PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (186932)

Clipboard (0)
None

Related Articles

1.  Modelling a Historic Oil-Tank Fire Allows an Estimation of the Sensitivity of the Infrared Receptors in Pyrophilous Melanophila Beetles 
PLoS ONE  2012;7(5):e37627.
Pyrophilous jewel beetles of the genus Melanophila approach forest fires and there is considerable evidence that these beetles can detect fires from great distances of more than 60 km. Because Melanophila beetles are equipped with infrared receptors and are also attracted by hot surfaces it can be concluded that these infrared receptors are used for fire detection.
The sensitivity of the IR receptors is still unknown. The lowest threshold published so far is 0.6 W/m2 which, however, cannot explain the detection of forest fires by IR radiation from distances larger than approximately 10 km. To investigate the possible sensitivity of the IR receptors we assumed that beetles use IR radiation for remote fire detection and we made use of a historic report about a big oil-tank fire in Coalinga, California, in 1924. IR emission of an oil-tank fire can be calculated by “pool fire” simulations which now are used for fire safety and risk analysis. Assuming that beetles were lured to the fire from the nearest forests 25 and 130 km away, our results show that detection from a distance of 25 km requires a threshold of the IR receptors of at least 3×10−2 W/m2. According to our investigations most beetles became aware of the fire from a distance of 130 km. In this case the threshold has to be 1.3×10−4 W/m2. Because such low IR intensities are buried in thermal noise we suggest that the infrared sensory system of Melanophila beetles utilizes stochastic resonance for the detection of weak IR radiation. Our simulations also suggest that the biological IR receptors might be even more sensitive than uncooled technical IR sensors. Thus a closer look into the mode of operation of the Melanophila IR receptors seems promising for the development of novel IR sensors.
doi:10.1371/journal.pone.0037627
PMCID: PMC3357417  PMID: 22629433
2.  Single Sensillum Recordings in the Insects Drosophila melanogaster and Anopheles gambiae 
The sense of smell is essential for insects to find foods, mates, predators, and oviposition sites3. Insect olfactory sensory neurons (OSNs) are enclosed in sensory hairs called sensilla, which cover the surface of olfactory organs. The surface of each sensillum is covered with tiny pores, through which odorants pass and dissolve in a fluid called sensillum lymph, which bathes the sensory dendrites of the OSNs housed in a given sensillum. The OSN dendrites express odorant receptor (OR) proteins, which in insects function as odor-gated ion channels4, 5. The interaction of odorants with ORs either increases or decreases the basal firing rate of the OSN. This neuronal activity in the form of action potentials embodies the first representation of the quality, intensity, and temporal characteristics of the odorant6, 7.
Given the easy access to these sensory hairs, it is possible to perform extracellular recordings from single OSNs by introducing a recording electrode into the sensillum lymph, while the reference electrode is placed in the lymph of the eye or body of the insect. In Drosophila, sensilla house between one and four OSNs, but each OSN typically displays a characteristic spike amplitude. Spike sorting techniques make it possible to assign spiking responses to individual OSNs. This single sensillum recording (SSR) technique monitors the difference in potential between the sensillum lymph and the reference electrode as electrical spikes that are generated by the receptor activity on OSNs1, 2, 8. Changes in the number of spikes in response to the odorant represent the cellular basis of odor coding in insects. Here, we describe the preparation method currently used in our lab to perform SSR on Drosophila melanogaster and Anopheles gambiae, and show representative traces induced by the odorants in a sensillum-specific manner.
doi:10.3791/1725
PMCID: PMC2830253  PMID: 20164822
3.  Evidence for a protein tether involved in somatic touch 
The EMBO Journal  2010;29(4):855-867.
The gating of ion channels by mechanical force underlies the sense of touch and pain. The mode of gating of mechanosensitive ion channels in vertebrate touch receptors is unknown. Here we show that the presence of a protein link is necessary for the gating of mechanosensitive currents in all low-threshold mechanoreceptors and some nociceptors of the dorsal root ganglia (DRG). Using TEM, we demonstrate that a protein filament with of length ∼100 nm is synthesized by sensory neurons and may link mechanosensitive ion channels in sensory neurons to the extracellular matrix. Brief treatment of sensory neurons with non-specific and site-specific endopeptidases destroys the protein tether and abolishes mechanosensitive currents in sensory neurons without affecting electrical excitability. Protease-sensitive tethers are also required for touch-receptor function in vivo. Thus, unlike the majority of nociceptors, cutaneous mechanoreceptors require a distinct protein tether to transduce mechanical stimuli.
