Search tips
Search criteria

Results 1-25 (1217196)

Clipboard (0)

Related Articles

1.  No significant association between patient self-reported non-adherence to antiretrovirals and HIV-tropism: a preliminary analysis 
Nonadherence to antiretroviral therapy (ART) may cause virologic failure and disease progression has been associated with switch of viral coreceptor usage from CCR5 to CXCR4. We aimed to assess the association between patient-reported non-adherence and HIV tropism. This is a cross-sectional analysis. HIV-tropism was performed within routine clinical practice either at start of ART or at virological failure. Adherence questionnaire includes: how many times ART has been taken during the last month, missed doses in the last week, timing deviation, refill interruption, drug holidays. Demographics, epidemiological data, HIV and ART history, CD4 and HIVRNA were collected. To assess co-receptor tropism, env V3 genotyping from viremic plasma HIVRNA was performed. For the analysis, dual/mixed viruses were considered as X4. We included 102 individuals: 76% males; median age 42 y (IQR, 37–46); transmission was heterosexual 37%, homosexual 31%, intravenous drug use 29%. Median nadir of CD4 154/mmc (IQR, 53–274), median zenith of HIVRNA 5.26 (4.72–5.70), 46% had AIDS. 124 tropism tests were: 78% R5, 17% X4, 5% dual/mixed. In cases with previous ART, mono/dual ART was found in 26%, median number of regimens was 5 (IQR, 2–10), median time on triple-ART was 54 months (IQR, 0–123) with median time of HIVRNA <50 c/ml of 16 months (IQR, 6.5–34.9). At HIV-tropism, median CD4 and HIV RNA were 321/mmc (IQR, 210–436) and 2.65 (IQR, 2.65–4.91), respectively. Median time between adherence questionnaire and HIV-tropism was 68 days (IQR, 23–116). At adherence questionnaire, median percentage of ART taken during the last month was 100% (IQR, 90–100), 39% reported missed doses in the last week, 40% timing deviation, 7% refill interruption, 17% drug holidays. At univariate analysis, no statistically significant association between non-adherence and dual/mixed-X4 viruses was found (p>0.1). Also gender, age, HIV transmission, AIDS, CD4 nadir, HIVRNA zenith, mono/dual ART, and number of ART regimens were not associated with type of tropism. Only longer time with undetectable HIVRNA before tropism test showed a lower probability of dual/mixed-X4 viruses (OR for each month 0.95; 95% CI 0.90–1.00; p=0.06). No significant association between adherence and HIV-tropism was found in this preliminary analysis. It is possible that patient self-reported adherence is not able to capture nonadherence behaviors that underlie more pronounced viral replication which may be necessary for tropism switch.
PMCID: PMC3512465
2.  Association between Latent Proviral Characteristics and Immune Activation in Antiretrovirus-Treated Human Immunodeficiency Virus Type 1-Infected Adults 
Journal of Virology  2014;88(15):8629-8639.
Generalized immune activation during HIV infection is associated with an increased risk of cardiovascular disease, neurocognitive disease, osteoporosis, metabolic disorders, and physical frailty. The mechanisms driving this immune activation are poorly understood, particularly for individuals effectively treated with antiretroviral medications. We hypothesized that viral characteristics such as sequence diversity may play a role in driving HIV-associated immune activation. We therefore sequenced proviral DNA isolated from peripheral blood mononuclear cells from HIV-infected individuals on fully suppressive antiretroviral therapy. We performed phylogenetic analyses, calculated viral diversity and divergence in the env and pol genes, and determined coreceptor tropism and the frequency of drug resistance mutations. Comprehensive immune profiling included quantification of immune cell subsets, plasma cytokine levels, and intracellular signaling responses in T cells, B cells, and monocytes. These antiretroviral therapy-treated HIV-infected individuals exhibited a wide range of diversity and divergence in both env and pol genes. However, proviral diversity and divergence in env and pol, coreceptor tropism, and the level of drug resistance did not significantly correlate with markers of immune activation. A clinical history of virologic failure was also not significantly associated with levels of immune activation, indicating that a history of virologic failure does not inexorably lead to increased immune activation as long as suppressive antiretroviral medications are provided. Overall, this study demonstrates that latent viral diversity is unlikely to be a major driver of persistent HIV-associated immune activation.
