Search tips
Search criteria

Results 1-25 (958066)

Clipboard (0)

Related Articles

1.  Pulmonary embolism in intensive care unit: Predictive factors, clinical manifestations and outcome 
Annals of Thoracic Medicine  2010;5(2):97-103.
To determine predictive factors, clinical and demographics characteristics of patients with pulmonary embolism (PE) in ICU, and to identify factors associated with poor outcome in the hospital and in the ICU.
During a four-year prospective study, a medical committee of six ICU physicians prospectively examined all available data for each patient in order to classify patients according to the level of clinical suspicion of pulmonary thromboembolism. During the study periods, all patients admitted to our ICU were classified into four groups. The first group includes all patients with confirmed PE; the second group includes some patients without clinical manifestations of PE; the third group includes patients with suspected and not confirmed PE and the fourth group includes all patients with only deep vein thromboses (DVTs) without suspicion of PE. The diagnosis of PE was confirmed either by a high-probability ventilation/perfusion (V/Q) scan or by a spiral computed tomography (CT) scan showing one or more filling defects in the pulmonary artery or in its branches. The diagnosis was also confirmed by echocardiography when a thrombus in the pulmonary artery was observed.
During the study periods, 4408 patients were admitted in our ICU. The diagnosis of PE was confirmed in 87 patients (1.9%). The mean delay of development of PE was 7.8 ± 9.5 days. On the day of PE diagnosis, clinical examination showed that 50 patients (57.5%) were hypotensive, 63 (72.4%) have SIRS, 15 (17.2%) have clinical manifestations of DVT and 71 (81.6%) have respiratory distress requiring mechanical ventilation. In our study, intravenous unfractionated heparin was used in 81 cases (93.1%) and low molecular weight heparins were used in 4 cases (4.6%). The mean ICU stay was 20.2 ± 25.3 days and the mean hospital stay was 25.5 ± 25 days. The mortality rate in ICU was 47.1% and the in-hospital mortality rate was 52.9%. Multivariate analysis showed that factors associated with a poor prognosis in ICU are the use of norepinephrine and epinephrine. Furthermore, factors associated with in-hospital poor outcome in multivariate analysis were a number of organ failure associated with PE ≥ 3.
Moreover, comparison between patients with and without pe showed that predictive factors of pe are: acute medical illness, the presence of meningeal hemorrhage, the presence of spine fracture, hypoxemia with PaO2/FiO2 ratio <300 and the absence of pharmacological prevention of venous thromboembolism.
Despite the high frequency of DVT in critically ill patients, symptomatic PE remains not frequently observed, because systematic screening is not performed. Pulmonary embolism is associated with a high ICU and in-hospital mortality rate. Predictive factors of PE are acute medical illness, the presence of meningeal hemorrhage, the presence of spine fracture, hypoxemia with PaO2/FiO2 < 300 and the absence of pharmacological prevention of venous thromboembolism.
PMCID: PMC2883205  PMID: 20582175
ICU; predictive factors; prophylactic anticoagulation; pulmonary embolism
2.  Estimation of optic nerve sheath diameter on an initial brain computed tomography scan can contribute prognostic information in traumatic brain injury patients 
Critical Care  2013;17(2):R61.
The aim of this study was to evaluate the prognostic value of optic nerve sheath diameter (ONSD) measured on the initial brain computed tomography (CT) scan for intensive care unit (ICU) mortality in severe traumatic brain injury (TBI) patients.
A prospective observational study of all severe TBI patients admitted to a neurosurgical ICU (over a 10-month period). Demographic and clinical data and brain CT scan results were recorded. ONSD for each eye was measured on the initial CT scan. The group of ICU survivors was compared to non-survivors. Glasgow Outcome Scale (GOS) was evaluated six months after ICU discharge.
Seventy-seven patients were included (age: 43 ± 18; 81% males; mean Injury Severity Score: 35 ± 15; ICU mortality: 28.5% (n = 22)). Mean ONSD on the initial brain CT scan was 7.8 ± 0.1 mm in non-survivors vs. 6.8 ± 0.1 mm in survivors (P < 0.001). The operative value of ONSD was a good predictor of mortality (area under the curve: 0.805). An ONSD cutoff ≥ 7.3 had a sensitivity of 86.4% and a specificity of 74.6% and was independently associated with mortality in this population (adjusted odds ratio 95% confidence interval: 22.7 (3.2 to 159.6), P = 0.002). There was a relationship between initial ONSD values and six-month GOS (P = 0.03).
ONSD measured on the initial brain CT scan is independently associated with ICU mortality rate (when ≥ 7.3 mm) in severe TBI patients.
PMCID: PMC3672708  PMID: 23536993
3.  Acute respiratory failure secondary to chronic obstructive pulmonary disease treated in the intensive care unit: a long term follow up study 
Thorax  2002;57(1):29-33.
Background: Traditionally, patients with acute respiratory failure due to chronic obstructive pulmonary disease (COPD) admitted to the intensive care unit (ICU) are believed to have a poor outcome. A study was undertaken to explore both hospital and long term outcome in this group and to identify clinical predictors.
Methods: A retrospective review was carried out of consecutive admissions to a tertiary referral ICU over a 6 year period. This group was then followed prospectively for a minimum of 3 years following ICU admission.
Results: A total of 74 patients were admitted to the ICU with acute respiratory failure due to COPD during the study period. Mean forced expiratory volume in 1 second (FEV1) was 0.74 (0.34) l. Eighty five per cent of the group underwent invasive mechanical ventilation for a median of 2 days (range 1–17). The median duration of stay in the ICU was 3 days (range 2–17). Survival to hospital discharge was 79.7%. Admission arterial carbon dioxide tension (PaCO2) and APACHE II score were independent predictors of hospital mortality on multiple regression analysis. Mortality at 6 months, 1, 2, and 3 years was 40.5%, 48.6%, 58.1%, and 63.5%, respectively. There were no independent predictors of mortality in the long term.
Conclusions: Despite the need for invasive mechanical ventilation in most of the study group, good early survival was observed. Mortality in the long term was significant but acceptable, given the degree of chronic respiratory impairment of the group.
PMCID: PMC1746171  PMID: 11809986
4.  Outcome of patients with pulmonary embolism admitted to the intensive care unit 
Annals of Thoracic Medicine  2009;4(1):13-16.
