PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (205754)

Clipboard (0)
None

Related Articles

1.  Two design strategies for enhancement of multilayer–DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning 
Single-layer DNA origami is an efficient method for programmable self-assembly of nanostructures approximating almost any desired two-dimensional shape from ~5 MDa of DNA building material. In this method, a 7 kilobase single “scaffold” strand is assembled with hundreds of oligodeoxyribonucleotide “staple” strands to form a parallel array of double helices. Multiple layers of such DNA sheets also can be designed to assemble into a stack, enabling construction of solid three-dimensional shapes with considerably greater mechanical rigidity than two-dimensional shapes; however, the folding yield often is much lower and the required folding times are much longer. Here we introduce two strategies for designing multi-layer DNA origami that demonstrate potential for boosting assembly yield: (1) individual base pairs can be inserted between crossovers, allowing for greater bowing of helices at positions away from crossovers and therefore reduced electrostatic repulsion. At the same time, this underwinding of double helices increases a destabilizing torsional strain energy but then also increases affinity for intercalators, and binding of such intercalators can relieve this stress. We also have exploited this enhanced affinity for intercalators to PEGylate the surface of the nanostructures in a noncovalent fashion using PEG-tris-acridine. (2) Positioning of staple-strand breaks in the DNA origami such that each staple strand includes a 14 nucleotide (nt) continuous segment that binds to a complementary 14 nt continuous segment of the scaffold can greatly improve folding yields.
doi:10.1039/C2SC20446K
PMCID: PMC3957201  PMID: 24653832
2.  Influence of Cuticle Nanostructuring on the Wetting Behaviour/States on Cicada Wings 
PLoS ONE  2012;7(4):e35056.
The nanoscale protrusions of different morphologies on wing surfaces of four cicada species were examined under an environmental scanning electron microscope (ESEM). The water contact angles (CAs) of the wing surfaces were measured along with droplet adhesion values using a high-sensitivity microelectromechanical balance system. The water CA and adhesive force measurements obtained were found to relate to the nanostructuring differences of the four species. The adhesive forces in combination with the Cassie-Baxter and Wenzel approximations were used to predict wetting states of the insect wing cuticles. The more disordered and inhomogeneous surface of the species Leptopsalta bifuscata demonstrated a Wenzel type wetting state or an intermediate state of spreading and imbibition with a CA of 81.3° and high adhesive force of 149.5 µN. Three other species (Cryptotympana atrata, Meimuna opalifer and Aola bindusara) exhibited nanostructuring of the form of conically shaped protrusions, which were spherically capped. These surfaces presented a range of high adhesional values; however, the CAs were highly hydrophobic (C. atrata and A. bindusara) and in some cases close to superhydrophobic (M. opalifer). The wetting states of A. bindusara, C. atrata and M. opalifer (based on adhesion and CAs) are most likely represented by the transitional region between the Cassie-Baxter and Wenzel approximations to varying degrees.
doi:10.1371/journal.pone.0035056
PMCID: PMC3335046  PMID: 22536351
3.  Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials 
Summary
Hierarchically structured flower leaves (petals) of many plants are superhydrophobic, but water droplets do not roll-off when the surfaces are tilted. On such surfaces water droplets are in the “Cassie impregnating wetting state”, which is also known as the “petal effect”. By analyzing the petal surfaces of different species, we discovered interesting new wetting characteristics of the surface of the flower of the wild pansy (Viola tricolor). This surface is superhydrophobic with a static contact angle of 169° and very low hysteresis, i.e., the petal effect does not exist and water droplets roll-off as from a lotus (Nelumbo nucifera) leaf. However, the surface of the wild pansy petal does not possess the wax crystals of the lotus leaf. Its petals exhibit high cone-shaped cells (average size 40 µm) with a high aspect ratio (2.1) and a very fine cuticular folding (width 260 nm) on top. The applied water droplets are in the Cassie–Baxter wetting state and roll-off at inclination angles below 5°. Fabricated hydrophobic polymer replicas of the wild pansy were prepared in an easy two-step moulding process and possess the same wetting characteristics as the original flowers. In this work we present a technical surface with a new superhydrophobic, low adhesive surface design, which combines the hierarchical structuring of petals with a wetting behavior similar to that of the lotus leaf.
doi:10.3762/bjnano.2.27
PMCID: PMC3148064  PMID: 21977435
anti-adhesive; petal effect; petal structures; polymer replication; superhydrophobic
4.  Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip 
Langmuir  2012;28(3):1931-1941.
