PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (933529)

Clipboard (0)
None

Related Articles

1.  Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes 
Nanoscale Research Letters  2013;8(1):532.
In this paper, the potential sensitivity in Kelvin probe force microscopy (KPFM) was investigated in frequency modulation (FM) and heterodyne amplitude modulation (AM) modes. We showed theoretically that the minimum detectable contact potential difference (CPD) in FM-KPFM is higher than in heterodyne AM-KPFM. We experimentally confirmed that the signal-to-noise ratio in FM-KPFM is lower than that in heterodyne AM-KPFM, which is due to the higher minimum detectable CPD dependence in FM-KPFM. We also compared the corrugations in the local contact potential difference on the surface of Ge (001), which shows atomic resolution in heterodyne AM-KPFM. In contrast, atomic resolution cannot be obtained in FM-KPFM under the same experimental conditions. The higher potential resolution in heterodyne AM-KPFM was attributed to the lower crosstalk and higher potential sensitivity between topographic and potential measurements.
doi:10.1186/1556-276X-8-532
PMCID: PMC3895793  PMID: 24350866
Heterodyne amplitude modulation; Frequency modulation; Kelvin probe force microscopy
2.  Observing Optical Plasmons on a Single Nanometer Scale 
Scientific Reports  2014;4:4096.
The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light - matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous potential applications. However, imaging optical plasmonic waves on a single nanometer scale is yet a substantial challenge mainly due to size and energy considerations. Here, for the first time, we use Kelvin Probe Force Microscopy (KPFM) under optical illumination to image and characterize plasmonic modes. We experimentally demonstrate unprecedented spatial resolution and measurement sensitivity both on the order of a single nanometer. By comparing experimentally obtained images with theoretical calculation results, we show that KPFM maps may provide valuable information on the phase of the optical near field. Additionally, we propose a theoretical model for the relation between surface plasmons and the material workfunction measured by KPFM. Our findings provide the path for using KPFM for high resolution measurements of optical plasmons, prompting the scientific frontier towards quantum plasmonic imaging on submolecular scales.
doi:10.1038/srep04096
PMCID: PMC3930893  PMID: 24556874
3.  Kelvin probe force microscopy in liquid using electrochemical force microscopy 
Summary
Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.
doi:10.3762/bjnano.6.19
PMCID: PMC4311590
diffuse charge dynamics; double layer charging; electrochemical force microscopy; electrochemistry; Kelvin probe force microscopy
4.  Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination 
Summary
The most outstanding feature of scanning force microscopy (SFM) is its capability to detect various different short and long range interactions. In particular, magnetic force microscopy (MFM) is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures. It is a usual procedure to separate the topography and the magnetic signal by scanning at a lift distance of 25–50 nm such that the long range tip–sample interactions dominate. Nowadays, MFM is becoming a valuable technique to detect weak magnetic fields arising from low dimensional complex systems such as organic nanomagnets, superparamagnetic nanoparticles, carbon-based materials, etc. In all these cases, the magnetic nanocomponents and the substrate supporting them present quite different electronic behavior, i.e., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force microscopy (KPFM) and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sample.
doi:10.3762/bjnano.2.59
PMCID: PMC3190625  PMID: 22003461
electrostatic interaction; focused electron beam induced deposition; Kelvin probe force microscopy; magnetic force microscopy; magnetic nanostructures
5.  Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy 
Summary
Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning tunneling spectroscopy (STS). On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.
doi:10.3762/bjnano.2.1
PMCID: PMC3045939  PMID: 21977410
aluminum oxide; charge state; contact potential; defects; domain boundaries; dynamic force microscopy; frequency modulation atomic force microscopy; Kelvin probe force microscopy; magnesium oxide; non-contact atomic force microscopy; scanning tunneling microscopy; thin films; work function
6.  Measurement of Mechanical Properties of Cantilever Shaped Materials 
Sensors (Basel, Switzerland)  2008;8(5):3497-3541.
Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate, we use continuum mechanics, which is justified according to the ratio between the cantilever thickness and the grain size of the materials. We will also address other potential applications such as the ageing process of nuclear materials, building materials, and optical fibers, which can be investigated by monitoring their mechanical changes with time. In summary, by virtue of the dynamic response of a miniaturized cantilever shaped material, we present useful measurements of the associated elastic properties.
doi:10.3390/s8053497
PMCID: PMC3675557
Microcantilever; mechanics; ageing; environment; stress; gas; materials; sensor; pressure; temperature
7.  Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy 
Summary
The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d z at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d Δ f at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d z, we predict d Δ f for specific filter settings, a given level of detection-system noise spectral density d z ds and the cantilever-thermal-noise spectral density d z th. We find an excellent agreement between the calculated and measured values for d Δ f. Furthermore, we demonstrate that thermal noise in d Δ f, defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.
doi:10.3762/bjnano.4.4
PMCID: PMC3566860  PMID: 23400758
Cantilever; feedback loop; filter; noncontact atomic force microscopy (NC-AFM); noise
8.  Changes in Plasma Membrane Surface Potential of PC12 Cells as Measured by Kelvin Probe Force Microscopy 
PLoS ONE  2012;7(4):e33849.
The plasma membrane of a cell not only works as a physical barrier but also mediates the signal relay between the extracellular milieu and the cell interior. Various stimulants may cause the redistribution of molecules, like lipids, proteins, and polysaccharides, on the plasma membrane and change the surface potential (Φs). In this study, the Φss of PC12 cell plasma membranes were measured by atomic force microscopy in Kelvin probe mode (KPFM). The skewness values of the Φss distribution histogram were found to be mostly negative, and the incorporation of negatively charged phosphatidylserine shifted the average skewness values to positive. After being treated with H2O2, dopamine, or Zn2+, phosphatidylserine was found to be translocated to the membrane outer leaflet and the averaged skewness values were changed to positive values. These results demonstrated that KPFM can be used to monitor cell physiology status in response to various stimulants with high spatial resolution.
doi:10.1371/journal.pone.0033849
PMCID: PMC3323603  PMID: 22506008
9.  Step-Height Measurement of Surface Functionalized Micromachined Microcantilever Using Scanning White Light Interferometry 
Micro-cantilever arrays with different dimensions are fabricated by micromachining technique onto silicon <1 0 0> substrate. These sputtered Gold-Coated micro-cantilevers were later surface functionalized. Scanning Electron Microscopy, Atomic Force Microscopy and Optical SWLI using LASER probe are employed to characterize the morphology and image measurement of the micro-cantilever arrays, respectively. Compared with conventional AFM and SPM measurement technique, the proposed method has demonstrated sufficient flexibility and reliability. The experimental results have been analyzed and presented in this paper for MEMS Micro-cantilevers. The scanning White Light Interferometry based two point high resolution optical method is presented for characterizing Micro-cantilevers and other MEMS micro-structures. The repeatable error and the repeatable precision produced in the proposed image measurement method is nanometre confirmable. In this piece of work, we investigate the micro-structure fabrication and image measurement of Length, Width and Step-Height of micro-cantilever arrays fabricated using bulk micromachining technique onto Silicon <100> substrate.
PMCID: PMC3790309  PMID: 24098867
Scanning Electron Microscopy; Atomic Force Microscopy; Micro-cantilever; Optics; Image Measurement; Silicon (100), Scanning White Light Interferometry
10.  Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin 
Summary
Both fluorescence imaging and atomic force microscopy (AFM) are highly versatile and extensively used in applications ranging from nanotechnology to life sciences. In fluorescence microscopy luminescent dyes serve as position markers. Moreover, they can be used as active reporters of their local vicinity. The dipolar coupling of the tip with the incident light and the fluorophore give rise to a local field and fluorescence enhancement. AFM topographic imaging allows for resolutions down to the atomic scale. It can be operated in vacuum, under ambient conditions and in liquids. This makes it ideal for the investigation of a wide range of different samples. Furthermore an illuminated AFM cantilever tip apex exposes strongly confined non-propagating electromagnetic fields that can serve as a coupling agent for single dye molecules. Thus, combining both techniques by means of apertureless scanning near-field optical microscopy (aSNOM) enables concurrent high resolution topography and fluorescence imaging. Commonly, among the various (apertureless) SNOM approaches metallic or metallized probes are used. Here, we report on our custom-built aSNOM setup, which uses commercially available monolithic silicon AFM cantilevers. The field enhancement confined to the tip apex facilitates an optical resolution down to 20 nm. Furthermore, the use of standard mass-produced AFM cantilevers spares elaborate probe production or modification processes. We investigated tobacco mosaic viruses and the intermediate filament protein desmin. Both are mixed complexes of building blocks, which are fluorescently labeled to a low degree. The simultaneous recording of topography and fluorescence data allows for the exact localization of distinct building blocks within the superordinate structures.