IMPORTANCE Chronic immune activation, which is associated with cardiovascular disease, neurologic disease, and early aging, is likely to be a major driver of morbidity and mortality in HIV-infected individuals. Although treatment of HIV with antiretroviral medications decreases the level of immune activation, levels do not return to normal. The factors driving this persistent immune activation, particularly during effective treatment, are poorly understood. In this study, we investigated whether characteristics of the latent, integrated HIV provirus that persists during treatment are associated with immune activation. We found no relationship between latent viral characteristics and immune activation in treated individuals, indicating that qualities of the provirus are unlikely to be a major driver of persistent inflammation. We also found that individuals who had previously failed treatment but were currently effectively treated did not have significantly increased levels of immune activation, providing hope that past treatment failures do not have a lifelong “legacy” impact.
PMCID: PMC4135944  PMID: 24850730
3.  Envelope co-receptor tropism, drug resistance, and viral evolution among subtype C HIV-1 infected individuals receiving non-suppressive antiretroviral therapy 
In resource-constrained settings, antiretroviral treatment (ART) is often continued based on clinical and CD4 responses, without virologic monitoring. ART with incomplete viral suppression was assessed in 27 subjects with subtype C HIV-1 by measuring plasma HIV-1 RNA, drug resistance, viral tropism, and evolution in polymerase (pol) and envelope (env) genes. The association between these viral parameters and CD4 cell change over time was analyzed using linear regression models. Increased area under the curve of HIV-1 RNA replication was a predictor of lower CD4 cell gains (p <0.007), while less drug resistance measured as a genotypic susceptibility score (GSS) (p=0.065), and lower rates of evolution in pol and env genes (p= 0.08 and 0.097, respectively) measured as genetic distance were modestly associated with increasing CD4 cell counts. Evolution of pol and env were correlated (R2 = 0.48, p=0.005), however, greater evolution was identified in env vs. pol (p <0.05). CXCR4-usage (X4) was detected in 14/27 (52%) but no differences in CD4 cell change or plasma viremia were associated with X4-usage. Among subtype C HIV-1 infected patients in Zimbabwe receiving incompletely suppressive ART, higher virus replication and lower CD4 cell gains were associated with drug resistance and evolution of polymerase and envelope.
PMCID: PMC2818215  PMID: 19295330
Viral evolution; tropism; CD4 response; subtype C HIV; antiretroviral therapy
4.  Increased mutations in env and pol suggest greater HIV-1 replication in sputum-compared to blood-derived viruses 
AIDS (London, England)  2009;23(8):923-928.
Low-level HIV-1 replication may occur during antiretroviral therapy (ART) that suppresses plasma HIV-1 RNA to <50c/mL (suppressive ART). Antiretroviral drugs appear less effective in macrophages and monocytes compared to lymphocytes, both in vitro, and as implied in vivo by greater viral evolution observed during suppressive ART. Our objective was to examine sputum, which is rich in macrophages for evidence of increased HIV-1 replication compared to that in the blood during suppressive ART.
Cross sectional study during suppressive ART. Comparison of HIV-1 DNA sequences derived from induced sputa and peripheral blood mononuclear cells (PBMC).
Multiple sequences encoding HIV-1 reverse transcriptase, protease, and envelope were generated using single-genome-sequencing. Reverse transcriptase and protease sequences were analyzed for genotypic drug resistance. The evolutionary distances of env sequences from the inferred most recent common ancestor of infection were calculated and CXCR4 co-receptor usage was predicted.
970 bidirectional sequences from 11 individuals were analyzed. HIV-1 env and pol derived from sputa had greater frequency of drug resistance mutations (P = 0.05), evolutionary divergence (P = 0.004) and tendency for CXCR4 usage (P = 0.1) compared to viruses derived from PBMC.
The greater frequency of HIV-1 drug resistance mutations and divergence of HIV-1 env in sputa- compared to PBMC-derived viruses suggests greater HIV-1 replication in the respiratory tract compared to the blood. Characterization of viral evolution over time and by cell-type could identify cells that provide a sanctuary for low-level viral replication in the respiratory tract during suppressive ART.