This paper describes the use of capillary pressure to initiate and control the rate of spontaneous liquid-liquid flow through microfluidic channels. In contrast to flow driven by external pressure, flow driven by capillary pressure is dominated by interfacial phenomena and is exquisitely sensitive to the chemical composition and geometry of the fluids and channels. A step-wise change in capillary force was initiated on a hydrophobic SlipChip by slipping a shallow channel containing an aqueous droplet into contact with a slightly deeper channel filled with immiscible oil. This action induced spontaneous flow of the droplet into the deeper channel. A model predicting the rate of spontaneous flow was developed based on the balance of net capillary force with viscous flow resistance, using as inputs the liquid-liquid surface tension, the advancing and receding contact angles at the three-phase aqueous-oil-surface contact line, and the geometry of the devices. The impact of contact angle hysteresis, the presence or absence of a lubricating oil layer, and adsorption of surface-active compounds at liquid-liquid or liquid-solid interfaces were quantified. Two regimes of flow spanning a 104-fold range of flow rates were obtained and modeled quantitatively, with faster (mm/s) flow obtained when oil could escape through connected channels as it was displaced by flowing aqueous solution, and slower (micrometer/s) flow obtained when oil escape was mostly restricted to a μm-scale gap between the plates of the SlipChip (“dead-end flow”). Rupture of the lubricating oil layer (reminiscent of a Cassie-Wenzel transition) was proposed as a cause of discrepancy between the model and the experiment. Both dilute salt solutions and complex biological solutions such as human blood plasma could be flowed using this approach. We anticipate that flow driven by capillary pressure will be useful for design and operation of flow in microfluidic applications that do not require external power, valves, or pumps, including on SlipChip and other droplet- or plug-based microfluidic devices. In addition, this approach may be used as a sensitive method of evaluating interfacial tension, contact angles and wetting phenomena on chip.
doi:10.1021/la204399m
PMCID: PMC3271727  PMID: 22233156
5.  Sorting of droplets by migration on structured surfaces 
Summary
Background: Controlled transport of microdroplets is a topic of interest for various applications. It is well known that liquid droplets move towards areas of minimum contact angle if placed on a flat solid surface exhibiting a gradient of contact angle. This effect can be utilised for droplet manipulation. In this contribution we describe how controlled droplet movement can be achieved by a surface pattern consisting of cones and funnels whose length scales are comparable to the droplet diameter.
Results: The surface energy of a droplet attached to a cone in a symmetry-preserving way can be smaller than the surface energy of a freely floating droplet. If the value of the contact angle is fixed and lies within a certain interval, then droplets sitting initially on a cone can gain energy by moving to adjacent cones.
Conclusion: Surfaces covered with cone-shaped protrusions or cavities may be devised for constructing “band-conveyors” for droplets. In our approach, it is essentially the surface structure which is varied, not the contact angle. It may be speculated that suitably patterned surfaces are also utilised in biological surfaces where a large variety of ornamentations and surface structuring are often observed.
doi:10.3762/bjnano.2.25
PMCID: PMC3148036  PMID: 21977433
microdroplets; microfluidics; surface; surface energy; surface structures
6.  Non-Contaminating Camouflage: Multifunctional Skin Microornamentation in the West African Gaboon Viper (Bitis rhinoceros) 
PLoS ONE  2014;9(3):e91087.
The West African Gaboon viper (Bitis rhinoceros) has an extraordinary coloration of pale brown and velvety black markings. The velvety black appearance is caused by a unique hierarchical surface structures which was not found on the pale brown scales. In the present study we examined the wettability of the vipeŕs scales by measuring contact angles of water droplets. Velvet black scale surfaces had high static contact angles beyond 160° and low roll-off angles below 20° indicating an outstanding superhydrophobicity. Our calculations showed that the Cassie-Baxter model describes well wettability effects for these surfaces. Self-cleaning capabilities were determined by contaminating the scales with particles and fogging them until droplets formed. Black scales were clean after fogging, while pale scales stayed contaminated. Black scales feature multifunctional structures providing not only water-repellent but also self-cleaning properties. The pattern of nanoridges can be used as a model for surface-active technical surfaces.
doi:10.1371/journal.pone.0091087
PMCID: PMC3944882  PMID: 24599379
7.  Electrically Controlled Membranes Exploiting Cassie-Wenzel Wetting Transitions 
Scientific Reports  2013;3:3028.