doi:10.1038/emboj.2009.398
PMCID: PMC2810375  PMID: 20075867
extracellular matrix; ion channels; laminin; mechanotransduction; proteases
4.  Evaluating Populations of Tactile Sensors for Curvature Discrimination 
The high density of receptors in fingertip skin is a limiting factor for replicating tactile feedback for neural prosthetics. At present, the large size of engineered sensors and the dense network of neural connections from finger to brain inhibit duplicating the approximately 100 receptors/cm2. The objective of this work is to build a model of the skin and neural response with which populations of sensors can be positioned and evaluated when discriminating spheres. The effort combines a 3D finite element model of the fingertip, a bi-phasic transduction model, and a leaky-integrate-and-fire neuronal model. Populations of sensors are configured with three average densities (10,000/cm2, 1,000/cm2, and 100/cm2). For these populations, the firing rates for the dynamic (40–70 ms) and static (650 ms–900 ms) phases and first spike latencies are predicted. The model can differentiate indenters at a level similar to human performance at each sampling density, including of the human finger (100/cm2).
doi:10.1109/HAPTIC.2010.5444679
PMCID: PMC3147307  PMID: 21814635
Tactile; touch; mechanoreceptor; solid mechanics; biomechanics; finite element analysis; leaky-integrate-and-fire; neural model; neural prosthetics
5.  Dynamical Modeling of the Moth Pheromone-Sensitive Olfactory Receptor Neuron within Its Sensillar Environment 
PLoS ONE  2011;6(3):e17422.
In insects, olfactory receptor neurons (ORNs), surrounded with auxiliary cells and protected by a cuticular wall, form small discrete sensory organs – the sensilla. The moth pheromone-sensitive sensillum is a well studied example of hair-like sensillum that is favorable to both experimental and modeling investigations. The model presented takes into account both the molecular processes of ORNs, i.e. the biochemical reactions and ionic currents giving rise to the receptor potential, and the cellular organization and compartmentalization of the organ represented by an electrical circuit. The number of isopotential compartments needed to describe the long dendrite bearing pheromone receptors was determined. The transduction parameters that must be modified when the number of compartments is increased were identified. This model reproduces the amplitude and time course of the experimentally recorded receptor potential. A first complete version of the model was analyzed in response to pheromone pulses of various strengths. It provided a quantitative description of the spatial and temporal evolution of the pheromone-dependent conductances, currents and potentials along the outer dendrite and served to determine the contribution of the various steps in the cascade to its global sensitivity. A second simplified version of the model, utilizing a single depolarizing conductance and leak conductances for repolarizing the ORN, was derived from the first version. It served to analyze the effects on the sensory properties of varying the electrical parameters and the size of the main sensillum parts. The consequences of the results obtained on the still uncertain mechanisms of olfactory transduction in moth ORNs – involvement or not of G-proteins, role of chloride and potassium currents – are discussed as well as the optimality of the sensillum organization, the dependence of biochemical parameters on the neuron spatial extension and the respective contributions of the biochemical and electrical parameters to the overall neuron response.
doi:10.1371/journal.pone.0017422
PMCID: PMC3047557  PMID: 21399691
6.  Feasibility of near-infrared diffuse optical spectroscopy on patients undergoing image-guided core-needle biopsy 
Optics express  2007;15(12):7335-7350.
We describe a side-firing fiber optic sensor based on near-infrared spectroscopy for guiding core needle biopsy diagnosis of breast cancer. The sensor is composed of three side firing optical fibers (two source fibers and one detection fiber), providing two source-detector separations. The entire assembly is inserted into a core biopsy needle, allowing for sampling to occur at the biopsy site. A multi-wavelength frequency-domain near-infrared instrument is used to collect diffuse reflectance in the breast tissue through an aperture on the biopsy needle before the tissue is removed for histology. Preliminary in vivo measurements performed on 10 normal or benign breast tissues from 5 women undergoing stereo- or ultrasound-guided core needle biopsy show the ability of the system to determine tissue optical properties and constituent concentrations, which are correlated with breast tissue composition derived from histopathology.
PMCID: PMC2801922  PMID: 19547057
7.  Optimizing Populations of SAI Tactile Mechanoreceptors to Enable Activities of Daily Living 
At present, the dense network of peripheral afferents between finger and brain and the large size of engineered sensors preclude the recreation of biologically observed afferent populations. This work uses a validated computational model of cutaneous skin and tactile afferents to evaluate sparse populations in performing tasks required in activities of daily living. Using a model (3D finite element representation of fingertip skin, linear bi-phasic transduction function, and leaky-integrate-and-fire neuronal model), we systematically varied populations of tactile receptors in dimensions of density (100, 45, 20, and 10 sensors/cm2) and size (diameter 0.1, 0.2, 0.5, and 1.0 mm) to determine if a given modeled population can discriminate spheres and cylinders representative of objects used in activities of daily living. Using a scoring system which allows for direct comparisons between the populations, our results indicate that a population must have at least 20 sensors per cm2 to maintain response resolution in these activities of daily living and that larger-sized sensors do not degrade response resolution.