PMCID: PMC2677633  PMID: 19349849
drug resistance; highly active antiretroviral therapy; HIV-1; lung; macrophages; replication; sputum; virus
5.  X4 Tropic Multi-Drug Resistant Quasi-Species Detected at the Time of Primary HIV-1 Infection Remain Exclusive or at Least Dominant Far from PHI 
PLoS ONE  2011;6(8):e23301.
Our objective was to analyze the evolution of resistance mutations (RM) and viral tropism of multi-drug-resistant (MDR) strains detected at primary HIV-1 infection (PHI). MDR HIV strain was defined as the presence of genotypic resistance to at least 1 antiretroviral of the 3 classes. Tropism determinations (CCR5 or CXCR4) were performed on baseline plasma HIV-RNA and/or PBMC-HIV-DNA samples, then during follow-up using population-based sequencing of V3 loop and phenotypic tests. Clonal analysis was performed at baseline for env, RT and protease genes, and for HIV-DNA env gene during follow-up. Five patients were eligible. At baseline, RT, protease and env clones from HIV-RNA and HIV-DNA were highly homogenous for each patient; genotypic tropism was R5 in 3 (A,B,C) and X4 in 2 patients (D,E). MDR strains persisted in HIV-DNA throughout follow-up in all patients. For patient A, tropism remained R5 with concordance between phenotypic and genotypic tests. Clonal analysis on Month (M) 78 HIV-DNA evidenced exclusively R5 (21/21) variants. In patient B, clonal analysis at M36 showed exclusively R5 variants (19/19) using both genotypic and phenotypic tests. In patient C, baseline tropism was R5 by genotypic test and R5/X4 by phenotypic test. An expansion of these X4 clones was evidenced by clonal analysis on M72 HIV-DNA (12/14 X4 and 2/14 R5 variants). In patient D, baseline tropism was X4 with concordance between both techniques and HIV-RNA and HIV-DNA remained X4-tropic up to M72, confirmed by the clonal analysis. Patient E harboured highly homogenous X4-using population at baseline; tropism was unchanged at M1 and M18. In all patients, the initial MDR population was highly homogenous initially, supporting the early expansion of a monoclonal population and its long-term persistence. X4-tropic variants present at baseline were still exclusive (patients D and E) or dominant (at least one time point, patient C) far from PHI.
PMCID: PMC3160852  PMID: 21887243
6.  Contribution of Human Immunodeficiency Virus Type 1 Minority Variants to Reduced Drug Susceptibility in Patients on an Integrase Strand Transfer Inhibitor-Based Therapy 
PLoS ONE  2014;9(8):e104512.
The role of HIV-1 minority variants on transmission, pathogenesis, and virologic failure to antiretroviral regimens has been explored; however, most studies of low-level HIV-1 drug-resistant variants have focused in single target regions. Here we used a novel HIV-1 genotypic assay based on deep sequencing, DEEPGEN (Gibson et al 2014 Antimicrob Agents Chemother 58∶2167) to simultaneously analyze the presence of minority variants carrying mutations associated with reduced susceptibility to protease (PR), reverse transcriptase (RT), and integrase strand transfer integrase inhibitors (INSTIs), as well as HIV-1 coreceptor tropism. gag-p2/NCp7/p1/p6/pol-PR/RT/INT and env/C2V3 PCR products were obtained from twelve heavily treatment-experienced patients experiencing virologic failure while participating in a 48-week dose-ranging study of elvitegravir (GS-US-183-0105). Deep sequencing results were compared with (i) virological response to treatment, (ii) genotyping based on population sequencing, (iii) phenotyping data using PhenoSense and VIRALARTS, and (iv) HIV-1 coreceptor tropism based on the phenotypic test VERITROP. Most patients failed the antiretroviral regimen with numerous pre-existing mutations in the PR and RT, and additionally newly acquired INSTI-resistance mutations as determined by population sequencing (mean 9.4, 5.3, and 1.4 PI- RTI-, and INSTI-resistance mutations, respectively). Interestingly, since DEEPGEN allows the accurate detection of amino acid substitutions at frequencies as low as 1% of the population, a series of additional drug resistance mutations were detected by deep sequencing (mean 2.5, 1.5, and 0.9, respectively). The presence of these low-abundance HIV-1 variants was associated with drug susceptibility, replicative fitness, and coreceptor tropism determined using sensitive phenotypic assays, enhancing the overall burden of resistance to all four antiretroviral drug classes. Further longitudinal studies based on deep sequencing tests will help to clarify (i) the potential impact of minority HIV-1 drug resistant variants in response to antiretroviral therapy and (ii) the importance of the detection of HIV minority variants in the clinical practice.
