PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (428158)

Clipboard (0)
None

Related Articles

1.  Rabies in Iraq: Trends in Human Cases 2001–2010 and Characterisation of Animal Rabies Strains from Baghdad 
Control of rabies requires a consistent supply of dependable resources, constructive cooperation between veterinary and public health authorities, and systematic surveillance. These are challenging in any circumstances, but particularly during conflict. Here we describe available human rabies surveillance data from Iraq, results of renewed sampling for rabies in animals, and the first genetic characterisation of circulating rabies strains from Iraq. Human rabies is notifiable, with reported cases increasing since 2003, and a marked increase in Baghdad between 2009 and 2010. These changes coincide with increasing numbers of reported dog bites. There is no laboratory confirmation of disease or virus characterisation and no systematic surveillance for rabies in animals. To address these issues, brain samples were collected from domestic animals in the greater Baghdad region and tested for rabies. Three of 40 brain samples were positive using the fluorescent antibody test and hemi-nested RT-PCR for rabies virus (RABV). Bayesian phylogenetic analysis using partial nucleoprotein gene sequences derived from the samples demonstrated the viruses belong to a single virus variant and share a common ancestor with viruses from neighbouring countries, 22 (95% HPD 14–32) years ago. These include countries lying to the west, north and east of Iraq, some of which also have other virus variants circulating concurrently. These results suggest possible multiple introductions of rabies into the Middle East, and regular trans-boundary movement of disease. Although 4000 years have passed since the original description of disease consistent with rabies, animals and humans are still dying of this preventable and neglected zoonosis.
Author Summary
Control of rabies requires cooperation between government departments, consistent funding, and an understanding of the epidemiology of the disease obtained through surveillance. Here we describe human rabies surveillance data from Iraq and the results of renewed sampling for rabies in animals. In Iraq, it is obligatory by law to report cases of human rabies. These reports were collated and analysed. Reported cases have increased since 2003, with a marked increase in Baghdad 2009–2010. There is no system for detecting rabies in animals and the strains circulating in Iraq have not previously been characterized. To address this, samples were collected from domestic animals in Baghdad and tested for rabies. Three out of 40 were positive for rabies virus. Comparison of part of the viral genetic sequence with other viruses from the region demonstrated that the viruses from Iraq are more closely related to each other than those from surrounding countries, but diverged from viruses isolated in neighbouring countries approximately 22 (95% HPD 14–32) years ago. Although 4000 years have passed since the original description of disease consistent with rabies, animals and humans are still dying of this preventable and neglected zoonosis.
doi:10.1371/journal.pntd.0002075
PMCID: PMC3585036  PMID: 23469303
2.  The Activity of Rabies Vaccines against Genetic Clusters of Rabies Virus Circulating at the Territory of Ukraine 
Objective
To identify the presence of genetic clusters of rabies virus at the territory of Ukraine and to determine the degree of activity of rabies vaccines against these genetic clusters.
Introduction
To develop and implement an effective program of rabies eradication in Ukraine in 2008 was founded the unique collection of samples of pathological materials confirmed as positive in rabies at the regional veterinary laboratories of Ukraine. The collection is constantly updated and to present moment it includes 1389 samples from all regions of Ukraine, selected from 17 animal species and humans.
Methods
Identification of the rabies virus in samples of pathological material for their further selection was carried out using the test developed by us which based on RT-PCR with primers complementary to the conservative fragments of the 5’-end of nucleoprotein gene of rabies virus.
For the study of the street rabies virus isolates from the collection we use RT-PCR with the primers pair (509, 304) flanking the variable 3’-end part of nucleoprotein gene of the reference strain of rabies virus CVS (fragment in 377 bp).
Studies of rabies vaccines activity were carried out with modified method of U.S. National Institutes of Health using rabies virus street isolates of both genetic clusters instead of the Challenge Virus Standard (CVS). All isolates of street rabies virus were inoculated in a dose of 5–50 LD50. The criteria for evaluation of protective activity of rabies vaccine was effective dose (− lg ED50).
Results
In molecular genetic studies with variant-specific primers we established the presence in Ukraine of two clusters of rabies virus. Clusters I circulates on the right bank of the Dnipro river (the largest water barrier that divides the country into eastern and western side), and cluster II – on the left bank of the Dnieper.
The relationship of these variants with the epizootic situation was researched. For this purpose epizootological zoning of Ukraine according to the intensity of the epizootic situation in 2005–2009 was carried out. As a result of this analysis all the regions of Ukraine belong to three categories: high, medium and low epizootic situation intensity of rabies.
The projection of differentiated genetic clusters on the epizootic situation showed that cluster II circulating at Left Bank of the Dnieper in areas with high and medium intensity of the epizootic situation, and the cluster I – at the Right Bank of the Dnieper, mainly in the areas with low intensity of the epizootic situation.
That’s why our interest was in the degree of protection of rabies vaccines against street rabies virus isolates belonging to these two genetic clusters.
The commercial vaccines made with rabies virus vaccine strains SAD (Street-Alabama-Dufferin) and Wistar PM/WI were chosen to evaluate this parameter.
After the mathematical calculations of effective dose and the analysis of the data the less effective protection of rabies vaccines (at 29–30 %) against street rabies virus isolates belonging to cluster II in comparison with isolates belonging to cluster I irrespective to the strain vaccine is made was shown.
Conclusions
The data will be used for the effective planning of specific prophylaxis of rabies in Ukraine based on differentiated approach to distribution of rabies vaccines in according to region and their activity.
PMCID: PMC3692803
rabies vaccine; vaccine activity; street rabies virus isolates; genetic variants of rabies virus
3.  National Borders Effectively Halt the Spread of Rabies: The Current Rabies Epidemic in China Is Dislocated from Cases in Neighboring Countries 
China has seen a massive resurgence of rabies cases in the last 15 years with more than 25,000 human fatalities. Initial cases were reported in the southwest but are now reported in almost every province. There have been several phylogenetic investigations into the origin and spread of the virus within China but few reports investigating the impact of the epidemic on neighboring countries. We therefore collected nucleoprotein sequences from China and South East Asia and investigated their phylogenetic and phylogeographic relationship. Our results indicate that within South East Asia, isolates mainly cluster according to their geographic origin. We found evidence of sporadic exchange of strains between neighboring countries, but it appears that the major strain responsible for the current Chinese epidemic has not been exported. This suggests that national geographical boundaries and border controls are effective at halting the spread of rabies from China into adjacent regions. We further investigated the geographic structure of Chinese sequences and found that the current epidemic is dominated by variant strains that were likely present at low levels in previous domestic epidemics. We also identified epidemiological linkages between high incidence provinces consistent with observations based on surveillance data from human rabies cases.