doi:10.3762/bjnano.4.60
PMCID: PMC3778390  PMID: 24062977
apertureless scanning near-field optical microscope; atomic force microscopy; fluorescence microscopy
11.  Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification 
Summary
Twisted few layer graphene (FLG) is highly attractive from an application point of view, due to its extraordinary electronic properties. In order to study its properties, we demonstrate and discuss three different routes to in situ create and identify (twisted) FLG. Single layer graphene (SLG) sheets mechanically exfoliated under ambient conditions on 6H-SiC(0001) are modified by (i) swift heavy ion (SHI) irradiation, (ii) by a force microscope tip and (iii) by severe heating. The resulting surface topography and the surface potential are investigated with non-contact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM). SHI irradiation results in rupture of the SLG sheets, thereby creating foldings and bilayer graphene (BLG). Applying the other modification methods creates enlarged (twisted) graphene foldings that show rupture along preferential edges of zigzag and armchair type. Peeling at a folding over an edge different from a low index crystallographic direction can result in twisted BLG, showing a similar height as Bernal (or AA-stacked) BLG in NC-AFM images. The rotational stacking can be identified by a significant contrast in the local contact potential difference (LCPD) measured by KPFM.
doi:10.3762/bjnano.4.69
PMCID: PMC3817683  PMID: 24205456
graphene; Kelvin probe force microscopy (KPFM), local contact potential difference (LCPD); non-contact atomic force microscopy (NC-AFM); SiC
12.  bOptimizing atomic force microscopy for characterization of diamond-protein interfaces 
Nanoscale Research Letters  2011;6(1):337.
Atomic force microscopy (AFM) in contact mode and tapping mode is employed for high resolution studies of soft organic molecules (fetal bovine serum proteins) on hard inorganic diamond substrates in solution and air. Various effects in morphology and phase measurements related to the cantilever spring constant, amplitude of tip oscillations, surface approach, tip shape and condition are demonstrated and discussed based on the proposed schematic models. We show that both diamond and proteins can be mechanically modified by Si AFM cantilever. We propose how to choose suitable cantilever type, optimize scanning parameters, recognize and minimize various artifacts, and obtain reliable AFM data both in solution and in air to reveal microscopic characteristics of protein-diamond interfaces. We also suggest that monocrystalline diamond is well defined substrate that can be applicable for fundamental studies of molecules on surfaces in general.
doi:10.1186/1556-276X-6-337
PMCID: PMC3211425  PMID: 21711846
13.  Increased imaging speed and force sensitivity for bio-applications with small cantilevers using a conventional AFM setup 
Micron (Oxford, England : 1993)  2012;43(12):1399-1407.
Highlights
► Development of small cantilever. ► Speed increase by a factor of ten using small cantilevers on a commercial AFM. ► Force sensitivity increase by a factor of five using small cantilever prototypes for force spectroscopy measurements.
In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants.
doi:10.1016/j.micron.2012.05.007
PMCID: PMC3430863  PMID: 22721963
Small cantilever; High resolution imaging; Fast AFM imaging; Ultra-sensitive molecular recognition force spectroscopy
14.  Standardization of surface potential measurements of graphene domains 
Scientific Reports  2013;3:2597.