PMCID: PMC4128663  PMID: 25110880
7.  Origin of Human Immunodeficiency Virus Type 1 Quasispecies Emerging after Antiretroviral Treatment Interruption in Patients with Therapeutic Failure 
Journal of Virology  2002;76(14):7000-7009.
The emergence of antiretroviral (ARV) drug-resistant human immunodeficiency virus type 1 (HIV-1) quasispecies is a major cause of treatment failure. These variants are usually replaced by drug-sensitive ones when the selective pressure of the drugs is removed, as the former have reduced fitness in a drug-free environment. This was the rationale for the design of structured ARV treatment interruption (STI) studies for the management of HIV-1 patients with treatment failure. We have studied the origin of drug-sensitive HIV-1 quasispecies emerging after STI in patients with treatment failure due to ARV drug resistance. Plasma and peripheral blood mononuclear cell samples were obtained the day of treatment interruption (day 0) and 30 and 60 days afterwards. HIV-1 pol and env were partially amplified, cloned, and sequenced. At day 60 drug-resistant variants were replaced by completely or partially sensitive quasispecies. Phylogenetic analyses of pol revealed that drug-sensitive variants emerging after STI were not related to their immediate temporal ancestors but formed a separate cluster, demonstrating that STI leads to the recrudescence and reemergence of a sequestrated viral population rather than leading to the back mutation of drug-resistant forms. No evidence for concomitant changes in viral tropism was seen, as deduced from env sequences. This study demonstrates the important role that the reemergence of quasispecies plays in HIV-1 population dynamics and points out the difficulties that may be found when recycling ARV therapies with patients with treatment failure.
PMCID: PMC136319  PMID: 12072500
8.  Minority HIV-1 Drug Resistance Mutations Are Present in Antiretroviral Treatment–Naïve Populations and Associate with Reduced Treatment Efficacy 
PLoS Medicine  2008;5(7):e158.
Transmitted HIV-1 drug resistance can compromise initial antiretroviral therapy (ART); therefore, its detection is important for patient management. The absence of drug-associated selection pressure in treatment-naïve persons can cause drug-resistant viruses to decline to levels undetectable by conventional bulk sequencing (minority drug-resistant variants). We used sensitive and simple tests to investigate evidence of transmitted drug resistance in antiretroviral drug-naïve persons and assess the clinical implications of minority drug-resistant variants.
Methods and Findings
We performed a cross-sectional analysis of transmitted HIV-1 drug resistance and a case-control study of the impact of minority drug resistance on treatment response. For the cross-sectional analysis, we examined viral RNA from newly diagnosed ART-naïve persons in the US and Canada who had no detectable (wild type, n = 205) or one or more resistance-related mutations (n = 303) by conventional sequencing. Eight validated real-time PCR-based assays were used to test for minority drug resistance mutations (protease L90M and reverse transcriptase M41L, K70R, K103N, Y181C, M184V, and T215F/Y) above naturally occurring frequencies. The sensitive real-time PCR testing identified one to three minority drug resistance mutation(s) in 34/205 (17%) newly diagnosed persons who had wild-type virus by conventional genotyping; four (2%) individuals had mutations associated with resistance to two drug classes. Among 30/303 (10%) samples with bulk genotype resistance mutations we found at least one minority variant with a different drug resistance mutation. For the case-control study, we assessed the impact of three treatment-relevant drug resistance mutations at baseline from a separate group of 316 previously ART-naïve persons with no evidence of drug resistance on bulk genotype testing who were placed on efavirenz-based regimens. We found that 7/95 (7%) persons who experienced virologic failure had minority drug resistance mutations at baseline; however, minority resistance was found in only 2/221 (0.9%) treatment successes (Fisher exact test, p = 0.0038).