doi:10.1109/WHC.2011.5945461
PMCID: PMC3350320  PMID: 22582034
Tactile; touch; mechanoreceptor; solid mechanics; biomechanics; finite element analysis; leaky-integrate-and-fire; neural dynamics; neural prosthetics; psychophysics
8.  Robotic and neuronal simulation of the hippocampus and rat navigation. 
The properties of hippocampal place cells are reviewed, with particular attention to the nature of the internal and external signals that support their firing. A neuronal simulation of the firing of place cells in open-field environments of varying shape is presented. This simulation is coupled with an existing model of how place-cell firing can be used to drive navigation, and is tested by implementation as a miniature mobile robot. The sensors on the robot provide visual, odometric and short-range proximity data, which are combined to estimate the distance of the walls of the enclosure from the robot and the robot's current heading direction. These inputs drive the hippocampal simulation, in which the robot's location is represented as the firing of place cells. If a goal location is encountered, learning occurs in connections from the concurrently active place cells to a set of 'goal cells', which guide subsequent navigation, allowing the robot to return to an unmarked location. The system shows good agreement with actual place-cell firing, and makes predictions regarding the firing of cells in the subiculum, the effect of blocking long-term synaptic changes, and the locus of search of rats after deformation of their environment.
PMCID: PMC1692051  PMID: 9368942
9.  Peripheral sensitisation of nociceptors via G-proteindependent potentiation of mechanotransduction currents 
The Journal of Physiology  2009;587(14):3493-3503.
Mechanical stimuli impinging on the skin are converted into electrical signals by mechanically gated ion channels located at the peripheral nerve endings of dorsal root ganglion (DRG) neurons. Under inflammatory conditions sensory neurons are commonly sensitised to mechanical stimuli; a putative mechanism that may contribute to such sensitisation of sensory neurons is enhanced responsiveness of mechanotransduction ion channels. Here we show that the algogens UTP and ATP potentiate mechanosensitive RA currents in peptidergic nociceptive DRG neurons and reduce thresholds for mechanically induced action potential firing in these neurones. Pharmacological characterisation suggests that this effect is mediated by the Gq-coupled P2Y2 nucleotide receptor. Moreover, using the in vitro skin nerve technique, we show that UTP also increases action potential firing rates in response to mechanical stimuli in a subpopulation of skin C-fibre nociceptors. Together our findings suggest that UTP sensitises a subpopulation of cutaneous C-fibre nociceptors via a previously undescribed G-protein-dependent potentiation of mechanically activated RA-type currents.
doi:10.1113/jphysiol.2009.175059
PMCID: PMC2742277  PMID: 19505980
10.  Peripheral sensitisation of nociceptors via G-proteindependent potentiation of mechanotransduction currents 
The Journal of Physiology  2009;587(Pt 14):3493-3503.
Mechanical stimuli impinging on the skin are converted into electrical signals by mechanically gated ion channels located at the peripheral nerve endings of dorsal root ganglion (DRG) neurons. Under inflammatory conditions sensory neurons are commonly sensitised to mechanical stimuli; a putative mechanism that may contribute to such sensitisation of sensory neurons is enhanced responsiveness of mechanotransduction ion channels. Here we show that the algogens UTP and ATP potentiate mechanosensitive RA currents in peptidergic nociceptive DRG neurons and reduce thresholds for mechanically induced action potential firing in these neurones. Pharmacological characterisation suggests that this effect is mediated by the Gq-coupled P2Y2 nucleotide receptor. Moreover, using the in vitro skin nerve technique, we show that UTP also increases action potential firing rates in response to mechanical stimuli in a subpopulation of skin C-fibre nociceptors. Together our findings suggest that UTP sensitises a subpopulation of cutaneous C-fibre nociceptors via a previously undescribed G-protein-dependent potentiation of mechanically activated RA-type currents.
doi:10.1113/jphysiol.2009.175059
PMCID: PMC2742277  PMID: 19505980
11.  TRPA1 Mediates Mechanical Currents in the Plasma Membrane of Mouse Sensory Neurons 
PLoS ONE  2010;5(8):e12177.
Mechanosensitive channels serve as essential sensors for cells to interact with their environment. The identity of mechanosensitive channels that underlie somatosensory touch transduction is still a mystery. One promising mechanotransduction candidate is the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel. To determine the role of TRPA1 in the generation of mechanically-sensitive currents, we used dorsal root ganglion (DRG) neuron cultures from adult mice and applied rapid focal mechanical stimulation (indentation) to the soma membrane. Small neurons (diameter <27 µm) were studied because TRPA1 is functionally present in these neurons which largely give rise to C-fiber afferents in vivo. Small neurons were classified by isolectin B4 binding.