Pulmonary embolism (PE) is an important cause of in-hospital mortality. Many patients are admitted to the intensive care unit (ICU) either due to hemodynamic instability or severe hypoxemia. Few reports have addressed the outcome of patients with PE; however, none were from ICUs in the Middle East.
To describe the demographics, clinical presentation, risk factors and outcome of patients with PE admitted to the medical ICU and to identify possible factors associated with poor prognosis.
Data were collected retrospectively by reviewing the records of patients admitted to the medical ICU with primary diagnosis of PE between January 2001 and June 2007. Demographic, clinical, radiological and therapeutic data were collected on admission to ICU.
Fifty-six patients (43% females) with PE were admitted to the ICU during the study period. Their mean age was 40.6 ± 10.6 years. Seven patients (12.5%) had massive PE with hemodynamic instability and 15 (26.8%) had submassive PE. The remaining patients were admitted due to severe hypoxemia. Recent surgery followed by obesity were the most common risk factors (55.4 and 28.6%, respectively). Four patients with massive PE received thrombolysis because the remaining three had absolute contraindications. Fatal gastrointestinal bleeding occurred in one patient post thrombolysis. Additionally, two patients with massive PE and five with submassive PE died within 72 h of admission to the ICU, resulting in an overall mortality rate of 14%. Nonsurvivors were older and had a higher prevalence of immobility and cerebrovascular diseases compared with survivors.
The mortality rate of patients with PE admitted to the ICU in our center was comparable to other published studies. Older age, immobility as well as coexistent cerebrovascular diseases were associated with a worse outcome.
PMCID: PMC2700473  PMID: 19561916
Intensive care unit; pulmonary embolism; thrombolytic agents
5.  The relation between the incidence of hypernatremia and mortality in patients with severe traumatic brain injury 
Critical Care  2009;13(4):R110.
The study was aimed at verifying whether the occurrence of hypernatremia during the intensive care unit (ICU) stay increases the risk of death in patients with severe traumatic brain injury (TBI). We performed a retrospective study on a prospectively collected database including all patients consecutively admitted over a 3-year period with a diagnosis of TBI (post-resuscitation Glasgow Coma Score ≤ 8) to a general/neurotrauma ICU of a university hospital, providing critical care services in a catchment area of about 1,200,000 inhabitants.
Demographic, clinical, and ICU laboratory data were prospectively collected; serum sodium was assessed an average of three times per day. Hypernatremia was defined as two daily values of serum sodium above 145 mmol/l. The major outcome was death in the ICU after 14 days. Cox proportional-hazards regression models were used, with time-dependent variates designed to reflect exposure over time during the ICU stay: hypernatremia, desmopressin acetate (DDAVP) administration as a surrogate marker for the presence of central diabetes insipidus, and urinary output. The same models were adjusted for potential confounding factors.
We included in the study 130 TBI patients (mean age 52 years (standard deviation 23); males 74%; median Glasgow Coma Score 3 (range 3 to 8); mean Simplified Acute Physiology Score II 50 (standard deviation 15)); all were mechanically ventilated; 35 (26.9%) died within 14 days after ICU admission. Hypernatremia was detected in 51.5% of the patients and in 15.9% of the 1,103 patient-day ICU follow-up. In most instances hypernatremia was mild (mean 150 mmol/l, interquartile range 148 to 152). The occurrence of hypernatremia was highest (P = 0.003) in patients with suspected central diabetes insipidus (25/130, 19.2%), a condition that was associated with increased severity of brain injury and ICU mortality. After adjustment for the baseline risk, the incidence of hypernatremia over the course of the ICU stay was significantly related with increased mortality (hazard ratio 3.00 (95% confidence interval: 1.34 to 6.51; P = 0.003)). However, DDAVP use modified this relation (P = 0.06), hypernatremia providing no additional prognostic information in the instances of suspected central diabetes insipidus.
Mild hypernatremia is associated with an increased risk of death in patients with severe TBI. In a proportion of the patients the association between hypernatremia and death is accounted for by the presence of central diabetes insipidus.
PMCID: PMC2750153  PMID: 19583864
6.  Intensive Care Unit-Acquired Bacteremia in Mechanically Ventilated Patients: Clinical Features and Outcomes 
PLoS ONE  2013;8(12):e83298.
Intensive care unit (ICU)-acquired bacteremia (IAB) is associated with high medical expenditure and mortality. Mechanically ventilated patients represent one third of all patients admitted to ICU, but the clinical features and outcomes in mechanically ventilated patients who develop IAB remain unknown. We conducted a 3-year retrospective observational cohort study, and 1,453 patients who received mechanical ventilation on ICU admission were enrolled. Among patients enrolled, 126 patients who had developed IAB ≧48 hours after ICU admission were identified. The study patients were divided into IAB and no IAB groups, and clinical characteristics of IAB based on specific bacterial species were further analyzed. The multivariate Cox regression analysis showed that ventilator support for chronic obstructive pulmonary disease and congestive heart failure, and patients admitted from nursing home were the independent risk factors for developing IAB. Patients with IAB were significantly associated with longer length of ICU stay, prolonged ventilator use, lower rate of successful weaning, and higher rate of ventilator dependence and ICU mortality as compared to those without IAB. IAB was the independent risk factor for ICU mortality (HR, 1.510, 95% CI 1.054–1.123; p = 0.010). The clinical characteristics of IAB related to specific bacterial species included IAB due to Pseudomonas aeruginosa being likely polymicrobial, lung source and prior antibiotic use; Escherichia coli developing earlier and from urinary tract source; methicillin-resistant Staphylococcus aureus related to central venous catheter and multiple sets of positive hemoculture; and Elizabethkingia meningoseptica significantly associated with delayed/inappropriate antibiotic treatment. In summary, IAB was significantly associated with poor patient outcomes in mechanically ventilated ICU patients. The clinical features related to IAB and clinical characteristics of IAB based on specific bacterial species identified in our study may be utilized to refine the management of IAB.
PMCID: PMC3871544  PMID: 24376683
7.  Tuberculosis in the intensive care unit: A retrospective descriptive cohort study with determination of a predictive fatality score 
Despite effective treatments, tuberculosis-related mortality remains high among patients requiring admission to the intensive care unit (ICU).
To determine prognostic factors of death in tuberculosis patients admitted to the ICU, and to develop a simple predictive scoring system.
A 10-year, retrospective study of 53 patients admitted consecutively to the Hôpitaux de Paris, Hôpital Lariboisière (Paris, France) ICU with confirmed tuberculosis, was conducted. A multivariate analysis was performed to identify risk factors for death. A predictive fatality score was determined.