Author Summary
Rabies as a fatal zoonotic disease continues to be a public threat to global public health. After India, China reports the second highest number of human cases, with more than 117,500 deaths and three major epidemics since 1950. China remains in the middle of the third epidemic. In this work we investigate the impact of China on rabies in South East (SE) Asia. We collected nucleoprotein sequences from samples isolated throughout SE Asia and investigated their phylogenetic and geographic relationships. Our results indicate that clear geographic patterns exist within rabies virus in SE Asia, with isolates mainly clustered according to their geographic origin. While we found evidence of the sporadic exchange of strains between neighboring countries, the major strain responsible for the current Chinese epidemic does not appear to spread to neighboring countries. Our findings suggest that national geographical boundaries and border controls act as effective barriers to halt the spread of rabies from China into adjacent regions. We further investigated the geographic structure of Chinese sequences and found the current epidemic is dominated by variant strains that likely evolved from previous domestic epidemics. Our study provides valuable insight for rabies control and prevention in China and SE Asia.
doi:10.1371/journal.pntd.0002039
PMCID: PMC3561166  PMID: 23383359
4.  Implementation of an Intersectoral Program to Eliminate Human and Canine Rabies: The Bohol Rabies Prevention and Elimination Project 
Background
The province of Bohol, located in the Visayas islands region in the Philippines has a human population of 1.13 million and was the 4th highest region for human rabies deaths in the country, averaging 10 per year, prior to the initiation of the Bohol Rabies Prevention and Elimination Project (BRPEP).
Aims
The BRPEP was initiated in 2007 with the goal of building a sustainable program that would prevent human rabies by eliminating rabies at its source, in dogs, by 2010. This goal was in line with the Philippine National Rabies Program whose objective is to eliminate rabies by 2020.
Methods
The intersectoral BRPEP was launched in 2007 and integrated the expertise and resources from the sectors of agriculture, public health and safety, education, environment, legal affairs, interior and local government. The program included: increasing local community involvement; implementing dog population control; conducting mass dog vaccination; improving dog bite management; instituting veterinary quarantine; and improving diagnostic capability, surveillance and monitoring. Funding was secured from the national government, provincial, municipal and village units, dog owners, NGOs, the regional office of the WHO, the UBS Optimus Foundation, and the Global Alliance for Rabies Control. The BRPEP was managed by the Bohol Rabies Prevention and Eradication Council (BRPEC) under the jurisdiction of the Governor of Bohol. Parallel organizations were created at the municipal level and village level. Community volunteers facilitated the institution of the program. Dog population surveys were conducted to plan for sufficient resources to vaccinate the required 70% of the dogs living in the province. Two island-wide mass vaccination campaigns were conducted followed by “catch up” vaccination campaigns. Registration of dogs was implemented including a small fee that was rolled back into the program to maintain sustainability. Children were educated by introducing rabies prevention modules into all elementary schools in Bohol. Existing public health legislation at the national, provincial, and municipal level strengthened the enforcement of activities. A Knowledge, Attitude and Practices (KAP) survey was conducted in 2009 to evaluate the educational knowledge of the population. Increased surveillance was instituted to ensure that dogs traveling into and out of the province were vaccinated against rabies. Human and animal cases of rabies were reported to provincial and national authorities.
Key Results
Within the first 18 months of the BRPEP, human rabies deaths had decreased annually from 0.77 to 0.37 to zero per 100,000 population from 2007–2009. Between October 2008 and November 2010 no human and animal cases were detected. Increased surveillance on the island detected one suspected human rabies case in November 2010 and one confirmed case of canine rabies in April 2011. Two mass vaccination campaigns conducted in 2007 and 2008 successfully registered and vaccinated 44% and 70% of the dogs on the island. The additional surveillance activities enabled a mobilization of mop up vaccination activities in the region where the human and canine case was located. Due to the increased effective and continuous surveillance activities, rabies was stopped before it could spread to other areas on the island. The program costs totaled USD 450,000. Registration fees collected to maintain the program amounted to USD 105,740 and were re-allocated back into the community to sustain the program.
Author Summary
The Province of Bohol, Philippines has eliminated dog and human rabies in less than three years by empowering the community and implementing an intersectoral strategy. In 2006, Bohol ranked 4th highest in the Philippines for human rabies, averaging 10 deaths per year. Launched in 2007, the program utilized a social awareness campaign, dog population control, mass dog vaccination campaigns, improved dog bite management and veterinary quarantine, a new diagnostic laboratory, expanded surveillance, and the inclusion of education modules into the school curriculum. Improving community compliance to existing national and provincial rabies laws and engaging volunteers to help conduct the project was a key to success. The program, led by the Governor of Bohol, was administered through a group of departments working together at a provincial and local level, and supervised through the Office of the Provincial Veterinarian. Financial support came through the Governor and several NGOs including the Global Alliance for Rabies Control. The program is self-sustaining, through a small dog registration fee fed back into the program, through the continuing education of children in their classrooms, and through the dedicated efforts of over 15,000 staff and volunteers throughout the island.
doi:10.1371/journal.pntd.0001891
PMCID: PMC3516573  PMID: 23236525
5.  Assessing anti-rabies baiting – what happens on the ground? 
Background
Rabies is one of the most hazardous zoonoses in the world. Oral mass vaccination has developed into the most effective management method to control fox rabies. The future need to control the disease in large countries (i.e. Eastern Europe and the Americas) forces cost-benefit discussions. The 'Increase bait density' option refers to the usual management assumption that more baits per km2 could compensate for high fox abundance and override the imperfect supply of bait pieces to the individual fox.
Methods
We use a spatial simulation, which combines explicitly fox space use (tessellation polygons) and aeroplane flight lines (straight lines). The number of baits actually falling into each polygon is measured. The manager's strategic options are converted into changes of the resulting bait distribution on the ground. The comparison enables the rating of the options with respect to the management aim (i.e. accessibility of baits).
Results
Above 5% (approx. 10%) of all fox groups without any bait (at most 5 baits) relate to the baiting strategy applied in the field (1 km spaced parallel flight lines, 20 baits per km2 distributed) under habitat conditions comparable to middle and western Europe (fox group home-range 1 km2, 2.5 adults; reference strategy).