We report electrically controlled membranes which become permeable when an electrical field is exerted on a droplet deposited on the membrane. Micro-porous polycarbonate membranes are obtained with the breath-figures assembly technique, using micro-scaled stainless steel gauzes as supports. The membranes demonstrate pronounced Cassie-Baxter wetting. Air cushions trapped by the droplet prevent water penetration through the membrane. We demonstrate two possibilities for controlling the permeability of the membrane, namely contact and non-contact scenarios. When an electrical field is exerted on a droplet deposited on the membrane, the triple-line is de-pinned and the wetting transition occurs in the non-contact scheme. Thus, the membrane becomes permeable. The contact scheme of the permeability control is based on the electrowetting phenomenon.
doi:10.1038/srep03028
PMCID: PMC3805972  PMID: 24149769
8.  Minimal Size of Coffee Ring Structure 
The journal of physical chemistry. B  2010;114(16):5269-5274.
A macroscopic evaporating water droplet with suspended particles on a solid surface will form a ring-like structure at the pinned contact line due to induced capillary flow. As the droplet size shrinks, the competition between the time scales of the liquid evaporation and the particle movement may influence the resulting ring formation. When the liquid evaporates much faster than the particle movement, coffee ring formation may cease. Here, we experimentally show that there exists a lower limit of droplet size, Dc, for the successful formation of a coffee ring structure. When the particle concentration is above a threshold value, Dc can be estimated by considering the collective effects of the liquid evaporation and the particle diffusive motion within the droplet. For suspended particles of size ~100 nm, the minimum diameter of the coffee ring structure is found to be ~10 µm.
doi:10.1021/jp912190v
PMCID: PMC2902562  PMID: 20353247
9.  Organizing DNA Origami Tiles Into Larger Structures Using Pre-formed Scaffold Frames 
Nano Letters  2011;11(7):2997-3002.
Structural DNA nanotechnology utilizes DNA molecules as programmable information-coding polymers to create higher order structures at the nanometer scale. An important milestone in structural DNA nanotechnology was the development of scaffolded DNA origami in which a long single-stranded viral genome (scaffold strand) is folded into arbitrary shapes by hundreds of short synthetic oligonucleotides (staple strands). The achievable dimensions of the DNA origami tiles units are currently limited by the length of the scaffold strand. Here we demonstrate a strategy referred to as ‘super-origami’ or ‘origami of origami’ to scale up DNA origami technology. First, this method uses a collection of bridge strands to pre-fold a single stranded DNA scaffold into a loose framework. Subsequently, pre-formed individual DNA origami tiles are directed onto the loose framework so that each origami tile serves as a large staple. Using this strategy, we demonstrate the ability to organize DNA origami nanostructures into larger spatially addressable architectures.
doi:10.1021/nl201603a
PMCID: PMC3319874  PMID: 21682348
Structural DNA nanotechnology; self-assembly; DNA origami; scale up
10.  Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation 
Wetting properties of biomaterials, in particular nanomaterials, play an important role, as these influence interactions with biological elements, such as proteins, bacteria, and cells. In this study, the wetting phenomenon of titanium substrates coated with selenium nanoparticles was studied using experimental and mathematical modeling tools. Importantly, these selenium-coated titanium substrates were previously reported to increase select protein adsorption (such as vitronectin and fibronectin), to decrease bacteria growth, and increase bone cell growth. Increased selenium nanoparticle coating density resulted in higher contact angles but remained within the hydrophilic regime. This trend was found in disagreement with the Wenzel model, which is widely used to understand the wetting properties of rough surfaces. The trend also did not fit well with the Cassie–Baxter model, which was developed to understand the wetting properties of composite surfaces. A modified wetting model was thus proposed in this study, to understand the contributing factors of material properties to the hydrophilicity/hydrophobicity of these nanostructured selenium-coated surfaces. The analysis and model created in this study can be useful in designing and/or understanding the wetting behavior of numerous biomedical materials and in turn, biological events (such as protein adsorption as well as bacteria and mammalian cell functions).
doi:10.2147/IJN.S42970
PMCID: PMC3669097  PMID: 23737667
hydrophilicity, hydrophobicity, Wenzel model, Cassie; Baxter model, free energy, implant material, proteins, cells, bacteria
11.  Theoretical Model of Droplet Wettability on a Low-Surface-Energy Solid under the Influence of Gravity 
The Scientific World Journal  2014;2014:647694.