These data suggest that a considerable proportion of transmitted HIV-1 drug resistance is undetected by conventional genotyping and that minority mutations can have clinical consequences. With no treatment history to help guide therapies for drug-naïve persons, the findings suggest an important role for sensitive baseline drug resistance testing.
Using real-time PCR to detect HIV resistance mutations present at low levels, Jeffrey Johnson and colleagues investigate prevalence and clinical implications of minority transmitted mutations.
Editors' Summary
Since the mid-1990s, several powerful antiretroviral drug combinations have been developed that have greatly improved the prognosis of HIV infection. All antiretroviral therapy (ART) regimens combine drugs that act against HIV in different ways (so-called different drug classes). Multiple drugs are necessary because HIV continually accumulates random changes (mutations) in its genetic material (genome). Some of these mutations make HIV resistant to individual antiretroviral drugs, so a mixture of drugs is needed to keep the virus in check. However, the efficacy of ART (which itself selects for drug-resistant variants by giving them a growth advantage over drug-sensitive variants) is substantially reduced when these variants account for more than about 20% of the viruses in an infected person. This level of variant virus can be detected in blood samples with a technique called bulk sequencing. In North America and Europe, where ART has been widely used for many years, around 20% of HIV-infected people who have taken ART themselves develop this level of drug-resistant virus, which can be transmitted by the same routes as nonresistant HIV (typically unprotected sexual intercourse or needle sharing). In such cases, the person acquiring drug-resistant HIV may experience treatment failure when drugs later fail to work against the resistant virus. In these countries, therefore, resistance testing by bulk sequencing is done routinely before ART is initiated to decide which antiviral drugs are likely to be effective.
Why Was This Study Done?
Several years usually elapse between the time a person becomes infected with HIV and the time he or she starts ART. During this time, the absence of selection pressure from antiviral drugs means that transmitted drug-resistant variants tend to decline to levels undetectable by bulk sequencing. These “minority drug-resistant variants” can be detected using other more sensitive tests but it is not known what proportion of HIV-infected people who have never taken ART carry minority drug-resistant variants (the “prevalence” of these variants). It is also unknown whether the presence of minority drug-resistant variants reduces the success of ART. In this paper, the researchers first report a “cross-sectional” study in North America using a sensitive assay to determine the prevalence of minority drug-resistant viruses among HIV-infected people who had never received ART. They then investigate whether minority drug-resistant variants have any impact on the effectiveness of ART in a “case-control” study.
What Did the Researchers Do and Find?
In their cross-sectional study, the researchers used a highly sensitive test for detecting mutations (called a real-time PCR-based assay) to look for low levels of viruses carrying any of eight major drug-resistance mutations in people with newly diagnosed HIV infection who reported no prior treatment with ART. Seventeen percent of the people who had only wild-type (nonmutated) virus by bulk sequencing (205 participants) were found, in fact, to carry low levels of virus variants with 1–3 drug-resistance mutations; 2% of them carried viruses resistant to two different drug classes (called multi-drug resistance). Among the people with resistance mutations detected by bulk sequencing (303 participants), 10% had at least one additional minority drug-resistant variant, often a viral variant that was resistant to a drug class different from that detected by bulk sequencing. In the case-control study, the researchers used their sensitive assays to measure the levels of viruses containing any of the three most common drug resistance mutations likely to affect viral responses to the antiretroviral drugs efavirenz and lamivudine in 316 people just before they started their first HIV treatment, which included these drugs. Of people for whom ART failed, 7% were infected with minority drug-resistant virus variants at baseline compared with only 0.9% of people for whom ART worked; this difference was statistically significant.
What Do These Findings Mean?
