contraction that has yet to be elucidated.
PMCID: PMC4254090  PMID: 25318747
Intramuscular triglycerides; lipolysis; OXPAT; perilipin family; TIP‐47
22.  Potential Effects of Aerobic Exercise on the Expression of Perilipin 3 in the Adipose Tissue of Women with Polycystic Ovary Syndrome: A Pilot Study 
Polycystic Ovary Syndrome (PCOS) is associated with reduced adipose tissue lipolysis that can be rescued by aerobic exercise. We aimed to identify differences in gene expression of perilipins and associated targets in adipose tissue in women with PCOS before and after exercise.
Design and Methods
We conducted a cross-sectional study in 8 women with PCOS and 8 women matched for BMI and age with normal cycles. Women with PCOS also completed a 16-week prospective aerobic exercise-training study. Abdominal subcutaneous adipose tissue biopsies were collected, and primary adipose-derived stromal/stem cell cultures were established from women with PCOS before 16 weeks of aerobic exercise training (n=5) and controls (n=5). Gene expression was measured using real time PCR, in vitro lipolysis was measured using radiolabeled oleate, and PLIN3 protein content was measured by western blotting.
The expression of PLIN1, PLIN3, and PLIN5, along with coatomers ARF1, ARFRP1, and βCOP were ~80% lower in women with PCOS (all p<0.05). Following exercise training, PLIN3 was the only perilipin to increase significantly (p<0.05), along with coatomers ARF1, ARFRP1, βCOP, and Sec23a (all p<0.05). Furthermore, PLIN3 protein expression was undetectable in the cell cultures from women with PCOS vs. controls. Following exercise training, in vitro adipose oleate oxidation, glycerol secretion, and PLIN3 protein expression were increased, along with reductions in triglyceride content and absence of large lipid droplet morphology.
These findings suggest that PLIN3 and coatomer GTPases are important regulators of lipolysis and triglyceride storage in the adipose tissue of women with PCOS.
PMCID: PMC4247800  PMID: 25342854
Lipolysis; Insulin; Obesity; Fatty acid oxidation; Hyperandrogenemia; PAT protein
23.  Lipolysis – A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores 
Progress in Lipid Research  2011;50(1-4):14-27.
Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5 years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic “lipolytic machinery”. Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the “lipolysome”. This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function.
PMCID: PMC3031774  PMID: 21087632
2-AG, 2-arachidonoyl glycerol; ABHD1-15, α/β hydrolase domain containing protein 1–15; ARF1, ADP-ribosylation factor 1; ATGL, adipose triglyceride lipase; BAT, brown adipose tissue; BiFC, bimolecular fluorescence complementation; CDS, Chanarin-Dorfman syndrome; CE, cholesterylester; CGI-58, comparative-gene-identification 58; COPI, coat protein complex-I; cPLA2, cytosolic phospholipase A2; DAG, diacylglycerol; ER, endoplasmic reticulum; FoxO1, forkhead box O1; G0S2, G0/G1 Switch Protein 2; GS2, gene sequence 2; HSL, hormone-sensitive lipase; LD, lipid droplet; LPAAT, lysophosphatidic acid acyltransferase; MAG, monoacylglycerol; MGL, monoglyceride lipase; mTor, mammalian target of rapamycin; NEFA, non-esterified fatty acid; NLSD, neutral lipid storage disease; NLSDI, NLSD with ichthyosis; NLSDM, NLSD with myopathy; PKA, protein kinase A; PNPLA1-5, patatin-like phospholipase domain containing protein 1–5; PPARα/γ, peroxisome proliferator-activated receptor-alpha/gamma; PPRE, PPAR-response element; RBP4, retinol-binding protein 4; RE, retinylester; STS, steroid sulfatase; TAG, triacylglycerol; TGH, triglyceride hydrolase; TNF-α, tumor necrosis factor alpha; WAT, white adipose tissue; Lipolysis; Fat stores; Triacylglycerol; Lipase; Neutral lipid storage disease
24.  Consequences of Lipid Droplet Coat Protein Downregulation in Liver Cells 
Diabetes  2008;57(8):2037-2045.
OBJECTIVE—Accumulation of intracellular lipid droplets (LDs) in non-adipose tissues is recognized as a strong prognostic factor for the development of insulin resistance in obesity. LDs are coated with perilipin, adipose differentiation–related protein, tail interacting protein of 47 kd (PAT) proteins that are thought to regulate LD turnover by modulating lipolysis. Our hypothesis is that PAT proteins modulate LD metabolism and therefore insulin resistance.
RESEARCH DESIGN AND METHODS—We used a cell culture model (murine AML12 loaded with oleic acid) and small interfering RNA to directly assess the impact of PAT proteins on LD accumulation, lipid metabolism, and insulin action. PAT proteins associated with excess fat deposited in livers of diet-induced obese (DIO) mice were also measured.
RESULTS—Cells lacking PAT proteins exhibited a dramatic increase in LD size and a decrease in LD number. Further, the lipolytic rate increased by ∼2- to 2.5-fold in association with increased adipose triglyceride lipase (ATGL) at the LD surface. Downregulation of PAT proteins also produced insulin resistance, as indicated by decreased insulin stimulation of Akt phosphorylation (P < 0.001). Phosphoinositide-dependent kinase-1 and phosphoinositide 3-kinase decreased, and insulin receptor substrate-1 307 phosphorylation increased. Increased lipids in DIO mice livers were accompanied by changes in PAT composition but also increased ATGL, suggesting a relative PAT deficiency.
CONCLUSIONS—These data establish an important role for PAT proteins as surfactant at the LD surface, packaging lipids in smaller units and restricting access of lipases and thus preventing insulin resistance. We suggest that a deficiency of PAT proteins relative to the quantity of ectopic fat could contribute to cellular dysfunction in obesity and type 2 diabetes.
PMCID: PMC2494696  PMID: 18487449
25.  Increased Atherosclerosis in Mice Deficient in Perilipin1 
Perilipin1, a lipid droplet associated protein has an important role in the regulation of lipolysis and lipid storage in adipocytes. Perilipin1 is also expressed in foam cells of atheroma plaques and could therefore play a role in the accumulation of lipids in arterial wall and in the development of atherosclerosis. The aim of the study was to investigate this possible role of perilipin1 in atherogenesis.
Mice deficient in perilipin1 (Plin1-/-) were crossed with Ldlr-/- mice. Ldlr-/- and Plin1-/- Ldlr-/- mice received an atherogenic diet during 10 or 20 weeks. Blood pressure and plasma lipids concentrations were measured. Aortas were collected at the end of the atherogenic diet periods for quantification of atheroma lesions (en face method), histological and immunohistological studies
Ldlr-/- and Plin1-/- Ldlr-/- mice had comparable blood pressure and plasma lipids levels. Plin1-/- Ldlr-/- mice had a lower body weight and decreased adiposity. The atherosclerotic lesion area in Plin1-/-Ldlr-/- mice was moderately increased after 10 weeks of atherogenic diet (ns) and significantly higher after 20 weeks (p < 0.01). Histology of atheroma plaques was comparable with no sign of increased inflammation in Plin1-/- Ldlr-/- mice.
Perilipin1 ablation in mice results in increased atherosclerosis independently of modifications of risk factors such as raised blood pressure or plasma lipids levels. These data strongly support an atheroprotective role for perilipin1.
PMCID: PMC3187733  PMID: 21943217
perilipin1; atherosclerosis; lipids

Results 1-25 (76805)