The wettability of droplets on a low surface energy solid is evaluated experimentally and theoretically. Water-ethanol binary mixture drops of several volumes are used. In the experiment, the droplet radius, height, and contact angle are measured. Analytical equations are derived that incorporate the effect of gravity for the relationships between the droplet radius and height, radius and contact angle, and radius and liquid surface energy. All the analytical equations display good agreement with the experimental data. It is found that the fundamental wetting behavior of the droplet on the low surface energy solid can be predicted by our model which gives geometrical information of the droplet such as the contact angle, droplet radius, and height from physical values of liquid and solid.
doi:10.1155/2014/647694
PMCID: PMC3910366  PMID: 24511297
12.  Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife 
PLoS ONE  2012;7(9):e45893.
A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.
doi:10.1371/journal.pone.0045893
PMCID: PMC3454355  PMID: 23029297
13.  Structure-Function Studies of Blood and Air Capillaries in Chicken Lung Using 3D Electron Microscopy 
Avian pulmonary capillaries differ from those of mammals in three important ways. The blood-gas barrier is much thinner, it is more uniform in thickness, and the capillaries are far more rigid when their transmural pressure is altered. The thinness of the barrier is surprising because it predisposes the capillaries to stress failure. A possible mechanism for these differences is that avian pulmonary capillaries, unlike mammalian, are supported from the outside by air capillaries, but the details of the support are poorly understood. To clarify this we studied the blood and air capillaries in chicken lung using transmission electron microscopy (EM) and two relatively new techniques that allow 3D visualization: electron tomography and serial block-face scanning EM. These studies show that the pulmonary capillaries are flanked by epithelial bridges composed of two extremely thin epithelial cells with large surface areas. The junctions of the bridges with the capillary walls show thickening of the epithelial cells and an accumulation of extracellular matrix. Collapse of the pulmonary capillaries when the pressure outside them is increased is apparently prevented by the guy wire-like action of the epithelial bridges. The enlarged junctions between the bridges and the walls could provide a mechanism that limits the hoop stress in the capillary walls when the pressure inside them is increased. The support of the pulmonary capillaries may also be explained by an interdependence mechanism whereby the capillaries are linked to a rigid assemblage of air capillaries. These EM studies show the supporting structures in greater detail than has previously been possible, particularly in 3D, and they allow a more complete analysis of the mechanical forces affecting avian pulmonary capillaries.
doi:10.1016/j.resp.2009.12.010
PMCID: PMC2821748  PMID: 20038456
epithelial bridges; epithelial plates; stress failure; electron tomography; serial block-face scanning electron microscopy
14.  Targeted Cell Immobilization by Ultrasound Microbeam 
Biotechnology and bioengineering  2011;108(7):1643-1650.
Various techniques exerting mechanical stress on cells have been developed to investigate cellular responses to externally controlled stimuli. Fundamental mechanotransduction processes, how applied physical forces are converted into biochemical signals, have often been examined by transmitting such forces through cells and probing its pathway at cellular levels. In fact, many cellular biomechanics studies have been performed by trapping (or immobilizing) individual cells, either attached to solid substrates or suspended in liquid media. In that context, we demonstrated two-dimensional acoustic trapping, where a lipid droplet of 125 μm in diameter was directed transversely towards the focus (or the trap center) similar to that of optical tweezers. Under the influence of restoring forces created by a 30 MHz focused ultrasound beam, the trapped droplet behaved as if tethered to the focus by a linear spring. In order to apply this method to cellular manipulation in the Mie regime (cell diameter > wavelength), the availability of sound beams with its beamwidth approaching cell size is crucial. This can only be achieved at a frequency higher than 100 MHz. We define ultrasound beams in the frequency range from 100 MHz to a few GHz as ultrasound microbeams because the lateral beamwidth at the focus would be in the micron range (reviewer #1). Hence a zinc oxide (ZnO) transducer that was designed and fabricated to transmit a 200 MHz focused sound beam was employed to immobilize a 10 μm human leukemia cell (K-562) within the trap. The cell was laterally displaced with respect to the trap center by mechanically translating the transducer over the focal plane. Both lateral displacement and position trajectory of the trapped cell were probed in a two-dimensional space, indicating that the retracting motion of these cells was similar to that of the lipid droplets at 30 MHz. The potential of this tool for studying cellular adhesion between white blood cells and endothelial cells was discussed, suggesting its capability as a single cell manipulator.
doi:10.1002/bit.23073
PMCID: PMC3098310  PMID: 21328319
15.  Anisotropic material synthesis by capillary flow in a fluid stripe 
Biomaterials  2011;32(27):6493-6504.