Mechanically-activated inward currents were classified into two subtypes: Slowly Adapting and Transient. First, significantly more IB4 negative neurons (84%) responded to mechanical stimulation than IB4 positive neurons (54%). Second, 89% of Slowly Adapting currents were present in IB4 negative neurons whereas only 11% were found in IB4 positive neurons. Third, Slowly Adapting currents were completely absent in IB4 negative neurons from TRPA1−/− mice. Consistent with this, Slowly Adapting currents were abolished in wild type IB4 negative neurons stimulated in the presence of a TRPA1 antagonist, HC-030031. In addition, the amplitude of Transient mechanically-activated currents in IB4 positive neurons from TRPA1−/− mice was reduced by over 60% compared to TRPA1+/+ controls; however, a similar reduction did not occur in wild-type neurons treated with HC-030031. Transfection of TRPA1 in HEK293 cells did not significantly alter the proportion or magnitude of mechanically-activated currents in HEK293 cells, indicating that TRPA1 alone is not sufficient to confer mechanical sensitivity.
These parallel genetic and pharmacological data demonstrate that TRPA1 mediates the Slowly Adapting mechanically-activated currents in small-diameter IB4 negative neurons from adult mice. The TRPA1 protein may also contribute to a complex that mediates Transient mechanically-activated currents in small IB4 positive C fiber type neurons.
doi:10.1371/journal.pone.0012177
PMCID: PMC2922334  PMID: 20808441
12.  A Specific Male Olfactory Sensillum Detects Behaviorally Antagonistic Hairpencil Odorants 
Within insect species, olfactory signals play a vital role in communication, particularly in the context of mating. During courtship, males of many moth species release pheromones that function as aphrodisiacs for conspecific females, or repellants to competing conspecific males. The physiology and antennal lobe projections are described of olfactory receptor neurons within an antennal sensillum present on male Heliothis virescens F. (Lepidoptera: Noctuidae) moths sensitive to conspecific male H. virescens-produced pheromone components. Olfactory receptor neurons responded to hexadecanyl acetate and octadecanyl acetate hairpencil components, and Z11-hexadecenyl acetate, an odorant used by closely related heliothine species in their female produced pheromone, which is antagonistic to male H. virescens responses. This acetate-sensitive sensillum appears homologous to a sensillum type previously described in females of this species, sharing similar physiology and glomerular projection targets within the antennal lobe. Wind tunnel observations indicate that H. virescens hairpencil odors (hexadecanyl acetate, octadecanyl acetate) function to antagonize responses of conspecific males following a female sex pheromone plume. Thus, male-male flight antagonism in H. virescens appears to be mediated by this particular sensillum type.
doi:10.1673/031.007.0401
PMCID: PMC2999402  PMID: 20334597
Heliothis virescens; Lepidoptera; courtship; behavioral antagonist; cobalt-lysine staining; antennal lobe; olfactory receptor neuron
13.  Computation identifies structural features that govern neuronal firing properties in slowly adapting touch receptors 
eLife  2014;3:e01488.
Touch is encoded by cutaneous sensory neurons with diverse morphologies and physiological outputs. How neuronal architecture influences response properties is unknown. To elucidate the origin of firing patterns in branched mechanoreceptors, we combined neuroanatomy, electrophysiology and computation to analyze mouse slowly adapting type I (SAI) afferents. These vertebrate touch receptors, which innervate Merkel cells, encode shape and texture. SAI afferents displayed a high degree of variability in touch-evoked firing and peripheral anatomy. The functional consequence of differences in anatomical architecture was tested by constructing network models representing sequential steps of mechanosensory encoding: skin displacement at touch receptors, mechanotransduction and action-potential initiation. A systematic survey of arbor configurations predicted that the arrangement of mechanotransduction sites at heminodes is a key structural feature that accounts in part for an afferent’s firing properties. These findings identify an anatomical correlate and plausible mechanism to explain the driver effect first described by Adrian and Zotterman.
DOI: http://dx.doi.org/10.7554/eLife.01488.001
eLife digest
Sensory receptors in the skin supply us with information about objects in the world around us, including their shape and texture. These receptors also detect pressure, temperature, and pain, enabling us to respond appropriately to stimuli that could be potentially harmful.
The activation of a touch receptor—for example, due to the movement of a hair—causes ions to flow into the cell, changing the electric charge inside it. When the charge exceeds a threshold value, the cell fires action potentials, which travel along its axon to the central nervous system. The patterns of these action potentials from a population of touch receptors carry all the information about a touch stimulus to the brain. Different types of sensory receptors have unique anatomical structures and distinct signaling patterns; however, little is known about how the structures of sensory receptors influence action potential firing.
Now Lesniak and Marshall et al. have revealed that structure determines function in a type of mammalian touch receptor called the slowly adapting type I receptor, which is concentrated in fingertips and other areas of high tactile acuity. With the aid of high-resolution microscopy, the complex branching structure of the receptor and its network of nerve endings were mapped in three dimensions. Experiments revealed highly variable structures and firing patterns between individual touch receptors, and computational modeling showed that changing either the number or the arrangement of receptor endings influenced the neuron’s firing properties.
This is the first computational model that captures touch encoding by combining skin properties, sensory transduction, and spike initiation. As well as providing new information on how structure permits function, this work opens up new possibilities for exploring how the skin maintains its sensory capabilities during routine maintenance and after injury.