Diagnoses included pulmonary tuberculosis (96%) and tuberculous encephalomeningitis (26%). Patients required mechanical ventilation (45%) and vasopressor infusion (28%) on admission. Twenty patients (38%) died, related to direct tuberculosis-induced organ failure (n=5), pulmonary bacterial coinfections (n=14) and pulmonary embolism (n=1). Using a multivariate analysis, three independent factors on ICU admission were predictive of fatality: miliary pulmonary tuberculosis (OR 9.04 [95% CI 1.25 to 65.30]), mechanical ventilation (OR 11.36 [95% CI 1.55 to 83.48]) and vasopressor requirement (OR 8.45 [95% CI 1.29 to 55.18]). A score generated by summing these three independent variables was effective at predicting fatality with an area under the ROC curve of 0.92 (95% CI 0.85 to 0.98).
Fatalities remain high in patients admitted to the ICU with tuberculosis. Miliary pulmonary tuberculosis, mechanical ventilation and vasopressor requirement on admission were predictive of death.
PMCID: PMC3597393  PMID: 24294270
Death; Intensive care unit; Mycobacterium tuberculosis; Miliary; Predictive factor; Tuberculosis
8.  Early tracheostomy in intensive care trauma patients improves resource utilization: a cohort study and literature review 
Critical Care  2004;8(5):R347-R352.
Despite the integral role played by tracheostomy in the management of trauma patients admitted to intensive care units (ICUs), its timing remains subject to considerable practice variation. The purpose of this study is to examine the impact of early tracheostomy on the duration of mechanical ventilation, ICU length of stay, and outcomes in trauma ICU patients.
The following data were obtained from a prospective ICU database containing information on all trauma patients who received tracheostomy over a 5-year period: demographics, Acute Physiology and Chronic Health Evaluation II score, Simplified Acute Physiology Score II, Glasgow Coma Scale score, Injury Severity Score, type of injuries, ICU and hospital outcomes, ICU and hospital length of stay (LOS), and the type of tracheostomy procedure (percutaneous versus surgical). Tracheostomy was considered early if it was performed by day 7 of mechanical ventilation. We compared the duration of mechanical ventilation, ICU LOS and outcome between early and late tracheostomy patients. Multivariate analysis was performed to assess the impact of tracheostomy timing on ICU stay.
Of 653 trauma ICU patients, 136 (21%) required tracheostomies, 29 of whom were early and 107 were late. Age, sex, Acute Physiology and Chronic Health Evaluation II score, Simplified Acute Physiology Score II and Injury Severity Score were not different between the two groups. Patients with early tracheostomy were more likely to have maxillofacial injuries and to have lower Glasgow Coma Scale score. Duration of mechanical ventilation was significantly shorter with early tracheostomy (mean ± standard error: 9.6 ± 1.2 days versus 18.7 ± 1.3 days; P < 0.0001). Similarly, ICU LOS was significantly shorter (10.9 ± 1.2 days versus 21.0 ± 1.3 days; P < 0.0001). Following tracheostomy, patients were discharged from the ICU after comparable periods in both groups (4.9 ± 1.2 days versus 4.9 ± 1.1 days; not significant). ICU and hospital mortality rates were similar. Using multivariate analysis, late tracheostomy was an independent predictor of prolonged ICU stay (>14 days).
Early tracheostomy in trauma ICU patients is associated with shorter duration of mechanical ventilation and ICU LOS, without affecting ICU or hospital outcome. Adopting a standardized strategy of early tracheostomy in appropriately selected patients may help in reducing unnecessary resource utilization.
PMCID: PMC1065024  PMID: 15469579
intensive care; mechanical ventilation; resource utilization; Saudi Arabia; trauma; tracheostomy; weaning
9.  Predictors of Posttraumatic Stress Disorder and Return to Usual Major Activity in Traumatically Injured Intensive Care Unit Survivors 
General hospital psychiatry  2009;31(5):428-435.
To assess intensive care unit (ICU)/acute care service-delivery characteristics and pre-ICU factors as predictors of posttraumatic stress disorder (PTSD) and return to usual major activity after ICU admission for trauma.
Data from the National Study on the Costs and Outcomes of Trauma was used to evaluate a prospective cohort of 1,906 ICU survivors. We assessed PTSD with the PTSD Checklist. Regression analyses ascertained associations between ICU/acute care service-delivery characteristics, pre-ICU factors, early post-ICU distress, and 12-month PTSD and return to usual activity, while controlling for clinical and demographic characteristics.
Approximately 25% of ICU survivors had symptoms suggestive of PTSD. Increased early post-ICU distress predicted both PTSD and diminished usual major activity. Pulmonary artery catheter insertion (Risk Ratio (RR) 1.28, 95% Confidence Interval (95%CI) (1.05-1.57), p=0.01) and pre-ICU depression (RR 1.23, 95%CI (1.02-1.49), p=0.03) were associated with PTSD. Longer ICU lengths of stay (RR 1.21, 95%CI (1.03-1.44), p=0.02) and tracheostomy (RR 1.29, 95%CI (1.05-1.59), p=0.01) were associated with diminished usual activity. Greater pre-existing medical co-morbidities were associated with PTSD and limited return to usual activity.
Easily identifiable risk factors including ICU/acute care service-delivery characteristics and early post-ICU distress were associated with increased risk of PTSD and limitations in return to usual major activity. Future investigations could develop early screening interventions in acute care settings targeting these risk factors, facilitating appropriate treatments.
PMCID: PMC2732585  PMID: 19703636
stress disorder; posttraumatic; critical care; intensive care unit; risk factors; outcome assessment (health care)
10.  Investigating risk factors for psychological morbidity three months after intensive care: a prospective cohort study 
Critical Care  2012;16(5):R192.
There is growing evidence of poor mental health and quality of life among survivors of intensive care. However, it is not yet clear to what extent the trauma of life-threatening illness, associated drugs and treatments, or patients' psychological reactions during intensive care contribute to poor psychosocial outcomes. Our aim was to investigate the relative contributions of a broader set of risk factors and outcomes than had previously been considered in a single study.
A prospective cohort study of 157 mixed-diagnosis highest acuity patients was conducted in a large general intensive care unit (ICU). Data on four groups of risk factors (clinical, acute psychological, socio-demographic and chronic health) were collected during ICU admissions. Post-traumatic stress disorder (PTSD), depression, anxiety and quality of life were assessed using validated questionnaires at three months (n =100). Multivariable analysis was used.