Increasing the bait density on the same flight-line pattern neither reduces the number of under-baited fox group home-ranges, nor improves the management outcome and hence wastes resources. However, reducing the flight line distance provides a more even bait distribution and thus compensates for missed fox groups or extra high fox density.
The reference strategy's bait density can be reduced when accounting for the missed fox groups. The management result with the proper strategy is likely the same but with reduced costs.
Conclusion
There is no overall optimal strategy for the bait distribution in large areas. For major parts of the landscape, the reference strategy will be more competitive. In situations where set backs are attributed to non-homogeneous bait accessibility the distribution scheme has to be refined zone-based (i.e. increase of the flight line length per unit area). However, increase in bait density above the reference strategy appears inappropriate at least for non-urban abundance conditions of the red fox.
doi:10.1186/1471-2334-4-9
PMCID: PMC407850  PMID: 15113448
6.  Moving from Rabies Research to Rabies Control: Lessons from India 
Background
Despite the availability of effective interventions and public recognition of the severity of the problem, rabies continues to suffer neglect by programme planners in India and other low and middle income countries. We investigate whether this state of ‘policy impasse’ is due to, at least in part, the research community not catering to the information needs of the policy makers.
Methods & Findings
Our objective was to review the research output on rabies from India and examine its alignment with national policy priorities. A systematic literature review of all rabies research articles published from India between 2001 and 2011 was conducted. The distribution of conducted research was compared to the findings of an earlier research prioritization exercise. It was found that a total of 93 research articles were published from India since 2001, out of which 61% consisted of laboratory based studies focussing on rabies virus. Animals were the least studied group, comprising only 8% of the research output. One third of the articles were published in three journals focussing on vaccines and infectious disease epidemiology and the top 4 institutions (2 each from the animal and human health sectors) collectively produced 49% of the national research output. Biomedical research related to development of new interventions dominated the total output as opposed to the identified priority domains of socio-politic-economic research, basic epidemiological research and research to improve existing interventions.
Conclusion
The paper highlights the gaps between rabies research and policy needs, and makes the case for developing a strategic research agenda that focusses on rabies control as an expected outcome.
Author Summary
Rabies is among the most widely spread zoonoses (diseases that are naturally transmitted between vertebrate animals and humans) in humans in most Asian, African and Latin American countries. Even though researchers have demonstrated effectiveness of strategies to control rabies at the population level, such as post exposure prophylaxis in humans and animal birth control and immunization among dogs, are well known, policy makers in most countries are hesitant to implement these strategies. This paper examines the disconnect that prevents the translation of scientific research outputs into effective policies. We contrasted the type of research papers published on rabies from India in the last eleven years with a previously identified set of priority research options. We found that most published research articles related to biomedical research focussing on development of new interventions. This was in contrast to policy and systems-related research and research to improve the performance of existing interventions that were identified as priority research options for India earlier. The findings of our study highlight the importance of moving beyond a purely researcher-driven agenda and suggest the need to promote research that has a vision of rabies control in the near future.
doi:10.1371/journal.pntd.0001748
PMCID: PMC3413711  PMID: 22880139
7.  Evolutionary History of Rabies in Ghana 
Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007–2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme.
Author Summary
Rabies virus (RABV) is widespread throughout Africa, with the domestic dog being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages (Africa 1 and 2) are thought to circulate in western and central Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected from 2007 to 2009. In addition we developed and tested a novel molecular diagnostic assay for the detection of RABV, which offers an alternative RABV diagnostic tool for African laboratories. Our analysis of the genetic sequences obtained confirmed all viruses to be RABV, however, unlike previous studies we detected two sub-Saharan African RABV viruses (Africa 1 and 2) in this cohort, which included a single virus previously undetected in West Africa. We suggest that there has been repeated introduction of new RABVs into Ghana over a prolonged period from other West African countries and more recently from eastern Africa. These observations further highlight the problems of individual developing nations implementing rabies control programmes at a local, rather than regional level.
doi:10.1371/journal.pntd.0001001
PMCID: PMC3071360  PMID: 21483707
8.  Molecular epidemiology of rabies virus in Poland 
Archives of Virology  2014;159(8):2043-2050.
The paper describes a phylogenetic study of 58 Polish isolates of rabies virus collected between 1992 and 2010. Sequences of the nucleoprotein (N) and glycoprotein (G) genes approximately 600 bp long were compared with reference sequences (GenBank) of European rabies viruses from neighbouring countries. The study confirmed a very high level of homology (94.4–100 %) of the Polish rabies virus strains irrespective of the date of isolation. Two variants of rabies virus: NEE (Northeastern Europe variant) and CE (Central Europe variant), depending on the geographical place of isolation, were circulating in Poland from 1992 to 2010. The Polish rabies virus isolates showed high similarity to European RABV strains, especially those collected in Ukraine and Romania. They were clearly different from vaccine strains SAD B19 and SAD Bern, which have been used for oral vaccination of foxes against rabies in Poland since 1993.
doi:10.1007/s00705-014-2045-z
PMCID: PMC4115184  PMID: 24627096
9.  Rabies antibody levels in pregnant women and their newborns after rabies post-exposure prophylaxis 
Background: Rabies is a fatal infectious disease and rabies post-exposure prophylaxis is the method of choice for prevention of human rabies.
Case series: We report rabies antibody levels in cord blood and also in serum of pregnant women who were bitten by suspected animals to rabies and were immunized by purified Vero cell rabies vaccine (PVRV) and Human Rabies immunoglobulin (HRIG) serum. During the years of 2007-2010, six pregnant women by the age range of 22-35 years were admitted in treatment and prevention of rabies center in Pasture institute of Iran, in Tehran. Among them two cases were at first trimester, one at second trimester and three at third trimester of conception. The interval between biting with delivery was 5-265 days (mean 121 days).
Conclusion: Results of immunoglobulin illustrate that levels of rabies antibody in maternal sera with the fetus are not equal and uniform but it is proved that baby will find efficient immunity as well with minimum protective level of 0.5 IU/ml in all cases except a newborn whom had been born just 5 days after the mother’s immunization and in a shorter time than the appropriate immunization of the mother who had received her second vaccination courses.