DOI: http://dx.doi.org/10.7554/eLife.01488.002
doi:10.7554/eLife.01488
PMCID: PMC3896213  PMID: 24448409
tactile; Merkel cell; NaV1.6; skin; computational modeling; somatosensory; mouse
14.  Use of a Dynamic Enclosure Approach to Test the Accuracy of the NDIR Sensor: Evaluation Based on the CO2 Equilibration Pattern 
Sensors (Basel, Switzerland)  2007;7(12):3459-3471.
As part of a quality assurance (QA) study for sensor systems, an enclosure approach is applied to assess the accuracy of non-dispersive infrared (NDIR)-based CO2 sensors. To examine the performance of the sensor system, an enclosure chamber containing six sensor units of the two model types (B-530 and H-500) was equilibrated with calibrated CO2 standards at varying concentration levels. Initially, the equilibration pattern was analyzed by CO2-free gas (0 ppm) at varying flow rates (i.e., 100, 200, 500, and 1000 mL min-1). Results of the test yielded a highly predictable and quantifiable empirical relationship as a function of such parameters as CO2 concentration, flow rate, and equilibration time for the enclosure system. Hence, when the performance of the NDIR-method was evaluated at other concentrations (i.e., 500 and 1000 ppm), all the sensor units showed an excellent compatibility, at least in terms of the correlation coefficients (r > 0.999, p = 0.01). According to our analysis, the NDIR sensor system seems to attain an overall accuracy near the 5% level. The relative performance of the NDIR sensor for CO2 analysis is hence comparable with (or superior to) other methods previously investigated. The overall results of this study indicate that NDIR sensors can be used to provide highly accurate and precise analyses of CO2 both in absolute and relative terms.
PMCID: PMC3841906
NDIR; accuracy; CO2- equilibration; sensor
15.  Developmental Differences in Peripheral Glabrous Skin Mechanosensory Nerve Receptive Field and Intracellular Electrophysiologic Properties: Phenotypic Characterization in Infant and Juvenile Rats 
Developmental differences in peripheral neuron characteristics and functionality exist. Direct measurement of active and passive electrophysiologic and receptive field characteristics of single mechanosensitive neurons in glabrous skin was performed and phenotypic characterization of fiber subtypes was applied to analyze developmental differences in peripheral mechanosensitive afferents. After Institutional approval, male Sprague-Dawley infant (P7: postnatal day 7) and juvenile (P28) rats were anesthetized and single cell intracellular electrophysiology was performed in the dorsal root ganglion (DRG) soma of mechanosensitive cells with receptive field (RF) in the glabrous skin of the hindpaw. Passive and active electrical properties of the cells and RF size and characteristics determined. Fiber subtype classification was performed and developmental differences in fiber subtype properties analyzed. RF size was smaller at P7 for both low and high threshold mechanoreceptor (LTMR and HTMR) with no differences between A- and C-HTMR (AHTMR and CHTMR). The RF size was also correlated to anatomic location on glabrous skin, toes having smaller RF. Conduction velocity (CV) was adequate at P28 for AHTMR and CHTMR classification, but not at P7. Only width of the action potential at half height (D50) was significantly different between HTMR at P7, while D50, CV and Amplitude of the AP were significant for HTMR at P28. RF size is determined in part by the RF distribution of the peripheral neuron. Developmental differences in RF size occur with larger RF sizes occurring in younger animals. This is consistent with RF size differences determined by measuring RF in the spinal cord, except the peripheral RF is much smaller, more refined, and in some cases pinpoint. Developmental differences make CV alone unreliable for neuron classification. Utilizing integration of all measured parameters allows classification of neurons into subtypes even at the younger ages. This will prove important in understanding changes that occur in the peripheral sensory afferents in the face of ongoing development and injury early in life.
doi:10.1016/j.ijdevneu.2011.08.002
PMCID: PMC3381879  PMID: 21856407
development; electrophysiology; peripheral nerve; postnatal; receptive field
16.  Magnetically Remote-Controlled Optical Sensor Spheres for Monitoring Oxygen or pH 
Analytical Chemistry  2010;82(5):2124-2128.
Magnetic sensor macrospheres (MagSeMacs), i.e., stainless steel spheres coated with optical chemical sensors, are presented as an alternative to existing optical sensor patches and fiber-optical dip-probes. Such spheres can either be reversibly attached to the tip of an optical fiber (dip-probe) or trapped inside a vessel for read-out through the side wall. Moving the magnetic separator at the exterior enables measurements at varying positions with a single sensor. Moreover, the sensor’s replacement is rapid and contactless. We measured dissolved oxygen or pH in stirred liquids, rotating flasks, and 24-well plates with a SensorDish-reader device for parallel cell culture monitoring. In these applications, MagSeMacs proved to be advantageous over conventional sensor patches and magnetic optical sensor particles because of their magnetism, spherical shape, reflectance, and size. These properties resulted in strong but reversible fixation, magnetic remote-controllability, short response times, high signal intensities, and simplified handling.
doi:10.1021/ac902393u
PMCID: PMC2829951  PMID: 20121206
17.  Sensory Arsenal on the Stinger of the Parasitoid Jewel Wasp and Its Possible Role in Identifying Cockroach Brains 
PLoS ONE  2014;9(2):e89683.