At follow-up, 55% of patients had psychological morbidity: 27.1% (95% CI: 18.3%, 35.9%) had probable PTSD; 46.3% (95% CI: 36.5%, 56.1%) probable depression, and 44.4% (95% CI: 34.6%, 54.2%) anxiety. The strongest clinical risk factor for PTSD was longer duration of sedation (regression coefficient = 0.69 points (95% CI: 0.12, 1.27) per day, scale = 0 to 51). There was a strong association between depression at three months and receiving benzodiazepines in the ICU (mean difference between groups = 6.73 points (95% CI: 1.42, 12.06), scale = 0 to 60). Use of inotropes or vasopressors was correlated with anxiety, and corticosteroids with better physical quality of life.
The effects of these clinical risk factors on outcomes were mediated (partially explained) by acute psychological reactions in the ICU. In fully adjusted models, the strongest independent risk factors for PTSD were mood in ICU, intrusive memories in ICU and psychological history. ICU mood, psychological history and socio-economic position were the strongest risk factors for depression.
Strikingly high rates of psychological morbidity were found in this cohort of intensive care survivors. The study's key finding was that acute psychological reactions in the ICU were the strongest modifiable risk factors for developing mental illness in the future. The observation that use of different ICU drugs correlated with different psychological outcomes merits further investigation. These findings suggest that psychological interventions, along with pharmacological modifications, could help reduce poor outcomes, including PTSD, after intensive care.
PMCID: PMC3682294  PMID: 23068129
11.  Intensive care unit delirium is an independent predictor of longer hospital stay: a prospective analysis of 261 non-ventilated patients 
Critical Care  2005;9(4):R375-R381.
Delirium occurs in most ventilated patients and is independently associated with more deaths, longer stay, and higher cost. Guidelines recommend monitoring of delirium in all intensive care unit (ICU) patients, though few data exist in non-ventilated patients. The study objective was to determine the relationship between delirium and outcomes among non-ventilated ICU patients.
A prospective cohort investigation of 261 consecutively admitted medical ICU patients not requiring invasive mechanical ventilation during hospitalization at a tertiary-care, university-based hospital between February 2002 and January 2003. ICU nursing staff assessed delirium and level of consciousness at least twice per day using the Confusion Assessment Method for the ICU (CAM-ICU) and Richmond Agitation-Sedation Scale (RASS). Cox regression with time-varying covariates was used to determine the independent relationship between delirium and clinical outcomes.
Of 261 patients, 125 (48%) experienced at least one episode of delirium. Patients who experienced delirium were older (mean ± SD: 56 ± 18 versus 49 ± 17 years; p = 0.002) and more severely ill as measured by Acute Physiology and Chronic Health Evaluation II (APACHE II) scores (median 15, interquartile range (IQR) 10–21 versus 11, IQR 6–16; p < 0.001) compared to their non-delirious counterparts. Patients who experienced delirium had a 29% greater risk of remaining in the ICU on any given day (compared to patients who never developed delirium) even after adjusting for age, gender, race, Charlson co-morbidity score, APACHE II score, and coma (hazard ratio (HR) 1.29; 95% confidence interval (CI) 0.98–1.69, p = 0.07). Similarly, patients who experienced delirium had a 41% greater risk of remaining in the hospital after adjusting for the same covariates (HR 1.41; 95% CI 1.05–1.89, p = 0.023). Hospital mortality was higher among patients who developed delirium (24/125, 19%) versus patients who never developed delirium (8/135, 6%), p = 0.002; however, time to in-hospital death was not significant the adjusted (HR 1.27; 95% CI 0.55–2.98, p = 0.58).
Delirium occurred in nearly half of the non-ventilated ICU patients in this cohort. Even after adjustment for relevant covariates, delirium was found to be an independent predictor of longer hospital stay.
PMCID: PMC1269454  PMID: 16137350
12.  Acute kidney injury in severe trauma assessed by RIFLE criteria: a common feature without implications on mortality? 
Acute kidney injury (AKI) has been hard to assess due to the lack of standard definitions. Recently, the Risk, Injury, Failure, Loss and End-Stage Kidney (RIFLE) classification has been proposed to classify AKI in a number of clinical settings. This study aims to estimate the frequency and levels of severity of AKI and to study its association with patient mortality and length of stay (LOS) in a cohort of trauma patients needing intensive care.
Between August 2001 and September 2007, 436 trauma patients consecutively admitted to a general intensive care unit (ICU), were assessed using the RIFLE criteria. Demographic data, characteristics of injury, and severity of trauma variables were also collected.
Half of all ICU trauma admissions had AKI, which corresponded to the group of patients with a significantly higher severity of trauma. Among patients with AKI, RIFLE class R (Risk) comprised 47%, while I (Injury) and F (Failure) were, 36% and 17%, respectively. None of these patients required renal replacement therapy. No significant differences were found among these three AKI classes in relation to patient's age, gender, type and mechanism of injury, severity of trauma or mortality. Nevertheless, increasing severity of acute renal injury was associated with a longer ICU stay.
AKI is a common feature among trauma patients requiring intensive care. Although the development of AKI is associated with an increased LOS it does not appear to influence patient mortality.
PMCID: PMC2823674  PMID: 20051113
13.  The association between statin therapy during intensive care unit stay and the incidence of venous thromboembolism: a propensity score-adjusted analysis 
Studies have shown that statins have pleiotropic effects on inflammation and coagulation; which may affect the risk of developing venous thromboembolism (VTE). The objective of this study was to evaluate the association between statin therapy during intensive care unit (ICU) stay and the incidence of VTE in critically ill patients.
This was a post-hoc analysis of a prospective observational cohort study of patients admitted to the intensive care unit between July 2006 and January 2008 at a tertiary care medical center. The primary endpoint was the incidence of VTE during ICU stay up to 30 days. Secondary endpoint was overall 30-day hospital mortality. Propensity score was used to adjust for clinically and statistically relevant variables.
Of the 798 patients included in the original study, 123 patients (15.4%) received statins during their ICU stay. Survival analysis for VTE risk showed that statin therapy was not associated with a reduction of VTE incidence (crude hazard ratio (HR) 0.66, 95% confidence interval (CI) 0.28-1.54, P = 0.33 and adjusted HR 0.63, 95% CI 0.25-1.57, P = 0.33). Furthermore, survival analysis for hospital mortality showed that statin therapy was not associated with a reduction in hospital mortality (crude HR 1.26, 95% CI 0.95-1.68, P = 0.10 and adjusted HR 0.98, 95% CI 0.72-1.36, P = 0.94).