We present a simple bench-top technique to produce centimeter long concentration gradients in biomaterials incorporating soluble, material, and particle gradients. By patterning hydrophilic regions on a substrate, a stripe of prepolymer solution is held in place on a glass slide by a hydrophobic boundary. Adding a droplet to one end of this “pre-wet” stripe causes a rapid capillary flow that spreads the droplet along the stripe to generate a gradient in the relative concentrations of the droplet and pre-wet solutions. The gradient length and shape are controlled by the pre-wet and droplet volumes, stripe thickness, fluid viscosity and surface tension. Gradient biomaterials are produced by crosslinking gradients of prepolymer solutions. Demonstrated examples include a concentration gradient of cells encapsulated in three dimensions (3D) within a homogeneous biopolymer and a constant concentration of cells encapsulated in 3D within a biomaterial gradient exhibiting a gradient in cell spreading. The technique employs coated glass slides that may be purchased or custom made from tape and hydrophobic spray. The approach is accessible to virtually any researcher or student and should dramatically reduce the time required to synthesize a wide range of gradient biomaterials. Moreover, since the technique employs passive mechanisms it is ideal for remote or resource poor settings.
doi:10.1016/j.biomaterials.2011.05.057
PMCID: PMC3155810  PMID: 21684595
16.  Patterned paper as a template for the delivery of reactants in the fabrication of planar materials 
Soft matter  2010;6(18):4303-4309.
This account reviews the use of templates, fabricated by patterning paper, for the delivery of aqueous solutions of reactants (predominantly, ions) in the preparation of structured, thin materials (e.g., films of ionotropic hydrogels). In these methods, a patterned sheet of paper transfers an aqueous solution of reagent to a second phase—either solid or liquid—brought into contact with the template; this process can form solid structures with thicknesses that are typically ≤1.5 mm. The shape of the template and the pattern of a hydrophobic barrier on the paper control the shape of the product, in its plane, by restricting the delivery of the reagent in two dimensions. The concentration of the reagents, and the duration that the template remains in contact with the second phase, control growth in the third dimension (i.e., thickness). The method is especially useful in fabricating shaped films of ionotropic hydrogels (e.g., calcium alginate) by controlling the delivery of solutions of multivalent cations to solutions of anionic polymers. The templates can also be used to direct reactions that generate patterns of solid precipitates within sheets of paper. This review examines applications of the method for: (i) patterning bacteria in two dimensions within a hydrogel film, (ii) manipulating hydrogel films and sheets of paper magnetically, and (iii) generating dynamic 3-D structures (e.g., a cylinder of rising bubbles of O2) from sheets of paper with 2-D patterns of a catalyst (e.g., Pd0) immersed in appropriate reagents (e.g., 1% H2O2 in water).
doi:10.1039/C0SM00031K
PMCID: PMC3066021  PMID: 21461186
17.  Atomistics of vapour–liquid–solid nanowire growth 
Nature Communications  2013;4:1956.
Vapour–liquid–solid route and its variants are routinely used for scalable synthesis of semiconducting nanowires, yet the fundamental growth processes remain unknown. Here we employ atomic-scale computations based on model potentials to study the stability and growth of gold-catalysed silicon nanowires. Equilibrium studies uncover segregation at the solid-like surface of the catalyst particle, a liquid AuSi droplet, and a silicon-rich droplet–nanowire interface enveloped by heterogeneous truncating facets. Supersaturation of the droplets leads to rapid one-dimensional growth on the truncating facets and much slower nucleation-controlled two-dimensional growth on the main facet. Surface diffusion is suppressed and the excess Si flux occurs through the droplet bulk which, together with the Si-rich interface and contact line, lowers the nucleation barrier on the main facet. The ensuing step flow is modified by Au diffusion away from the step edges. Our study highlights key interfacial characteristics for morphological and compositional control of semiconducting nanowire arrays.