PMCID: PMC4163280  PMID: 25242991
Rabies; Pregnancy; Newborn; Post-exposure prophylaxis
10.  Eliminating Rabies in Estonia 
The compulsory vaccination of pets, the recommended vaccination of farm animals in grazing areas and the extermination of stray animals did not succeed in eliminating rabies in Estonia because the virus was maintained in two main wildlife reservoirs, foxes and raccoon dogs. These two species became a priority target therefore in order to control rabies. Supported by the European Community, successive oral vaccination (OV) campaigns were conducted twice a year using Rabigen® SAG2 baits, beginning in autumn 2005 in North Estonia. They were then extended to the whole territory from spring 2006. Following the vaccination campaigns, the incidence of rabies cases dramatically decreased, with 266 cases in 2005, 114 in 2006, four in 2007 and three in 2008. Since March 2008, no rabies cases have been detected in Estonia other than three cases reported in summer 2009 and one case in January 2011, all in areas close to the South-Eastern border with Russia. The bait uptake was satisfactory, with tetracycline positivity rates ranging from 85% to 93% in foxes and from 82% to 88% in raccoon dogs. Immunisation rates evaluated by ELISA ranged from 34% to 55% in foxes and from 38% to 55% in raccoon dogs. The rabies situation in Estonia was compared to that of the other two Baltic States, Latvia and Lithuania. Despite regular OV campaigns conducted throughout their territory since 2006, and an improvement in the epidemiological situation, rabies has still not been eradicated in these countries. An analysis of the number of baits distributed and the funding allocated by the European Commission showed that the strategy for rabies control is more cost-effective in Estonia than in Latvia and Lithuania.
Author Summary
This paper reports the strategy of oral rabies vaccination of wildlife in Estonia, the measures undertaken to check the method's efficacy and the results obtained. Initiated in autumn 2005, oral vaccination programmes resulted in a dramatic decrease in rabies incidence. All the recommended tests were regularly applied, including the systematic testing of vaccine baits prior to release in the field, serological testing and bait uptake assessment in adult and young animals as well as the typing of all rabies virus isolates. The disease was completely controlled by March 2008, with only three cases reported in summer 2009 and one case in January 2011 in areas very close to the South-Eastern border. The costs associated with rabies control have been calculated and compared on a similar basis for the three Baltic countries. The example of rabies control in Estonia shows that rabies can be quickly and successfully eliminated through successive oral vaccination campaigns by strictly following the recommendations of international organisations. These recommendations concern general strategy, vaccination method and choice of vaccine. To our knowledge, this is the first study showing extensive data from a rabies control programme. The underlying strategy, leading to rabies elimination, is advantageous in terms of cost/effectiveness.
doi:10.1371/journal.pntd.0001535
PMCID: PMC3289618  PMID: 22393461
11.  The development and use of a vaccinia-rabies recombinant oral vaccine for the control of wildlife rabies; a link between Jenner and Pasteur. 
Epidemiology and Infection  1996;116(3):235-240.
To improve both safety and stability of the oral vaccines used in the field to vaccinate foxes against rabies, a recombinant vaccinia virus, which expresses the immunizing G protein of rabies virus has been developed by inserting the cDNA which codes for the immunogenic glycoprotein of rabies virus into the thymidine kinase (TK) gene of the Copenhagen strain of vaccinia virus. The efficacy of this vaccine was tested by the oral route, primarily in foxes. The immunity conferred, a minimum of 12 months in cubs and 18 months in adult animals, corresponds to the duration of the protection required for vaccination of foxes in the field. Innocuity was tested in foxes, domestic animals, and in numerous European wild animal species that could compete with the red fox for the vaccine bait. No clinical signs or lesions were observed in any of the vaccinated animals during a minimum of 28 days post vaccination. Moreover, no transmission of immunizing doses of the recombinant occurred between foxes or other species tested. To study the stability of the vaccine strain, baits containing the vaccine were placed in the field. Despite considerable variations of environmental temperatures, the vaccine remained stable for at least one month. Because bait is taken within one month, it can be assumed that most animals taking the baits are effectively vaccinated. To test the field efficacy of the recombinant vaccine, large-scale campaigns of fox vaccination were set up in a 2200 km2 region of southern Belgium, were rabies was prevalent. A dramatic decrease in the incidence of rabies was noted after the campaigns. The recombinant is presently used to control wildlife rabies in the field both in several European countries and in the United States.
PMCID: PMC2271442  PMID: 8666066
12.  Molecular Epidemiology of Rabies Virus Isolates from Israel and Other Middle- and Near-Eastern Countries 
Journal of Clinical Microbiology  2000;38(2):755-762.
A total of 226 isolates of rabies virus from different areas of Israel, including three human isolates and one sample from South Lebanon were identified between 1993 and 1998 by direct immunofluorescence using monoclonal antibodies to the viral nucleoprotein (N). An epidemiological survey based on nucleotide sequence analysis of 328 bp from the C terminus of the N coding region and the noncoding region between the nucleoprotein and the phosphoprotein (NS gene) was performed. Phylogenetic analysis of the isolates from Israel showed that they were related geographically, but not according to host species. Five variants, related groups distributed among four geographical regions, were identified. In each region, rabies virus was isolated from more than one animal species. A comparison of the sequence analysis of rabies virus samples from the rest of world revealed a 2-nucleotide change that distinguished the Middle East variants from the rest.
PMCID: PMC86197  PMID: 10655381
13.  Prioritization of capacities for the elimination of dog-mediated human rabies in the Americas: building the framework 
Pathogens and Global Health  2013;107(7):340-345.
The region of the Americas pledged to eliminate dog-transmitted human rabies by 2015. After 30 years of sustained efforts, regional elimination appears possible as dog-mediated human rabies cases are at an all-time low, and a number of countries and territories have already eliminated the disease. In this setting, there is an opportunity to generate a framework to support countries strategies in the achievement and maintenance of rabies-free status (RFS). To this end, we describe the development of a multi-criteria decision analysis (MCDA) model to help the evaluation of rabies programmes and the identification of the best investment strategy for countries and territories to improve and efficiently maintain their rabies status. The model contemplates human and animal related capacities, six in each area, to comprehensively assess the wide scope of rabies programmes. An initial elicitation of expert opinion of values and weights for the MCDA model was performed via a web-based questionnaire. Even at this pilot stage, the model produces comparable capacity-scores, and overall (combined for public and animal health areas) as well as area-specific investment strategies. The model is being developed by the Pan American Health Organization (PAHO) as part of the regional efforts towards dog-mediated human rabies elimination and will be presented to the countries for review, refinement, contextualization, and testing. The aspiration is that countries use the model to identify the best allocation of resources towards the elimination of dog-mediated human rabies.
doi:10.1179/2047773213Y.0000000122
PMCID: PMC4083153  PMID: 24392676
Dog-mediated human rabies; Elimination; Multi-criteria decision analysis; Prioritization
14.  Human rabies surveillance and control in China, 2005–2012 
BMC Infectious Diseases  2014;14:212.