Our study showed no statistically significant association between statin therapy and VTE risk in critically ill patients. This question needs to be further studied in randomized control trials.
PMCID: PMC3829807  PMID: 24206781
Venous thromboembolism; Outcome assessment; Intensive care; Hospital mortality; Propensity scores; Statins
14.  Impact of a surgical intensivist on the clinical outcomes of patients admitted to a surgical intensive care unit 
An intensivist is a key factor in the mortality of patients admitted to the intensive care unit (ICU). The aim of this study was to evaluate the effect of an intensivist on clinical outcomes of patients admitted to a surgical ICU.
During the study period, the surgical ICU was converted from an open ICU to an intensivist-directed ICU managed by an intensivist who was board certified in both general surgery and critical care medicine. We compared consecutive patients admitted to the surgical ICU before and after implementing the intensivist-directed care. The primary outcome was ICU mortality, and secondary outcomes were hospital mortality, 90-day mortality, length of hospital stay, ICU-free days, ventilator-free days, and ICU readmission rate.
A total of 441 patients were included in this study: 188 before implementation of the intensivist and 253 after implementation. Clinical characteristics were not different between the two groups. ICU mortality decreased from 11.7% to 6.3% (P = 0.047) after implementation, and 90-day mortality also decreased significantly (P = 0.008). The adjusted hazard ratio of the intensivist for ICU mortality was 0.43 (95% confidence interval, 0.22-0.87; P = 0.020). ICU-free days (P = 0.013) and the hospital length of stay (P = 0.032) were significantly improved after implementing the intensivist-directed care. Before implementation period, 16.0% of patients were readmitted, compared with only 9.9% after implementation (P = 0.05).
Implementing intensivist-directed care in the surgical ICU was associated with significant improvements in ICU mortality and significant clinical outcomes.
PMCID: PMC4062451  PMID: 24949324
Intensive care units; Critical illness; Specialization; General surgery; Mortality
15.  Survival Analysis of 314 Episodes of Sepsis in Medical Intensive Care Unit in University Hospital: Impact of Intensive Care Unit Performance and Antimicrobial Therapy 
Croatian medical journal  2006;47(3):385-397.
To evaluate epidemiology of sepsis in medical intensive care unit (ICU) in an university hospital, and the impact of ICU performance and appropriate empirical antibiotic therapy on survival of septic patients.
Observational, partly prospective study conducted over 6 years assessed all patients meeting the criteria for sepsis at ICU admission at the Sisters of Mercy Hospital in Zagreb. Clinical presentation of sepsis was defined according to 2001 International Sepsis Definitions Conference. Demographic data, admission category, source of infection, severity of sepsis, ICU or hospital stay and outcome, ICU performance, and appropriateness of empirical antibiotic therapy were analyzed.
The analysis included 314 of 5022 (6.3%) patients admitted to ICU during the study period. There were 176 (56.1%) ICU survivors. At the ICU admission, sepsis was present in 100 (31.8%), severe sepsis in 89 (28.6%), and septic shock in 125 (39.8%) patients with mortality rates 17%, 33.7%, 72.1%, respectively. During ICU treatment, 244 (77.7%) patients developed at least one organ dysfunction syndrome. Of 138 (43.9%) patients who met the criteria for septic shock, 107 (75.4) were non-survivors (P<0.001). Factors associated with in-ICU mortality were acquisition of sepsis at another department (odds ratio [OR] 0.06; 95% confidence interval [CI], 0.02-0.19), winter season (OR 0.42; 0.20-0.89), limited mobility (OR 0.28; 0.14-0.59), ICU length of stay (OR 0.82; 0.75-0.91), sepsis-related organ failure assessment (SOFA) score on day 1 (OR 0.80; 0.72-0.89), history of global heart failure (OR 0.33; 0.16-0.67), chronic obstructive pulmonary disease (COPD)-connected respiratory failure (OR 0.50; 0.27-0.93), septic shock present during ICU treatment (OR 0.03; 0.01-0.10), and negative blood culture at admission (OR 2.60; 0.81-6.23). Microbiological documentation of sepsis was obtained in 235 (74.8%) patients. Urinary tract infections were present in 168 (53.5%) patients, followed by skin or soft tissue infections in 58 (18.5%) and lower respiratory tract infections in 44 (14.0%) patients. Lower respiratory tract as focus of sepsis was connected with worse outcome (P<0.001). Empirical antibiotic treatment was considered adequate in 107 (60.8%) survivors and 42 (30.4%) non-survivors. Patients treated with adequate empirical antibiotic therapy had significantly higher survival time in hospital (log-rank, P = 0.001).
The mortality rate of sepsis was unacceptably high. The odds for poor outcome increased with acquisition of sepsis at another department, winter season, limited mobility, higher SOFA score on day 1, history of chronic global heart failure, COPD-connected respiratory failure, and septic shock present during ICU treatment, whereas longer ICU length of stay, positive blood culture, and adequate empirical antibiotic therapy were protective factors.
PMCID: PMC2080418  PMID: 16758516
16.  Factors influencing physical functional status in intensive care unit survivors two years after discharge 
BMC Anesthesiology  2013;13:11.
Studies suggest that in patients admitted to intensive care units (ICU), physical functional status (PFS) improves over time, but does not return to the same level as before ICU admission. The goal of this study was to assess physical functional status two years after discharge from an ICU and to determine factors influencing physical status in this population.
The study reviewed all patients admitted to two non-trauma ICUs during a one-year period and included patients with age ≥ 18 yrs, ICU stay ≥ 24 h, and who were alive 24 months after ICU discharge. To assess PFS, Karnofsky Performance Status Scale scores and Lawton-Instrumental Activities of Daily Living (IADL) scores at ICU admission (K-ICU and L-ICU) were compared to the scores at the end of 24 months (K-24mo and L-24mo). Data at 24 months were obtained through telephone interviews.