We compare the three most commonly used scanning probe techniques to obtain a reliable value of the work function in graphene domains of different thickness. The surface potential (SP) of graphene is directly measured in Hall bar geometry via a combination of electrical functional microscopy and spectroscopy techniques, which enables calibrated work function measurements of graphene domains in ambient conditions with values Φ1LG ~4.55 ± 0.02 eV and Φ2LG ~ 4.44 ± 0.02 eV for single- and bi-layer, respectively. We demonstrate that frequency-modulated Kelvin probe force microscopy (FM-KPFM) provides more accurate measurement of the SP than amplitude-modulated (AM)-KPFM. The discrepancy between experimental results obtained by different techniques is discussed. In addition, we use FM-KPFM for contactless measurements of the specific components of the device resistance. We show a strong non-Ohmic behavior of the electrode-graphene contact resistance and extract the graphene channel resistivity.
doi:10.1038/srep02597
PMCID: PMC3764438  PMID: 24008915
15.  An NC-AFM and KPFM study of the adsorption of a triphenylene derivative on KBr(001) 
Summary
The adsorption on KBr(001) of a specially designed molecule, consisting of a flat aromatic triphenylene core equipped with six flexible propyl chains ending with polar cyano groups, is investigated by using atomic force microscopy in the noncontact mode (NC-AFM) coupled to Kelvin probe force microscopy (KPFM) in ultrahigh vacuum at room temperature. Two types of monolayers are identified, one in which the molecules lie flat on the surface (MLh) and another in which they stand approximately upright (MLv). The Kelvin voltage on these two structures is negatively shifted relative to that of the clean KBr surface, revealing the presence of surface dipoles with a component pointing along the normal to the surface. These findings are interpreted with the help of numerical simulations. It is shown that the surface–molecule interaction is dominated by the electrostatic interaction of the cyano groups with the K+ ions of the substrate. The molecule is strongly adsorbed in the MLh structure with an adsorption energy of 1.8 eV. In the MLv layer, the molecules form π-stacked rows aligned along the polar directions of the KBr surface. In these rows, the molecules are less strongly bound to the substrate, but the structure is stabilized by the strong intermolecular interaction due to π-stacking.
doi:10.3762/bjnano.3.25
PMCID: PMC3323911  PMID: 22496995
atomic force microscopy; insulating surfaces; Kelvin force probe microscopy; molecular adsorption
16.  High-Gradient Nanomagnets on Cantilevers for Sensitive Detection of Nuclear Magnetic Resonance 
ACS nano  2012;6(11):9637-9645.
Detection of magnetic resonance as a force between a magnetic tip and nuclear spins has previously been shown to enable sub-10 nm resolution 1H imaging. Maximizing the spin force in such a magnetic resonance force microscopy (MRFM) experiment demands a high field gradient. In order to study a wide range of samples, it is equally desirable to locate the magnetic tip on the force sensor. Here we report the development of attonewton-sensitivity cantilevers with high gradient cobalt nanomagnet tips. The damage layer thickness and saturation magnetization of the magnetic material were characterized by X-ray photoelectron spectroscopy and superconducting quantum interference device magnetometry. The coercive field and saturation magnetization of an individual tip were quantified in situ using frequency-shift cantilever magnetometry. Measurements of cantilever dissipation versus magnetic field and tip-sample separation were conducted. MRFM signals from protons in a polystyrene film were studied versus rf irradiation frequency and tip-sample separation, and from this data the tip field and tip-field gradient were evaluated. Magnetic tip performance was assessed by numerically modeling the frequency dependence of the magnetic resonance signal. We observed a tip-field gradient ∂Bztip∕∂z estimated to be between 4.4 and 5.4 MT m−1, which is comparable to the gradient used in recent 4 nm resolution 1H imaging experiments and larger by nearly an order of magnitude than the gradient achieved in prior magnet-on-cantilever MRFM experiments.
doi:10.1021/nn3030628
PMCID: PMC3535834  PMID: 23033869
nanofabrication; magnetic resonance force microscopy; magnetometry; X-ray photoelectron spectroscopy; superconducting quantum interference device; surface-induced dissipation
17.  Interpreting motion and force for narrow-band intermodulation atomic force microscopy 
Summary
Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip–surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation. With this time-domain perspective, we analyze single oscillation cycles in ImAFM to extract the Fourier components of the tip–surface force that are in-phase with the tip motion (F I) and quadrature to the motion (F Q). Traditionally, these force components have been considered as a function of the static-probe height only. Here we show that F I and F Q actually depend on both static-probe height and oscillation amplitude. We demonstrate on simulated data how to reconstruct the amplitude dependence of F I and F Q from a single ImAFM measurement. Furthermore, we introduce ImAFM approach measurements with which we reconstruct the full amplitude and probe-height dependence of the force components F I and F Q, providing deeper insight into the tip–surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface.