The parasitoid jewel wasp uses cockroaches as live food supply for its developing larva. To this end, the adult wasp stings a cockroach and injects venom directly inside its brain, turning the prey into a submissive ‘zombie’. Here, we characterize the sensory arsenal on the wasp’s stinger that enables the wasp to identify the brain target inside the cockroach’s head. An electron microscopy study of the stinger reveals (a) cuticular depressions innervated by a single mechanosensory neuron, which are presumably campaniform sensilla; and (b) dome-shaped structures innervated by a single mechanosensory neuron and 4–5 chemosensory neurons, which are presumably contact-chemoreceptive sensilla. Extracellular electrophysiological recordings from stinger afferents show increased firing rate in response to mechanical stimulation with agarose. This response is direction-selective and depends upon the concentration (density) of the agarose, such that the most robust response is evoked when the stinger is stimulated in the distal-to-proximal direction (concomitant with the penetration during the natural stinging behavior) and penetrating into relatively hard (0.75%–2.5%) agarose pellets. Accordingly, wasps demonstrate a normal stinging behavior when presented with cockroaches in which the brain was replaced with a hard (2.5%) agarose pellet. Conversely, wasps demonstrate a prolonged stinging behavior when the cockroach brain was either removed or replaced by a soft (0.5%) agarose pellet, or when stinger sensory organs were ablated prior to stinging. We conclude that the parasitoid jewel wasp uses at least mechanosensory inputs from its stinger to identify the brain within the head capsule of the cockroach prey.
doi:10.1371/journal.pone.0089683
PMCID: PMC3935893  PMID: 24586962
18.  Go contributes to olfactory reception in Drosophila melanogaster 
BMC Physiology  2009;9:22.
Background
Seven-transmembrane receptors typically mediate olfactory signal transduction by coupling to G-proteins. Although insect odorant receptors have seven transmembrane domains like G-protein coupled receptors, they have an inverted membrane topology and function as ligand-gated cation channels. Consequently, the involvement of cyclic nucleotides and G proteins in insect odor reception is controversial. Since the heterotrimeric Goα subunit is expressed in Drosophila olfactory receptor neurons, we reasoned that Go acts together with insect odorant receptor cation channels to mediate odor-induced physiological responses.
Results
To test whether Go dependent signaling is involved in mediating olfactory responses in Drosophila, we analyzed electroantennogram and single-sensillum recording from flies that conditionally express pertussis toxin, a specific inhibitor of Go in Drosophila. Pertussis toxin expression in olfactory receptor neurons reversibly reduced the amplitude and hastened the termination of electroantennogram responses induced by ethyl acetate. The frequency of odor-induced spike firing from individual sensory neurons was also reduced by pertussis toxin. These results demonstrate that Go signaling is involved in increasing sensitivity of olfactory physiology in Drosophila. The effect of pertussis toxin was independent of odorant identity and intensity, indicating a generalized involvement of Go in olfactory reception.
Conclusion
These results demonstrate that Go is required for maximal physiological responses to multiple odorants in Drosophila, and suggest that OR channel function and G-protein signaling are required for optimal physiological responses to odors.
doi:10.1186/1472-6793-9-22
PMCID: PMC2789035  PMID: 19943954
19.  Changes of the GPR17 receptor, a new target for neurorepair, in neurons and glial cells in patients with traumatic brain injury 
Purinergic Signalling  2013;9(3):451-462.
Unveiling the mechanisms participating in the damage and repair of traumatic brain injury (TBI) is fundamental to develop new therapies. The P2Y-like GPR17 receptor has recently emerged as a sensor of damage and a key actor in lesion remodeling/repair in the rodent brain, but its role in humans is totally unknown. Here, we characterized GPR17 expression in brain specimens from seven intensive care unit TBI patients undergoing neurosurgery for contusion removal and from 28 autoptic TBI cases (and 10 control subjects of matched age and gender) of two university hospitals. In both neurosurgery and autoptic samples, GPR17 expression was strong inside the contused core and progressively declined distally according to a spatio-temporal gradient. Inside and around the core, GPR17 labeled dying neurons, reactive astrocytes, and activated microglia/macrophages. In peri-contused parenchyma, GPR17 decorated oligodendrocyte precursor cells (OPCs) some of which had proliferated, indicating re-myelination attempts. In autoptic cases, GPR17 expression positively correlated with death for intracranial complications and negatively correlated with patients’ post-traumatic survival. Data indicate lesion-specific sequential involvement of GPR17 in the (a) death of irreversibly damaged neurons, (b) activation of microglia/macrophages remodeling the lesion, and (c) activation/proliferation of multipotent parenchymal progenitors (both reactive astrocytes and OPCs) starting repair processes. Data validate GPR17 as a target for neurorepair and are particularly relevant to setting up new therapies for TBI patients.