A total of 1,216 patients were eligible for the study. Twenty-four months after ICU discharge, 499 (41.6%) were alive, agreed to answer the interview, and had all hospital data available. PFS (K-ICU: 86.6 ± 13.8 vs. K-24mo: 77.1 ± 19.6, p < 0.001) and IADL (L-ICU: 27.0 ± 11.7 vs. L-24mo: 22.5 ± 11.5, p < 0.001) declined in patients with medical and unplanned surgical admissions. Most strikingly, the level of dependency increased in neurological patients (K-ICU: 86 ± 12 vs. K-24mo: 64 ± 21, relative risk [RR] 2.6, 95% CI, 1.8–3.6, p < 0.001) and trauma patients (K-ICU: 99 ± 2 vs. K-24mo: 83 ± 21, RR 2.7, 95% CI, 1.6–4.6, p < 0.001). The largest reduction in the ability to perform ADL occurred in neurological patients (L-ICU: 27 ± 7 vs. L-24mo: 15 ± 12, RR 3.3, 95% CI, 2.3–4.6 p < 0.001), trauma patients (L-ICU: 32 ± 0 vs. L-24mo: 25 ± 11, RR 2.8, 95% CI, 1.5–5.1, p < 0.001), patients aged ≥ 65 years (RR 1.4, 95% CI, 1.07–1.86, p = 0.01) and those who received mechanical ventilation for ≥ 8 days (RR 1.48, 95% CI, 1.02–2.15, p = 0.03).
Twenty-four months after ICU discharge, PFS was significantly poorer in patients with neurological injury, trauma, age ≥ 65 tears, and mechanical ventilation ≥ 8 days. Future studies should focus on the relationship between PFS and health-related quality of life in this population.
PMCID: PMC3701489  PMID: 23773812
Activities of Daily Living; Physical Functional Status; Intensive Care Unit; Long-term Care; Mortality; Prognosis; Health-related Quality of Life
17.  Isolated traumatic head injury in children: Analysis of 276 observations 
To determine predictive factors of mortality among children after isolated traumatic brain injury.
Materials and Methods:
In this retrospective study, we included all consecutive children with isolated traumatic brain injury admitted to the 22-bed intensive care unit (ICU) of Habib Bourguiba University Hospital (Sfax, Tunisia). Basic demographic, clinical, biochemical, and radiological data were recorded on admission and during ICU stay.
There were 276 patients with 196 boys (71%) and 80 girls, with a mean age of 6.7 ± 3.8 years. The main cause of trauma was road traffic accident (58.3%). Mean Glasgow Coma Scale score was 8 ± 2, Mean Injury Severity Score (ISS) was 23.3 ± 5.9, Mean Pediatric Trauma Score (PTS) was 4.8 ± 2.3, and Mean Pediatric Risk of Mortality (PRISM) was 10.8 ± 8. A total of 259 children required mechanical ventilation. Forty-eight children (17.4%) died. Multivariate analysis showed that factors associated with a poor prognosis were PRISM > 24 (OR: 10.98), neurovegetative disorder (OR: 7.1), meningeal hemorrhage (OR: 2.74), and lesion type VI according to Marshall tomographic grading (OR: 13.26).
In Tunisia, head injury is a frequent cause of hospital admission and is most often due to road traffic injuries. Short-term prognosis is influenced by demographic, clinical, radiological, and biochemical factors. The need to put preventive measures in place is underscored.
PMCID: PMC3097575  PMID: 21633564
Acute head injury; children; intensive care unit; motor-vehicle crash; prognosis; trauma
18.  Risk factors for post-traumatic stress disorder symptoms following critical illness requiring mechanical ventilation: a prospective cohort study 
Critical Care  2007;11(1):R28.
Post-traumatic stress disorder (PTSD) has been identified in a significant portion of intensive care unit (ICU) survivors. We sought to identify factors associated with PTSD symptoms in patients following critical illness requiring mechanical ventilation.
Forty-three patients who were mechanically ventilated in the medical and coronary ICUs of a university-based medical center were prospectively followed during their ICU admission for delirium with the Confusion Assessment Method for the ICU. Additionally, demographic data were obtained and severity of illness was measured with the APACHE II (Acute Physiology and Chronic Health Evaluation II) score. Six months after discharge, patients were screened for PTSD symptoms by means of the Post-Traumatic Stress Syndrome 10-Questions Inventory (PTSS-10). Multiple linear regression was used to assess the association of potential risk factors with PTSS-10 scores.
At follow-up, six (14%) patients had high levels of PTSD symptoms. On multivariable analysis, women had higher PTSS-10 scores than men by a margin of 7.36 points (95% confidence interval [CI] 1.62 to 13.11; p = 0.02). Also, high levels of PTSD symptoms were less likely to occur in older patients, with symptoms declining after age 50 (p = 0.04). Finally, although causation cannot be assumed, the total dose of lorazepam received during the ICU stay was associated with PTSD symptoms; for every 10-mg increase in cumulative lorazepam dose, PTSS-10 score increased by 0.39 (95% CI 0.17 to 0.61; p = 0.04). No significant relationship was noted between severity of illness and PTSD symptoms or duration of delirium and PTSD symptoms.
High levels of PTSD symptoms occurred in 14% of patients six months following critical illness necessitating mechanical ventilation, and these symptoms were most likely to occur in female patients and those receiving high doses of lorazepam. High levels of PTSD symptoms were less likely to occur in older patients.
PMCID: PMC2151865  PMID: 17316452
19.  Detecting myocardial infarction in critical illness using screening troponin measurements and ECG recordings 
Critical Care  2008;12(2):R36.
To use screening cardiac troponin (cTn) measurements and electrocardiograms (ECGs) to determine the incidence of elevated cTn and of myocardial infarction (MI) in patients admitted to the intensive care unit (ICU), and to assess whether these findings influence prognosis. This is a prospective screening study.
Materials and methods
We enrolled consecutive patients admitted to a general medical-surgical ICU over two months. All patients underwent systematic screening with cTn measurements and ECGs on ICU admission, then daily for the first week in ICU, alternate days for up to one month and weekly thereafter until ICU death or discharge, for a maximum of two months. Patients without these investigations ordered during routine clinical care underwent screening for study purposes but these results were unavailable to the ICU team. After the study, all ECGs were interpreted independently in duplicate for ischaemic changes meeting ESC/ACC criteria supporting a diagnosis of MI. Patients were classified as having MI (elevated cTn and ECG evidence supporting diagnosis of MI), elevated cTn only (no ECG evidence supporting diagnosis of MI), or no cTn elevation.