The vapour–liquid–solid method is used to produce semiconducting nanowires but the fundamental processes involved are poorly understood. Wang et al. use atomic-scale simulations to elucidate the mechanisms involved in the growth and stability of gold-catalysed silicon nanowires.
doi:10.1038/ncomms2956
PMCID: PMC3709494  PMID: 23752586
18.  A cell culture system for the structure and hydrogel properties of basement membranes; Application to capillary walls 
In specialized capillary beds such as the kidney glomerulus, the sheet-like structure of the basement membrane in conjunction with opposing monolayers of endothelium and epithelium form the functioning filtration unit of the kidney. Using a novel cross-linking method on a collagen substrate, we have created a novel hydrogel scaffold to substitute for the basement membrane. Using a simple casting method to create thin films of the hydrogel scaffold (1–5μm), the scaffolds were suitable for long-term static culture, and supported cell attachment and long term cell viability similar to a standard type I collagen substrate. Bulk diffusion and protein permeability of the hydrogel scaffold were evaluated, in addition to its use in a perfusion chamber where it withstood hydraulic pressures typical for glomerular capillaries. This system thus provided a suitable cell substrate for the co-culture of renal epithelial podocytes and endothelial cells in a device that replicates the geometry of the in vivo juxtaposition of the two cell types in relation to their basement membrane.
doi:10.1007/s12195-012-0221-3
PMCID: PMC3475204  PMID: 23087767
kidney; podocyte; endothelium; extracellular matrix; collagen; glomerular filtration barrier
19.  Immobilization of Polymer-Decorated Liquid Crystal Droplets on Chemically Tailored Surfaces 
We demonstrate that the assembly of an amphiphilic polyamine on the interfaces of micrometer-sized droplets of a thermotropic liquid crystal (LC) dispersed in aqueous solutions can be used to facilitate the immobilization of LC droplets on chemically functionalized surfaces. Polymer 1 was designed to contain both hydrophobic (alkyl-functionalized) and hydrophilic (primary and tertiary amine-functionalized) side chain functionality. The assembly of this polymer at the interfaces of aqueous dispersions of LC droplets was achieved by spontaneous adsorption of polymer from aqueous solution. Polymer adsorption triggered transitions in the orientational ordering of the LCs, as observed by polarized light and bright-field microscopy. We demonstrate that the presence of polymer 1 on the interfaces of these droplets can be exploited to immobilize LC droplets on planar solid surfaces through covalent bond formation (e.g., for surfaces coated with polymer multilayers containing reactive azlactone functionality) or through electrostatic interactions (e.g., for surfaces coated with multilayers containing hydrolyzed azlactone functionality). Characterization of immobilized LC droplets by polarized, fluorescence, and laser scanning confocal microscopy revealed the general spherical shape of the polymer-coated LC droplets to be maintained after immobilization, and that immobilization led to additional ordering transitions within the droplets that was dependent on the nature of the surfaces with which they were in contact. Polymer 1-functionalized LC droplets were not immobilized on polymer multilayers treated with poly(ethylene imine) (PEI). We demonstrate that the ability to design surfaces that promote or prevent the immobilization of polymer-functionalized LC droplets can exploited to pattern the immobilization of LC droplets on surfaces. The results of this investigation provide the basis of an approach that could be used to tailor the properties of dispersed LC emulsions and to immobilize these droplets on functional surfaces of interest in a broad range of fundamental and applied contexts.
doi:10.1021/la100376u
PMCID: PMC2883006  PMID: 20405867
20.  Formation of Droplets of Alternating Composition in Microfluidic Channels and Applications to Indexing of Concentrations in Droplet-Based Assays 
Analytical chemistry  2004;76(17):4977-4982.
For screening the conditions for a reaction by using droplets (or plugs) as microreactors, the composition of the droplets must be indexed. Indexing here refers to measuring the concentration of a solute by addition of a marker, either internal or external. Indexing may be performed by forming droplet pairs, where in each pair the first droplet is used to conduct the reaction, and the second droplet is used to index the composition of the first droplet. This paper characterizes a method for creating droplet pairs by generating alternating droplets, of two sets of aqueous solutions in a flow of immiscible carrier fluid within PDMS and glass microfluidic channels. The paper also demonstrates that the technique can be used to index the composition of the droplets, and this application is illustrated by screening conditions of protein crystallization. The fluid properties required to form the steady flow of the alternating droplets in a microchannel were characterized as a function of the capillary number Ca and water fraction. Four regimes were observed. At the lowest values of Ca, the droplets of the two streams coalesced; at intermediate values of Ca the alternating droplets formed reliably. At even higher values of Ca, shear forces dominated and caused formation of droplets that were smaller than the cross-sectional dimension of the channel; at the highest values of Ca, coflowing laminar streams of the two immiscible fluids formed. In addition to screening of protein crystallization conditions, understanding of the fluid flow in this system may extend this indexing approach to other chemical and biological assays performed on a microfluidic chip.