Electronic supplementary material
The online version of this article (doi:10.1007/s11302-013-9366-3) contains supplementary material, which is available to authorized users.
doi:10.1007/s11302-013-9366-3
PMCID: PMC3757149  PMID: 23801362
Activated microglia; Adult neural precursors; Human brain injury; Lesion repair; Reactive astrocytes
20.  Infrared radiation from hot cones on cool conifers attracts seed-feeding insects 
Foraging animals use diverse cues to locate resources. Common foraging cues have visual, auditory, olfactory, tactile or gustatory characteristics. Here, we show a foraging herbivore using infrared (IR) radiation from living plants as a host-finding cue. We present data revealing that (i) conifer cones are warmer and emit more near-, mid- and long-range IR radiation than needles, (ii) cone-feeding western conifer seed bugs, Leptoglossus occidentalis (Hemiptera: Coreidae), possess IR receptive organs and orient towards experimental IR cues, and (iii) occlusion of the insects' IR receptors impairs IR perception. The conifers' cost of attracting cone-feeding insects may be offset by occasional mast seeding resulting in cone crops too large to be effectively exploited by herbivores.
doi:10.1098/rspb.2008.0742
PMCID: PMC2660928  PMID: 18945664
infrared receptor; infrared radiation; Leptoglossus occidentalis; foraging cue; conifer cones; seed feeding
21.  Malaria infection does not affect the sensitivity of peripheral receptor neurons in Anopheles stephensi 
Parasites & Vectors  2013;6:134.
Background
Mosquitoes transmit many important diseases including malaria, dengue and yellow fever. Disease transmission from one vertebrate host to another depends on repeated blood feedings by single mosquitoes. In order for the mosquito to acquire the blood that it needs to complete oogenesis, the insect must locate a suitable host. Olfactory cues (including carbon dioxide) released by the host and detected by the mosquito are the primary signals that vector insects use for host location. Previous studies have suggested that the physiological status - including bacterial, fungal, viral and Plasmodium infections - can modulate aspects of behavior in haematophagous insects.
Methods
Standard electrophysiological techniques were used to record extracellular responses from the receptor neurons located in sensilla found on the maxillary palps of the insects. The recording microelectrode was inserted through the cuticle at the base of an individual sensillum and the extracellular electrical signals obtained from the three neurons within the sensillum were recorded. Stimulations consisted of 2 s pulses of the desired concentrations of CO2 or dosages of 1-octen-3-ol.
Results
Accordingly, we were interested in determining whether Plasmodium infection affects the sensitivity of those peripheral olfactory sensors that are involved in host-seeking in mosquitoes. Our studies indicate that infection of female Anopheles stephensi with Plasmodium berghei does not alter the response characteristics of the neurons innervating the maxillary palp sensilla that respond to the attractants carbon dioxide and 1-octen-3-ol. Although the response characteristics of the peripheral sensory neurons are not affected by infection status, we found that the age of the mosquito alone does affect the threshold of sensitivity of these neurons to carbon dioxide. The proportion of older insects (21–30 d post-emergence) that responds to 150 ppm carbon dioxide is higher than the proportion that responds among younger insects (1–10 d post-emergence).
Conclusions
Anopheles stephensi infected with Plasmodium berghei exhibit sensitivities to stimulation with carbon dioxide and 1-octen-3-ol similar to those of uninfected mosquitoes. However, the age of the infected or uninfected mosquito does affect the threshold of sensitivity of these neurons to carbon dioxide.
doi:10.1186/1756-3305-6-134
PMCID: PMC3659000  PMID: 23642231
Anopheles stephensi; Plasmodium berghei; Infection; Carbon dioxide; 1-Octen-3-ol; Electrophysiology
22.  Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development 
The EMBO Journal  2009;28(10):1479-1491.
Somatic sensation relies on the transduction of physical stimuli into electrical signals by sensory neurons of the dorsal root ganglia. Little is known about how and when during development different types of sensory neurons acquire transduction competence. We directly investigated the emergence of electrical excitability and mechanosensitivity of embryonic and postnatal mouse sensory neurons. We show that sensory neurons acquire mechanotransduction competence coincident with peripheral target innervation. Mechanotransduction competence arises in different sensory lineages in waves, coordinated by distinct developmental mechanisms. Sensory neurons that are mechanoreceptors or proprioceptors acquire mature mechanotransduction indistinguishable from the adult already at E13. This process is independent of neurotrophin-3 and may be driven by a genetic program. In contrast, most nociceptive (pain sensing) sensory neurons acquire mechanosensitive competence as a result of exposure to target-derived nerve growth factor. The highly regulated process of mechanosensory acquisition unveiled here, reveals new strategies to identify molecules required for sensory neuron mechanotransduction.
doi:10.1038/emboj.2009.73
PMCID: PMC2664657  PMID: 19322198
ion channels; mechanotransduction; nerve growth factor; nociception; touch
23.  Continued Neurogenesis in Adult Drosophila as a Mechanism for Recruiting Environmental Cue-Dependent Variants 
PLoS ONE  2008;3(6):e2395.