doi:10.3762/bjnano.4.5
PMCID: PMC3566785  PMID: 23400552
atomic force microscopy; AFM; frequency combs; force spectroscopy; high-quality-factor resonators; intermodulation; multifrequency
18.  Nanomechanical recognition measurements of individual DNA molecules reveal epigenetic methylation patterns 
Nature nanotechnology  2010;5(11):788-791.
Atomic force microscopy1 (AFM) is a powerful tool for analysing the shapes of individual molecules and the forces acting on them. AFM-based force spectroscopy provides insights into the structural and energetic dynamics2-4 of biomolecules by probing the interactions within individual molecules5,6, or between a surface-bound molecule and a cantilever that carries a complementary binding partner7-9. Here, we show that an AFM cantilever with an antibody tether can measure the distances between 5-methylcytidine bases in individual DNA strands with a resolution of 4 Å, thereby revealing the DNA methylation pattern, which has an important role in the epigenetic control of gene expression. The antibody is able to bind two 5-methylcytidine bases of a surface-immobilized DNA strand, and retracting the cantilever results in a unique rupture signature reflecting the spacing between two tagged bases. This nanomechanical approach might also allow related chemical patterns to be retrieved from biopolymers at the single-molecule level.
doi:10.1038/nnano.2010.212
PMCID: PMC3108878  PMID: 21037576
19.  An AFM-Based Stiffness Clamp for Dynamic Control of Rigidity 
PLoS ONE  2011;6(3):e17807.
Atomic force microscopy (AFM) has become a powerful tool for measuring material properties in biology and imposing mechanical boundary conditions on samples from single molecules to cells and tissues. Constant force or constant height can be maintained in an AFM experiment through feedback control of cantilever deflection, known respectively as a ‘force clamp’ or ‘position clamp’. However, stiffness, the third variable in the Hookean relation F = kx that describes AFM cantilever deflection, has not been dynamically controllable in the same way. Here we present and demonstrate a ‘stiffness clamp’ that can vary the apparent stiffness of an AFM cantilever. This method, employable on any AFM system by modifying feedback control of the cantilever, allows rapid and reversible tuning of the stiffness exposed to the sample in a way that can decouple the role of stiffness from force and deformation. We demonstrated the AFM stiffness clamp on two different samples: a contracting fibroblast cell and an expanding polyacrylamide hydrogel. We found that the fibroblast, a cell type that secretes and organizes the extracellular matrix, exhibited a rapid, sub-second change in traction rate (dF/dt) and contraction velocity (dx/dt) in response to step changes in stiffness between 1–100 nN/µm. This response was independent of the absolute contractile force and cell height, demonstrating that cells can react directly to changes in stiffness alone. In contrast, the hydrogel used in our experiment maintained a constant expansion velocity (dx/dt) over this range of stiffness, while the traction rate (dF/dt) changed with stiffness, showing that passive materials can also behave differently in different stiffness environments. The AFM stiffness clamp presented here, which is applicable to mechanical measurements on both biological and non-biological samples, may be used to investigate cellular mechanotransduction under a wide range of controlled mechanical boundary conditions.
doi:10.1371/journal.pone.0017807
PMCID: PMC3050926  PMID: 21408137
20.  AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential 
Nanoscale Research Letters  2011;6(1):185.