One hundred and three patients were admitted to the ICU on 112 occasions. Overall, 37 patients (35.9 per cent) had an MI, 15 patients (14.6 per cent) had an elevated cTn only and 51 patients (49.5 per cent) had no cTn elevation. Patients with MI had longer duration of mechanical ventilation (p < 0.0001), longer ICU stay (p = 0.001), higher ICU mortality (p < 0.0001) and higher hospital mortality (p < 0.0001) compared with those with no cTn elevation. Patients with elevated cTn had higher hospital mortality (p = 0.001) than patients without cTn elevation. Elevated cTn was associated with increased hospital mortality (odds ratio 27.3, 95 per cent CI 1.7 – 449.4), after adjusting for APACHE II score, MI and advanced life support. The ICU team diagnosed 18 patients (17.5 per cent) as having MI on clinical grounds; four of these patients did not have MI by adjudication. Thus, screening detected an additional 23 MIs not diagnosed in practice, reflecting 62.2 per cent of MIs ultimately diagnosed. Patients with MI diagnosed by the ICU team had similar outcomes to patients with MI detected by screening alone.
Systematic screening detected elevated cTn measurements and MI in more patients than were found in routine practice. Elevated cTn was an independent predictor of hospital mortality. Further research is needed to evaluate whether screening and subsequent treatment of these patients reduces mortality.
PMCID: PMC2447557  PMID: 18318915
20.  Vasculitic emergencies in the intensive care unit: a special focus on cryoglobulinemic vasculitis 
Vasculitis is characterized by the infiltration of vessel walls by inflammatory leukocytes with reactive damage and subsequent loss of vessel integrity. The clinical course of systemic vasculitis may be punctuated by acute life-threatening manifestations that require intensive care unit (ICU) admission. Furthermore, the diagnosis may be established in the ICU after admission for a severe inaugural symptom, mostly acute respiratory failure. Among the systemic vasculitides, cryoglobulinemic vasculitis (CV) has been rarely studied in an ICU setting. Severe CV-related complications may involve the kidneys, lungs, heart, gut, and/or central nervous system. The diagnosis of CV in the ICU may be delayed or completely unrecognized. A high level of suspicion is critical to obtain a timely and accurate diagnosis and to initiate appropriate treatment. We describe severe acute manifestations of CV based on six selected patients admitted to our ICU. That all six patients survived suggests the benefit of prompt ICU admission of patients with severe CV.
PMCID: PMC3488028  PMID: 22812447
Cryoglobulinemia; Cryoglobulinemic vasculitis; Acute respiratory failure; Acute kidney injury; Vasculitis; Systemic disease
21.  Prognosis and ICU outcome of systemic vasculitis 
BMC Anesthesiology  2013;13:27.
Systemic vasculitis may cause life threatening complications requiring admission to an intensive care unit (ICU). The aim of this study was to evaluate outcomes of systemic vasculitis patients admitted to the ICU and to identify prognosis factors.
During a ten-year period, records of 31 adult patients with systemic vasculitis admitted to ICUs (median age: 63 y.o, sex ratio M/F: 21/10, SAPS II: 40) were reviewed including clinical and biological parameters, use of mechanical ventilation, catecholamine or/and dialysis support. Mortality was assessed and data were analyzed to identify predictive factors of outcome.
Causes of ICU admissions were active manifestation of vasculitis (n = 19), septic shock (n = 8) and miscellaneous (n = 4). Sixteen patients (52%) died in ICU. By univariate analysis, mortality was associated with higher SOFA (p = 0.006) and SAPS II (p = 0.004) scores. The need for a catecholamine support or/and a renal replacement therapy, and the occurrence of an ARDS significantly worsen the prognosis. By multivariate analysis, only SAPS II (Odd ratio: 1.16, 95% CI [1.01; 1.33]) and BVAS scores (Odd ratio: 1.16, 95% CI = [1.01; 1.34]) were predictive of mortality.
The mortality rate of severe vasculitis requiring an admission to ICU was high. High levels of SAPS II and BVAS scores at admission were predictive of mortality.
PMCID: PMC4016298  PMID: 24083831
Vasculitis; Outcome; Mortality; Intensive care unit; BVAS
22.  Impact of computerized physician order entry (CPOE) system on the outcome of critically ill adult patients: a before-after study 
Computerized physician order entry (CPOE) systems are recommended to improve patient safety and outcomes. However, their effectiveness has been questioned. Our objective was to evaluate the impact of CPOE implementation on the outcome of critically ill patients.
This was an observational before-after study carried out in a 21-bed medical and surgical intensive care unit (ICU) of a tertiary care center. It included all patients admitted to the ICU in the 24 months pre- and 12 months post-CPOE (Misys®) implementation. Data were extracted from a prospectively collected ICU database and included: demographics, Acute Physiology and Chronic Health Evaluation (APACHE) II score, admission diagnosis and comorbid conditions. Outcomes compared in different pre- and post-CPOE periods included: ICU and hospital mortality, duration of mechanical ventilation, and ICU and hospital length of stay. These outcomes were also compared in selected high risk subgroups of patients (age 12-17 years, traumatic brain injury, admission diagnosis of sepsis and admission APACHE II > 23). Multivariate analysis was used to adjust for imbalances in baseline characteristics and selected clinically relevant variables.
There were 1638 and 898 patients admitted to the ICU in the specified pre- and post-CPOE periods, respectively (age = 52 ± 22 vs. 52 ± 21 years, p = 0.74; APACHE II = 24 ± 9 vs. 24 ± 10, p = 0.83). During these periods, there were no differences in ICU (adjusted odds ratio (aOR) 0.98, 95% confidence interval [CI] 0.7-1.3) and in hospital mortality (aOR 1.00, 95% CI 0.8-1.3). CPOE implementation was associated with similar duration of mechanical ventilation and of stay in the ICU and hospital. There was no increased mortality or stay in the high risk subgroups after CPOE implementation.
The implementation of CPOE in an adult medical surgical ICU resulted in no improvement in patient outcomes in the immediate phase and up to 12 months after implementation.
PMCID: PMC3248372  PMID: 22098683
Intensive care unit; critical illness; CPOE; safety management; mortality; morbidity
23.  Role of spiral volumetric computed tomographic scanning in the assessment of patients with clinical suspicion of pulmonary embolism and an abnormal ventilation/perfusion lung scan. 
Thorax  1996;51(1):23-28.