doi:10.1021/ac0495743
PMCID: PMC1766978  PMID: 15373431
21.  Insect tricks: two-phasic foot pad secretion prevents slipping 
Many insects cling to vertical and inverted surfaces with pads that adhere by nanometre-thin films of liquid secretion. This fluid is an emulsion, consisting of watery droplets in an oily continuous phase. The detailed function of its two-phasic nature has remained unclear. Here we show that the pad emulsion provides a mechanism that prevents insects from slipping on smooth substrates. We discovered that it is possible to manipulate the adhesive secretion in vivo using smooth polyimide substrates that selectively absorb its watery component. While thick layers of polyimide spin-coated onto glass removed all visible hydrophilic droplets, thin coatings left the emulsion in its typical form. Force measurements of stick insect pads sliding on these substrates demonstrated that the reduction of the watery phase resulted in a significant decrease in friction forces. Artificial control pads made of polydimethylsiloxane showed no difference when tested on the same substrates, confirming that the effect is caused by the insects’ fluid-based adhesive system. Our findings suggest that insect adhesive pads use emulsions with non-Newtonian properties, which may have been optimized by natural selection. Emulsions as adhesive secretions combine the benefits of ‘wet’ adhesion and resistance against shear forces.
doi:10.1098/rsif.2009.0308
PMCID: PMC2842779  PMID: 19755498
insect adhesion; friction; tribology; biomechanics; emulsion
22.  Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film 
The Scientific World Journal  2013;2013:539457.
The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite.
doi:10.1155/2013/539457
PMCID: PMC3835911  PMID: 24302862
23.  Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces 
PLoS ONE  2012;7(5):e36983.
Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.
doi:10.1371/journal.pone.0036983
PMCID: PMC3365046  PMID: 22693563
24.  Butterfly proboscis: combining a drinking straw with a nanosponge facilitated diversification of feeding habits 
The ability of Lepidoptera, or butterflies and moths, to drink liquids from rotting fruit and wet soil, as well as nectar from floral tubes, raises the question of whether the conventional view of the proboscis as a drinking straw can account for the withdrawal of fluids from porous substrates or of films and droplets from floral tubes. We discovered that the proboscis promotes capillary pull of liquids from diverse sources owing to a hierarchical pore structure spanning nano- and microscales. X-ray phase-contrast imaging reveals that Plateau instability causes liquid bridges to form in the food canal, which are transported to the gut by the muscular sucking pump in the head. The dual functionality of the proboscis represents a key innovation for exploiting a vast range of nutritional sources. We suggest that future studies of the adaptive radiation of the Lepidoptera take into account the role played by the structural organization of the proboscis. A transformative two-step model of capillary intake and suctioning can be applied not only to butterflies and moths but also potentially to vast numbers of other insects such as bees and flies.
doi:10.1098/rsif.2011.0392
PMCID: PMC3284131  PMID: 21849382
Lepidoptera; capillarity; flexible microfluidics; permeability; plateau instability; porous materials
25.  The Langmuir-Blodgett Technique as a Tool for Homeotropic Alignment of Fluorinated Liquid Crystals Mixed with Arachidic Acid 
Some fluoro-substituted liquid crystals mixed with arachidic acid in monolayers formed at air-liquid (Langmuir films) and air-solid substrate (Langmuir-Blodgett films) interfaces were investigated. Molecular organization in Langmuir films was determined on the basis of the analysis of the shape of the surface pressure-mean molecular area isotherm and observations made by means of a Brewster angle microscope. It was found that in the compression process the liquid crystal molecules are pushed out towards the top of the first monolayer being in direct contact with the subphase. Langmuir films were transferred onto the quartz substrates at various surface pressures and mono- and multilayered Langmuir-Blodgett films were obtained. The films were characterized using electronic absorption measurements. The conditions for obtaining the homeotropic orientation of the liquid crystal molecules were determined.
doi:10.3390/ijms12084923
PMCID: PMC3179142  PMID: 21954335
fluoro-substituted liquid crystal; Langmuir film; Langmuir-Blodgett film; Brewster angle microscopy; electronic absorption

Results 1-25 (205754)