Thiol self-assembled monolayers (SAMs) are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM) and Kelvin probe force microscopy (KPFM). We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV), revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution.
doi:10.1186/1556-276X-6-185
PMCID: PMC3211238  PMID: 21711703
21.  A mechanical micro molecular mass sensor 
One of the bio-sensing mechanisms is mechanical. Rather than measuring shift in resonance frequency, we adopt to measure the change in spring constant due to adsorption, as one of the fundamental sensing mechanism. This study explains determination of spring constant of a surface functionalized micro machined micro cantilever, which resonates in a trapezoidal cavity-on Silicon <100> wafer, with the resonating frequency of 7000 cycles per second. This thin-flimsy-oxide micro-cantilever has a typical shape, and the tip of the micro-cantilever is dip-coated with chemically and biologically active material. The change in mass, due to adsorption, is detected by measuring the change in spring constant. The Force-Distance spectroscopy is used to detect the change in spring constant. The experimental results, show that the mechanical sensing scheme used, permit this surface functionalized micro machined micro cantilever to be used as a molecular mass sensor. The mechanical spring behaviour of a micro-cantilever, a micro-mechanical device can be used to develop ultra-tech micro-mechanical system using computer interface.
PMCID: PMC3896946  PMID: 24459585
Micromachining; Micro-cantilever; Silicon<100>; Bio-Sensor; F-d Spectroscopy
22.  Atomic force microscopy measurements of lens elasticity in monkey eyes 
Molecular Vision  2007;13:504-510.
Purpose
To demonstrate the feasibility of measuring the elasticity of intact crystalline lenses using atomic force microscopy (AFM).
Methods
AFM elasticity measurements were performed on intact lenses from 18 fresh cynomolgus monkey cadaver eyes (4-10 years old, <1 day postmortem) that had been left attached to their zonule-ciliary body-sclera framework. The eyes were prepared by bonding a plastic ring on the sclera after removal of the conjunctival, adipose, and muscle tissues. The posterior pole was sectioned, with the excess vitreous removed, and the eye's anterior section was placed on a Teflon slide to protect the posterior pole of the lens. The cornea and iris were then sectioned. The lens-zonule-ciliary body-sclera section was then placed in a Petri dish filled with balanced salt solution in an AFM system designed for force measurements. Next, the central pole of the anterior surface of the intact lens was probed with the AFM cantilever tip. The recorded AFM cantilever deflection-indentation curves were used to derive force-indentation curves for the lens after factoring out the deflection of the cantilever on a hard surface. Young's modulus of the lens was calculated from the force-indentation relation using the Hertz model.
Results
Young's modulus was 1,720±880 Pa (range: 409-3,210 Pa) in the 18 cynomolgus monkey lenses.
Conclusions
AFM can be used to provide measurements of the elasticity of the whole lens including the capsule. Values obtained using AFM on cynomolgus monkey lenses are similar to published values obtained using dynamic mechanical analysis on young human lenses.
PMCID: PMC2649306  PMID: 17417612
23.  Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements 
Summary
Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased.
doi:10.3762/bjnano.3.31
PMCID: PMC3323917  PMID: 22497001
buffer layer; Cu3BiS3; Kelvin probe force microscopy; solar cells
24.  Piezo-thermal Probe Array for High Throughput Applications 
Microcantilevers are used in a number of applications including atomic-force microscopy (AFM). In this work, deflection-sensing elements along with heating elements are integrated onto micromachined cantilever arrays to increase sensitivity, and reduce complexity and cost. An array of probes with 5–10 nm gold ultrathin film sensors on silicon substrates for high throughput scanning probe microscopy is developed. The deflection sensitivity is 0.2 ppm/nm. Plots of the change in resistance of the sensing element with displacement are used to calibrate the probes and determine probe contact with the substrate. Topographical scans demonstrate high throughput and nanometer resolution. The heating elements are calibrated and the thermal coefficient of resistance (TCR) is 655 ppm/K. The melting temperature of a material is measured by locally heating the material with the heating element of the cantilever while monitoring the bending with the deflection sensing element. The melting point value measured with this method is in close agreement with the reported value in literature.
doi:10.1016/j.sna.2012.03.033
PMCID: PMC3638734  PMID: 23641125
Microcantilevers; Scanning probe microscopy; Piezoresistive sensing; Parallel imaging; Elastography; Mechanical characterization; Melting point; High throughput
25.  Insulated Conducting Cantilevered Nanotips and Two-Chamber Recording System for High Resolution Ion Sensing AFM 
Scientific Reports  2014;4:4454.
Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels.
doi:10.1038/srep04454
PMCID: PMC3964513  PMID: 24663394

Results 1-25 (933529)