Background
The skills used by winged insects to explore their environment are strongly dependent upon the integration of neurosensory information comprising visual, acoustic and olfactory signals. The neuronal architecture of the wing contains a vast array of different sensors which might convey information to the brain in order to guide the trajectories during flight. In Drosophila, the wing sensory cells are either chemoreceptors or mechanoreceptors and some of these sensors have as yet unknown functions. The axons of these two functionally distinct types of neurons are entangled, generating a single nerve. This simple and accessible coincidental signaling circuitry in Drosophila constitutes an excellent model system to investigate the developmental variability in relation to natural behavioral polymorphisms.
Methodology/Principal Findings
A fluorescent marker was generated in neurons at all stages of the Drosophila life cycle using a highly efficient and controlled genetic recombination system that can be induced in dividing precursor cells (MARCM system, flybase web site). It allows fluorescent signals in axons only when the neuroblasts and/or neuronal cell precursors like SOP (sensory organ precursors) undergo division during the precedent steps. We first show that a robust neurogenesis continues in the wing after the adults emerge from the pupae followed by an extensive axonal growth. Arguments are presented to suggest that this wing neurogenesis in the newborn adult flies was influenced by genetic determinants such as the frequency dependent for gene and by environmental cues such as population density.
Conclusions
We demonstrate that the neuronal architecture in the adult Drosophila wing is unfinished when the flies emerge from their pupae. This unexpected developmental step might be crucial for generating non-heritable variants and phenotypic plasticity. This might therefore constitute an advantage in an unstable ecological system and explain much regarding the ability of Drosophila to robustly adapt to their environment.
doi:10.1371/journal.pone.0002395
PMCID: PMC2405948  PMID: 18545694
24.  Glucose Response of Near-Infrared Alginate-Based Microsphere Sensors Under Dynamic Reversible Conditions 
Abstract
Background
Minimally invasive optical glucose biosensors with increased functional longevity form one of the most promising techniques for continuous glucose monitoring, because of their long-term stability, reversibility, repeatability, specificity, and high sensitivity. They are based on the principle of competitive binding and fluorescence resonance energy transfer. Moving to the near-infrared region of the spectrum has the potential to improve signal throughput for implanted sensors, but requires a change in dye chemistry that could alter response sensitivity, range, and toxicity profiles.
Methods
The near-infrared dissolved-core alginate microsphere sensors were fabricated by emulsion followed by surface coating by layer-by-layer self-assembly. The particles were characterized for sensor stability, sensor response, and reversibility in deionized water and simulated interstitial fluid. The sensor response to step changes in bulk glucose concentrations was also evaluated under dynamic conditions using a microflow cell unit. Finally, in vitro cytotoxicity assays were performed with L929 mouse fibroblast cell lines to demonstrate preliminary biocompatibility of the sensors.
Results
The glucose sensitivity under controlled and dynamic conditions was observed to be 0.86%/mM glucose with an analytical response range of 0–30 mM glucose, covering both the physiological and pathophysiological range. The sensor demonstrated a repeatable, reversible, and reproducible response, with a maximum response time of 120 s. In vitro cytotoxicity assays revealed nearly 95% viability of cells, thereby suggesting that the alginate microsphere sensor system does not exhibit cytotoxicity.
Conclusions
The incorporation of near-infrared dyes shows promise in improving sensor response because of their high sensitivity and improved tissue penetration of infrared light. The sensitivity for the sensors was approximately 1.5 times greater than that observed for visible dye sensors, and the new dye chemistry did not significantly alter the biocompatibility of the materials. These findings provide additional support for the potential application of alginate microspheres and similar systems such as “smart-tattoo” glucose sensors.
doi:10.1089/dia.2011.0057
PMCID: PMC3133682  PMID: 21568749
25.  The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses 
Cell  2008;135(3):422-435.
Homeostatic synaptic scaling is a form of synaptic plasticity that adjusts the strength of all of a neuron’s excitatory synapses up or down to stabilize firing. Current evidence suggests that neurons detect changes in their own firing rates through a set of calcium-dependent sensors that then regulate receptor trafficking to increase or decrease the accumulation of glutamate receptors at synaptic sites. Additional mechanisms may allow local or network-wide changes in activity to be sensed through parallel pathways, generating a nested set of homeostatic mechanisms that operate over different temporal and spatial scales.
doi:10.1016/j.cell.2008.10.008
PMCID: PMC2834419  PMID: 18984155

Results 1-25 (186932)