BACKGROUND: A study was carried out to evaluate the potential place of spiral volumetric computed tomography (SVCT) in the diagnostic strategy for pulmonary embolism. METHODS: In a prospective study 249 patients with clinical suspicion of pulmonary embolism were evaluated with various imaging techniques. In all patients a ventilation/perfusion (V/Q) scan was performed. Seventy seven patients with an abnormal V/Q scan underwent SVCT. Pulmonary angiography was then performed in all 42 patients with a non-diagnostic V/Q scan and in three patients with a high probability V/Q scan without emboli on the SVCT scan. Patients with an abnormal perfusion scan also underwent ultrasonography of the legs for the detection of deep vein thrombosis. RESULTS: One hundred and seventy two patients (69%) had a normal V/Q scan. Forty two patients (17%) had a non-diagnostic V/Q scan, and in five of these patients pulmonary emboli were found both by SVCT and pulmonary angiography. In one patient, although SVCT showed no emboli, the angiogram was positive for pulmonary embolism. In one of the 42 patients the SVCT scan showed an embolus which was not confirmed by pulmonary angiography. The other 35 patients showed no sign of emboli. Thirty five patients (14%) had a high probability V/Q scan, and in 32 patients emboli were seen on SVCT images. Two patients had both a negative SVCT scan and a negative pulmonary angiogram. In one who had an inconclusive SVCT scan pulmonary angiography was positive. The sensitivity for pulmonary embolism was 95% and the specificity 97%; the positive and negative predicted values of SVCT were 97% and 97%, respectively. CONCLUSIONS: SVCT is a relatively noninvasive test for pulmonary embolism which is both sensitive and specific and which may serve as an alternative to ventilation scintigraphy and possibly to pulmonary angiography in the diagnostic strategy for pulmonary embolism.
PMCID: PMC472794  PMID: 8658363
24.  Thromboprophylaxis patterns and determinants in critically ill patients: a multicenter audit 
Critical Care  2014;18(2):R82.
Heparin is safe and prevents venous thromboembolism in critical illness. We aimed to determine the guideline concordance for thromboprophylaxis in critically ill patients and its predictors, and to analyze factors associated with the use of low molecular weight heparin (LMWH), as it may be associated with a lower risk of pulmonary embolism and heparin-induced thrombocytopenia without increasing the bleeding risk.
We performed a retrospective audit in 28 North American intensive care units (ICUs), including all consecutive medical-surgical patients admitted in November 2011. We documented ICU thromboprophylaxis and reasons for omission. Guideline concordance was determined by adding days in which patients without contraindications received thromboprophylaxis to days in which patients with contraindications did not receive it, divided by the total number of patient-days. We used multilevel logistic regression including time-varying, center and patient-level covariates to determine the predictors of guideline concordance and use of LMWH.
We enrolled 1,935 patients (62.3 ± 16.7 years, Acute Physiology and Chronic Health Evaluation [APACHE] II score 19.1 ± 8.3). Patients received thromboprophylaxis with unfractionated heparin (UFH) (54.0%) or LMWH (27.6%). Guideline concordance occurred for 95.5% patient-days and was more likely in patients who were sicker (odds ratio (OR) 1.49, 95% confidence interval (CI) 1.17, 1.75 per 10-point increase in APACHE II), heavier (OR 1.32, 95% CI 1.05, 1.65 per 10-m/kg2 increase in body mass index), had cancer (OR 3.22, 95% CI 1.81, 5.72), previous venous thromboembolism (OR 3.94, 95% CI 1.46,10.66), and received mechanical ventilation (OR 1.83, 95% CI 1.32,2.52). Reasons for not receiving thromboprophylaxis were high risk of bleeding (44.5%), current bleeding (16.3%), no reason (12.9%), recent or upcoming invasive procedure (10.2%), nighttime admission or discharge (9.7%), and life-support limitation (6.9%). LMWH was less often administered to sicker patients (OR 0.65, 95% CI 0.48, 0.89 per 10-point increase in APACHE II), surgical patients (OR 0.41, 95% CI 0.24, 0.72), those receiving vasoactive drugs (OR 0.47, 95% CI 0.35, 0.64) or renal replacement therapy (OR 0.10, 95% CI 0.05, 0.23).
Guideline concordance for thromboprophylaxis was high, but LMWH was less commonly used, especially in patients who were sicker, had surgery, or received vasopressors or renal replacement therapy, representing a potential quality improvement target.
PMCID: PMC4057024  PMID: 24766968
25.  Trauma admissions to the Intensive care unit at a reference hospital in Northwestern Tanzania 
Major trauma has been reported to be a major cause of hospitalization and intensive care utilization worldwide and consumes a significant amount of the health care budget. The aim of this study was to describe the characteristics and treatment outcome of major trauma patients admitted into our ICU and to identify predictors of outcome.
Between January 2008 and December 2010, a descriptive prospective study of all trauma admissions to a multidisciplinary intensive care unit (ICU) of Bugando Medical Centre in Northwestern Tanzania was conducted.
A total of 312 cases of major trauma were admitted in the ICU, representing 37.1% of the total ICU admissions. Males outnumbered females by a ratio of 5.5:1. Their median age was 27 years. Trauma admissions were almost exclusively emergencies (95.2%) and came mainly from the Accident and Emergency (60.6%) and Operating room (23.4%). Road traffic crash (RTC) was the most common cause of injuries affecting 70.8% of patients. Two hundred fourteen patients (68.6%) required surgical intervention. The overall ICU length of stay (LOS) for all trauma patients ranged from 1 to 59 days (median = 8 days). The median ICU length of hospital stay (LOS) for survivors and non-survivors were 8 and 5 days respectively. (P = 0.002). Mortality rate was 32.7%. Mortality rate of trauma patients was significantly higher than that of all ICU admissions (32.7% vs. 18.8%, P = 0.0012). According to multivariate logistic regression analysis, multiple injuries, severe head injuries and burns were responsible for a longer mean ICU stay (P < 0.001) whereas admission Glasgow Coma Score < 9, systolic blood pressure < 90 mmHg, injury severity core >16, prolonged duration of loss of consciousness, delayed ICU admission (0.028), the need for ventilatory support and finding of space occupying lesion on computed tomography scan significantly influenced mortality (P < 0.001).
Trauma resulting from road traffic crashes is a leading cause of intensive care utilization in our hospital. Urgent preventive measures targeting at reducing the occurrence of RTCs is necessary to reduce ICU trauma admissions in this region. Improved pre- and in-hospital care of trauma victims will improve the outcome of trauma patients admitted to our ICU.
PMCID: PMC3214823  PMID: 22024353
Intensive care unit; trauma admissions; prevalence; injury characteristics; outcome; Tanzania

Results 1-25 (958066)