Background
Rabies reemerged in China during the 1990s with a gradual increase in the number and geographical dispersion of cases. As a consequence, a national surveillance program was introduced in 2005 to investigate the outbreak in terms of vaccination coverage, PEP treatment, and geographical and social composition.
Methods
The surveillance program was coordinated at the national level by the Chinese Center for Disease Control (CCDC) with data collected by regional health centres and provincial CCDCs, and from other official sources. Various statistical and multivariate analysis techniques were then used to evaluate the role and significance of implemented policies and strategies related to rabies prevention and control over this period.
Results
From 2005–2012, 19,221 cases were reported across 30 provinces, but these primarily occurred in rural areas of southern and eastern China, and were predominantly associated with farmers, students and preschool children. In particular, detailed analysis of fatalities reported from 2010 to 2011 shows they were associated with very low rates of post exposure treatment compared to the cases with standard PEP. Nevertheless, regulation of post-exposure prophylaxis quality, together with improved management and vaccination of domesticated animals, has improved prevention and control of rabies.
Conclusions
The various control policies implemented by the government has played a key role in reducing rabies incidences in China. However, level of PEP treatment varies according to sex, age, degree and site of exposure, as well as the source of infection. Regulation of PEP quality together with improved management and vaccination of domesticated animals have also helped to improve prevention and control of rabies.
doi:10.1186/1471-2334-14-212
PMCID: PMC4004447  PMID: 24742224
Rabies; Surveillance; Prevention and control; Policies
15.  The elimination of fox rabies from Europe: determinants of success and lessons for the future 
Despite perceived challenges to controlling an infectious disease in wildlife, oral rabies vaccination (ORV) of foxes has proved a remarkably successful tool and a prime example of a sophisticated strategy to eliminate disease from wildlife reservoirs. During the past three decades, the implementation of ORV programmes in 24 countries has led to the elimination of fox-mediated rabies from vast areas of Western and Central Europe. In this study, we evaluated the efficiency of 22 European ORV programmes between 1978 and 2010. During this period an area of almost 1.9 million km² was targeted at least once with vaccine baits, with control taking between 5 and 26 years depending upon the country. We examined factors influencing effort required both to control and eliminate fox rabies as well as cost-related issues of these programmes. The proportion of land area ever affected by rabies and an index capturing the size and overlap of successive ORV campaigns were identified as factors having statistically significant effects on the number of campaigns required to both control and eliminate rabies. Repeat comprehensive campaigns that are wholly overlapping much more rapidly eliminate infection and are less costly in the long term. Disproportionally greater effort is required in the final phase of an ORV programme, with a median of 11 additional campaigns required to eliminate disease once incidence has been reduced by 90 per cent. If successive ORV campaigns span the entire affected area, rabies will be eliminated more rapidly than if campaigns are implemented in a less comprehensive manner, therefore reducing ORV expenditure in the longer term. These findings should help improve the planning and implementation of ORV programmes, and facilitate future decision-making by veterinary authorities and policy-makers.
doi:10.1098/rstb.2012.0142
PMCID: PMC3720040  PMID: 23798690
fox rabies; oral rabies vaccination; elimination; influencing factors; efforts/expenses; endgame
16.  Rabies in Nonhuman Primates and Potential for Transmission to Humans: A Literature Review and Examination of Selected French National Data 
Background
The nonhuman primate (NHP)-related injuries in rabies-enzootic countries is a public health problem of increasing importance. The aims of this work are to collect data concerning rabies transmission from NHPs to humans; to collate medical practices regarding rabies postexposure prophylaxis (PEP) in different countries, and to provide an evidence base to support the decision to apply rabies PEP in this context.
Methodology
To retrieve information, we conducted a literature search from 1960 to January 2013. All reports of rabies in NHPs and rabies transmission to humans by infected NHPs were included. Also included were studies of travelers seeking care for rabies PEP in various settings.
Data collected by the French National Reference Centre for Rabies concerning NHPs submitted for rabies diagnosis in France and human rabies exposure to NHPs in travelers returning to France were analyzed for the periods 1999–2012 and 1994–2011, respectively.
Principal findings
A total of 159 reports of rabies in NHPs have been retrieved from various sources in South America, Africa, and Asia, including 13 cases in animals imported to Europe and the US. 134 were laboratory confirmed cases. 25 cases of human rabies following NHP-related injuries were reported, including 20 from Brazil. Among more than 2000 international travelers from various settings, the proportion of injuries related to NHP exposures was about 31%. NHPs rank second, following dogs in most studies and first in studies conducted in travelers returning from Southeast Asia. In France, 15.6% of 1606 travelers seeking PEP for exposure to any animal were injured by monkeys.
Conclusions/significance
Although less frequently reported in published literature than human rabies, confirmed rabies cases in NHPs occur. The occurrence of documented transmission of rabies from NHPs to human suggests that rabies PEP is indicated in patients injured by NHPs in rabies-enzootic countries.
Author Summary
No international consensus or even a consensus among existing national recommendations about rabies postexposure prophylaxis (PEP) following a nonhuman primate (NHP)-related injury currently exists. Epidemiologic studies and reports collated in this review indicate that the number of rabies case reported in NHPs are rare compared with humans. This finding might be because of a lower contact rate of NHPs with rabid reservoir but also very likely because of underreporting. Nevertheless, documented cases and subsequent transmission to humans have been reported from various sources in South America, Africa, and Asia. Further, international travelers often report NHP-related injuries and NHPs can be close to humans. Little is currently known of the pathobiology of rabies virus shedding in primates, which implies that rabies PEP and administration of rabies immunoglobulin should be considered in patients with a possible exposure.
doi:10.1371/journal.pntd.0002863
PMCID: PMC4022521  PMID: 24831694
17.  Bat Rabies in Guatemala 
Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation.
Author Summary
In this study we provide results of the first active and extensive surveillance effort for rabies virus (RABV) circulation among bats in Guatemala. The survey included multiple geographic areas and multiple species of bats, to assess the broader public and veterinary health risks associated with rabies in bats in Guatemala. RABV was isolated from vampire bats (Desmodus rotundus) collected in two different locations in Guatemala. Sequencing of the isolates revealed a closer relationship to Mexican and Central American vampire bat isolates than to South American isolates. The detection of RABV neutralizing antibodies in 11 species, including insectivorous, frugivorous, and sanguivorous bats, demonstrates viral circulation in both hematophagous and non-hematophagous bat species in Guatemala. The presence of bat RABV in rural communities requires new strategies for public health education regarding contact with bats, improved laboratory-based surveillance of animals associated with human exposures, and novel techniques for modern rabies prevention and control. Additionally, healthcare practitioners should emphasize the collection of a detailed medical history, including questions regarding bat exposure, for patients presenting with clinical syndromes compatible with rabies or any clinically diagnosed progressive encephalitis.
doi:10.1371/journal.pntd.0003070
PMCID: PMC4117473  PMID: 25080103
18.  Recent Emergence and Spread of an Arctic-Related Phylogenetic Lineage of Rabies Virus in Nepal 
Rabies is a zoonotic disease that is endemic in many parts of the developing world, especially in Africa and Asia. However its epidemiology remains largely unappreciated in much of these regions, such as in Nepal, where limited information is available about the spatiotemporal dynamics of the main etiological agent, the rabies virus (RABV). In this study, we describe for the first time the phylogenetic diversity and evolution of RABV circulating in Nepal, as well as their geographical relationships within the broader region. A total of 24 new isolates obtained from Nepal and collected from 2003 to 2011 were full-length sequenced for both the nucleoprotein and the glycoprotein genes, and analysed using neighbour-joining and maximum-likelihood phylogenetic methods with representative viruses from all over the world, including new related RABV strains from neighbouring or more distant countries (Afghanistan, Greenland, Iran, Russia and USA). Despite Nepal's limited land surface and its particular geographical position within the Indian subcontinent, our study revealed the presence of a surprising wide genetic diversity of RABV, with the co-existence of three different phylogenetic groups: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade. This observation suggests at least two independent episodes of rabies introduction from neighbouring countries. In addition, specific phylogenetic and temporal evolution analysis of viruses within the Arctic-related clade has identified a new recently emerged RABV lineage we named as the Arctic-like 3 (AL-3) sub-clade that is already widely spread in Nepal.
Author Summary
Rabies is endemic in most Asian countries and represents a serious public health issue, with an estimated 31,000 people dying each year of this disease. The majority of human cases are transmitted by domestic dogs, which act as the principal reservoir host and vector. However, molecular epidemiology and evolutionary dynamics of the main etiological agent, the rabies virus (RABV), remains largely unappreciated in some regions such as in Nepal. Based on a subset of 24 new Nepalese isolates collected from 2003 to 2011 and representative RABV strains at a global scale, phylogenetic analysis based on the complete nucleoprotein and glycoprotein genes sequences revealed the presence of a surprising wide genetic diversity of RABV circulating in this country. The presence of three different co-existing phylogenetic groups was identified: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade, namely Arctic-like (AL)-1, lineage a (AL-1a), and AL-3. Among these clusters, the AL-3 sub-clade appears as the major Nepalese phylogroup which emerged relatively recently in this country, within the last 30 years. These data has raised some concerns about the exchange of RABV between different countries, and provided key elements for implementation of effective control measures of rabies in Nepal.
doi:10.1371/journal.pntd.0002560
PMCID: PMC3836727  PMID: 24278494
19.  Transmission dynamics of rabies virus in Thailand: Implications for disease control 
Background
In Thailand, rabies remains a neglected disease with authorities continuing to rely on human death statistics while ignoring the financial burden resulting from an enormous increase in post-exposure prophylaxis. Past attempts to conduct a mass dog vaccination and sterilization program have been limited to Bangkok city and have not been successful. We have used molecular epidemiology to define geographic localization of rabies virus phylogroups and their pattern of spread in Thailand.
Methods
We analyzed 239 nucleoprotein gene sequences from animal and human brain samples collected from all over Thailand between 1998 and 2002. We then reconstructed a phylogenetic tree correlating these data with geographical information.
Results
All sequences formed a monophyletic tree of 2 distinct phylogroups, TH1 and TH2. Three subgroups were identified in the TH1 subgroup and were distributed in the middle region of the country. Eight subgroups of TH2 viruses were identified widely distributed throughout the country overlapping the TH1 territory. There was a correlation between human-dependent transportation routes and the distribution of virus.
Conclusion
Inter-regional migration paths of the viruses might be correlated with translocation of dogs associated with humans. Interconnecting factors between human socioeconomic and population density might determine the transmission dynamics of virus in a rural-to-urban polarity. The presence of 2 or more rabies virus groups in a location might be indicative of a gene flow, reflecting a translocation of dogs within such region and adjacent areas. Different approaches may be required for rabies control based on the homo- or heterogeneity of the virus. Areas containing homogeneous virus populations should be targeted first. Control of dog movement associated with humans is essential.
doi:10.1186/1471-2334-5-52
PMCID: PMC1184074  PMID: 15985183
20.  Twelve Years of Rabies Surveillance in Sri Lanka, 1999–2010 
Background
Rabies is endemic in Sri Lanka, but little is known about the temporal and spatial trends of rabies in this country. Knowing these trends may provide insight into past control efforts and serve as the basis for future control measures. In this study, we analyzed distribution of rabies in humans and animals over a period of 12 years in Sri Lanka.
Methods
Accumulated data from 1999 through 2010 compiled by the Department of Rabies Diagnosis and Research, Medical Research Institute (MRI), Colombo, were used in this study.
Results
The yearly mean percentage of rabies-positive sample was 62.4% (47.6–75.9%). Three-fourths of the rabies-positive samples were from the Colombo, Gampaha, and Kalutara districts in Western province, followed by Galle in Southern province. A high percentage of the rabies samples were from dogs (85.2%), followed by cats (7.9%), humans (3.8%), wild animals (2.0%), and livestock (1.1%). Among wild animals, mongooses were the main victims followed by civets. The number of suspect human rabies cases decreased gradually in Sri Lanka, although the number of human samples submitted for laboratory confirmation increased.
Conclusions
The number of rabid dogs has remained relatively unchanged, but the number of suspect human rabies is decreasing gradually in Sri Lanka. These findings indicate successful use of postexposure prophylaxis (PEP) by animal bite victims and increased rabies awareness. PEP is free of charge and is supplied through government hospitals by the Ministry of Health, Sri Lanka. Our survey shows that most positive samples were received from Western and Southern provinces, possibly because of the ease of transporting samples to the laboratory. Submissions of wild animal and livestock samples should be increased by creating more awareness among the public. Better rabies surveillance will require introduction of molecular methods for detection and the establishment of more regional rabies diagnostic laboratories.
Author Summary
Rabies is a public health concern in Sri Lanka. The incidence of dog rabies remains unchanged, but the incidence of suspect human rabies is decreasing gradually in Sri Lanka. This finding indicates the effects of improved access to postexposure prophylaxis by animal bite victims and increased rabies awareness. As in other rabies-endemic countries, in Sri Lanka, human rabies is transmitted mainly by dogs, although domestic and wild animals have been diagnosed rabid, and can pose a risk of exposure to humans. In this study, we analyzed 12 years of data accumulated in the national reference laboratory of Sri Lanka to identify the trends of rabies in this country. This study showed that rabies has been recorded mainly in Western and Southern Provinces of Sri Lanka, possibly because of the ease of communication with rabies diagnostic laboratories from these areas. Regional rabies diagnosis laboratories should be established to improve surveillance of rabies in Sri Lanka. There were few submitted animal samples from livestock and wild animals, indicating that greater awareness is needed among the public regarding the need to submit suspect rabid animals for diagnostic evaluation. These data could help policy makers improve rabies prevention and to control rabies in Sri Lanka.
doi:10.1371/journal.pntd.0003205
PMCID: PMC4191952  PMID: 25299511
21.  Intravenous Inoculation of a Bat-Associated Rabies Virus Causes Lethal Encephalopathy in Mice through Invasion of the Brain via Neurosecretory Hypothalamic Fibers 
PLoS Pathogens  2009;5(6):e1000485.
The majority of rabies virus (RV) infections are caused by bites or scratches from rabid carnivores or bats. Usually, RV utilizes the retrograde transport within the neuronal network to spread from the infection site to the central nervous system (CNS) where it replicates in neuronal somata and infects other neurons via trans-synaptic spread. We speculate that in addition to the neuronal transport of the virus, hematogenous spread from the site of infection directly to the brain after accidental spill over into the vascular system might represent an alternative way for RV to invade the CNS. So far, it is unknown whether hematogenous spread has any relevance in RV pathogenesis. To determine whether certain RV variants might have the capacity to invade the CNS from the periphery via hematogenous spread, we infected mice either intramuscularly (i.m.) or intravenously (i.v.) with the dog-associated RV DOG4 or the silver-haired bat-associated RV SB. In addition to monitoring the progression of clinical signs of rabies we used immunohistochemistry and quantitative reverse transcription polymerase chain reaction (qRT-PCR) to follow the spread of the virus from the infection site to the brain. In contrast to i.m. infection where both variants caused a lethal encephalopathy, only i.v. infection with SB resulted in the development of a lethal infection. While qRT-PCR did not reveal major differences in virus loads in spinal cord or brain at different times after i.m. or i.v. infection of SB, immunohistochemical analysis showed that only i.v. administered SB directly infected the forebrain. The earliest affected regions were those hypothalamic nuclei, which are connected by neurosecretory fibers to the circumventricular organs neurohypophysis and median eminence. Our data suggest that hematogenous spread of SB can lead to a fatal encephalopathy through direct retrograde invasion of the CNS at the neurovascular interface of the hypothalamus-hypophysis system. This alternative mode of virus spread has implications for the post exposure prophylaxis of rabies, particularly with silver-haired bat-associated RV.
Author Summary
Rabies virus (RV) infects mammalian neurons and cycles in regionally distinct animal populations such as the red fox in Europe, domestic canines in Asia, or raccoons, skunks and bats in Northern America. Although human rabies can be prevented by pre- and post-exposure prophylaxis, more than 50,000 people die annually from the severe encephalopathy caused by RV. Recently, two cases of RV transmission by organ transplantation were reported. In our study, using intravenous inoculation of mice, we evaluated the pathogenetic relevance of virions that reach the bloodstream. Mice inoculated intravenously with a canine-derived RV survived the infection in contrast to intramuscularly injected mice, while mice infected with a silver-haired bat-related RV succumbed to the disease regardless of the route of inoculation. We found that the silver-haired bat-related RV was able to transit from the blood to the brain by invading neurosecretory fibers of the hypothalamus, which form neurohemal synapses lacking a blood-brain-barrier. This newly described route of brain invasion might reflect how RV reached the central nervous system from transplanted organs, since it takes longer to establish the neural connections between host and grafted tissue necessary for classical RV migration than the time until the infection became symptomatic in the two reported cases.
doi:10.1371/journal.ppat.1000485
PMCID: PMC2691950  PMID: 19543379
22.  Emergence of Arctic-like Rabies Lineage in India 
Emerging Infectious Diseases  2007;13(1):111-116.
Progenitors of Arctic-like rabies viruses, which now circulate extensively in India, may have been responsible for the emergence of the Arctic rabies lineage.
A collection of 37 rabies-infected samples, 10 human saliva and 27 animal brain, were recovered during 2001–2004 from the cities of Bangalore and Hyderabad in southern India and from Kasauli, a mountainous region in Himachal Pradesh, northern India. Phylogenetic analysis of partial N gene nucleotide sequences of these 37 specimens and 1 archival specimen identified 2 groups, divided according to their geographic (north or south) origins. Comparison of selected Indian viruses with representative rabies viruses recovered worldwide showed a close association of all Indian isolates with the circumpolar Arctic rabies lineage distributed throughout northern latitudes of North America and Europe and other viruses recovered from several Asian countries.
doi:10.3201/eid1301.060702
PMCID: PMC2725804  PMID: 17370523
human and dog rabies; molecular epidemiology; rabies virus Arctic lineage; research
23.  The Phylogeography of Rabies in Grenada, West Indies, and Implications for Control 
In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions.
Author Summary
Rabies, a fatal disease of animals and humans has been endemic in Grenada, West Indies, since the early 1900s. The small Indian mongoose, an introduced animal, is the most likely rabies reservoir, with spillover into domestic animals and humans. To control rabies, large numbers of mongooses were killed in the 1960s/1970s, but this effort did not alter long-term rabies dynamics. Vaccination of dogs, cats and livestock is efficient in protecting these animals, yet is not regularly undertaken. Post-exposure prophylaxis (PEP) in humans is routinely done and no human has died of rabies in Grenada since 1970. However, the threat of rabies and potential to adversely affect the tourism industry, are a burden on the Grenadian government and public. This study has re-evaluated the role of the mongoose in the maintenance of rabies in Grenada, and for the first time, the rabies virus circulating in Grenada has been described. Grenada offers optimal conditions for an oral rabies vaccination (ORV) program, being an island with strict live animal import controls, and a single wildlife rabies reservoir. Although further work is needed before an ORV campaign could be implemented, elimination of rabies from Grenada seems a realistic goal.
doi:10.1371/journal.pntd.0003251
PMCID: PMC4199513  PMID: 25330178
24.  High Diversity of Rabies Viruses Associated with Insectivorous Bats in Argentina: Presence of Several Independent Enzootics 
Background
Rabies is a fatal infection of the central nervous system primarily transmitted by rabid animal bites. Rabies virus (RABV) circulates through two different epidemiological cycles: terrestrial and aerial, where dogs, foxes or skunks and bats, respectively, act as the most relevant reservoirs and/or vectors. It is widely accepted that insectivorous bats are not important vectors of RABV in Argentina despite the great diversity of bat species and the extensive Argentinean territory.
Methods
We studied the positivity rate of RABV detection in different areas of the country, and the antigenic and genetic diversity of 99 rabies virus (RABV) strains obtained from 14 species of insectivorous bats collected in Argentina between 1991 and 2008.
Results
Based on the analysis of bats received for RABV analysis by the National Rabies system of surveillance, the positivity rate of RABV in insectivorous bats ranged from 3.1 to 5.4%, depending on the geographic location. The findings were distributed among an extensive area of the Argentinean territory. The 99 strains of insectivorous bat-related sequences were divided into six distinct lineages associated with Tadarida brasiliensis, Myotis spp, Eptesicus spp, Histiotus montanus, Lasiurus blosseviilli and Lasiurus cinereus. Comparison with RABV sequences obtained from insectivorous bats of the Americas revealed co-circulation of similar genetic variants in several countries. Finally, inter-species transmission, mostly related with Lasiurus species, was demonstrated in 11.8% of the samples.
Conclusions
This study demonstrates the presence of several independent enzootics of rabies in insectivorous bats of Argentina. This information is relevant to identify potential areas at risk for human and animal infection.
Author Summary
In Argentina, successful vaccination and control of terrestrial rabies in the 1980s revealed the importance of the aerial route in RABV transmission. Current distribution of cases shows a predominance of rabies by hematophagous bats in the Northern regions where rabies is a major public health concern; in contrast, in Central and Southern regions where rabies is not a major public health concern, little surveillance is performed. Based on the analysis of insectivorous bats received for RABV analysis by the National Rabies system of surveillance, the positivity rate of RABV in insectivorous bats in these regions ranged from 3.1 to 5.4%. This rate is comparable to other nations such as the United States (9–10%) where insectivorous bats are an important cause of concern for RABV surveillance systems. Antigenic and genetic analysis of a wide collection of rabies strains shows the presence of multiple endemic cycles associated with six bat insectivorous species distributed among an extensive area of the Argentinean territory and several countries of the Americas. Finally, inter-species transmission, mostly related with Lasiurus species, was demonstrated in 11.8% of the samples. Increased public education about the relationship between insectivorous bats and rabies are essential to avoid human cases and potential spread to terrestrial mammals.
doi:10.1371/journal.pntd.0001635
PMCID: PMC3348165  PMID: 22590657
25.  Genetic Diversity and Geographic Distribution of Genetically Distinct Rabies Viruses in the Philippines 
Background
Rabies continues to be a major public health problem in the Philippines, where 200–300 human cases were reported annually between 2001 and 2011. Understanding the phylogeography of rabies viruses is important for establishing a more effective and feasible control strategy.
Methods
We performed a molecular analysis of rabies viruses in the Philippines using rabied animal brain samples. The samples were collected from 11 of 17 regions, which covered three island groups (Luzon, Visayas, and Mindanao). Partial nucleoprotein (N) gene sequencing was performed on 57 samples and complete glycoprotein (G) gene sequencing was performed on 235 samples collected between 2004 and 2010.
Results
The Philippine strains of rabies viruses were included in a distinct phylogenetic cluster, previously named Asian 2b, which appeared to have diverged from the Chinese strain named Asian 2a. The Philippine strains were further divided into three major clades, which were found exclusively in different island groups: clades L, V, and M in Luzon, Visayas, and Mindanao, respectively. Clade L was subdivided into nine subclades (L1–L9) and clade V was subdivided into two subclades (V1 and V2). With a few exceptions, most strains in each subclade were distributed in specific geographic areas. There were also four strains that were divided into two genogroups but were not classified into any of the three major clades, and all four strains were found in the island group of Luzon.
Conclusion
We detected three major clades and two distinct genogroups of rabies viruses in the Philippines. Our data suggest that viruses of each clade and subclade evolved independently in each area without frequent introduction into other areas. An important implication of these data is that geographically targeted dog vaccination using the island group approach may effectively control rabies in the Philippines.
Author Summary
Rabies continues to be a major public health problem in the Philippines. We conducted a molecular epidemiological study of rabies using the complete glycoprotein (G) gene from 235 animal brain samples collected in the Philippines between 2004 and 2010. We identified three major clades and two distinct genogroups in the Philippines. The three major clades L, V, and M were found specifically in the Luzon, Visayas, and Mindanao island groups, respectively. Additionally, two minor genogroups were located in the Luzon island group. These data suggest that although human mediated transmission may have occurred, these virus clades evolved independently after a single introduction into each island group. All of the analyzed Philippine strains were clustered into Asian 2b, which diverged from the Chinese strain Asian 2a. No recent introduction of rabies into the Philippines from other countries was apparent. The elimination of rabies by 2020 is a national goal in the Philippines, necessitating urgent development of a more effective and feasible strategy for controlling rabies. Our findings indicate that a geographically targeted dog vaccination campaign may effectively control rabies in island nations such as the Philippines.
doi:10.1371/journal.pntd.0002144
PMCID: PMC3617229  PMID: 23593515

Results 1-25 (428158)