The findings of the cross-sectional study indicate that conventional bulk sequencing fails to detect a large proportion of transmitted HIV drug resistance and suggest that the transmission of drug-resistant variants from infectious ART-experienced people to ART-naïve individuals might not be uncommon. The findings of the case-control study suggest that the minority drug-resistant HIV variants may have clinical consequences. That is, the presence of such variants in individuals who have not previously taken ART may reduce the efficacy of some ART regimens. However, the number of participants meeting the criteria for analysis in the cross-sectional study was limited, and the association between minority resistance and treatment failure may have been influenced by other factors. Taken together, these findings suggest that, to ensure that first-line ART is as effective as possible, greater efforts should be made to prevent HIV transmission, whether from ART-experienced or ART-naive people. However, because data on minority drug-resistant virus are limited, more studies— particularly with recent populations—are needed before testing for these variants can be considered appropriate in the clinical management of newly diagnosed HIV infection.
Additional Information.
Please access these Web sites via the online version of this summary at
This study is further discussed in a PLoS Medicine Perspective by Steven G. Deeks
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
HIV InSite has comprehensive information on all aspects of HIV/AIDS, including links to fact sheets (in English, French, and Spanish) about antiretrovirals and information on genetic testing for HIV drug resistance
NAM, a UK registered charity, provides information about all aspects of HIVand AIDS, including fact sheets on types of HIV drug, drug resistance, and resistance tests (in English, Spanish, French, Portuguese, and Russian)
The US Centers for Disease Control and Prevention provides information on HIV/AIDS and on treatment (in English and Spanish)
PMCID: PMC2488194  PMID: 18666824
9.  Enhancing Exposure of HIV-1 Neutralization Epitopes through Mutations in gp41 
PLoS Medicine  2008;5(1):e9.
The generation of broadly neutralizing antibodies is a priority in the design of vaccines against HIV-1. Unfortunately, most antibodies to HIV-1 are narrow in their specificity, and a basic understanding of how to develop antibodies with broad neutralizing activity is needed. Designing methods to target antibodies to conserved HIV-1 epitopes may allow for the generation of broadly neutralizing antibodies and aid the global fight against AIDS by providing new approaches to block HIV-1 infection. Using a naturally occurring HIV-1 Envelope (Env) variant as a template, we sought to identify features of Env that would enhance exposure of conserved HIV-1 epitopes.
Methods and Findings
Within a cohort study of high-risk women in Mombasa, Kenya, we previously identified a subtype A HIV-1 Env variant in one participant that was unusually sensitive to neutralization. Using site-directed mutagenesis, the unusual neutralization sensitivity of this variant was mapped to two amino acid mutations within conserved sites in the transmembrane subunit (gp41) of the HIV-1 Env protein. These two mutations, when introduced into a neutralization-resistant variant from the same participant, resulted in 3- to >360-fold enhanced neutralization by monoclonal antibodies specific for conserved regions of both gp41 and the Env surface subunit, gp120, >780-fold enhanced neutralization by soluble CD4, and >35-fold enhanced neutralization by the antibodies found within a pool of plasmas from unrelated individuals. Enhanced neutralization sensitivity was not explained by differences in Env infectivity, Env concentration, Env shedding, or apparent differences in fusion kinetics. Furthermore, introduction of these mutations into unrelated viral Env sequences, including those from both another subtype A variant and a subtype B variant, resulted in enhanced neutralization susceptibility to gp41- and gp120-specific antibodies, and to plasma antibodies. This enhanced neutralization sensitivity exceeded 1,000-fold in several cases.
Two amino acid mutations within gp41 were identified that expose multiple discontinuous neutralization epitopes on diverse HIV-1 Env proteins. These exposed epitopes were shielded on the unmodified viral Env proteins, and several of the exposed epitopes encompass desired target regions for protective antibodies. Env proteins containing these modifications could act as a scaffold for presentation of such conserved domains, and may aid in developing methods to target antibodies to such regions.
Julie Overbaugh and colleagues analyze an HIV strain with high susceptibility to antibody neutralization and identify two gp41 envelope mutations that confer this sensitivity by exposing multiple neutralization epitopes.
Editors' Summary
In 1984 when scientists identified human immunodeficiency virus (HIV)—the cause of acquired immunodeficiency syndrome (AIDS)—many experts believed that a vaccine against HIV infection would soon be developed. Nearly 25 years later, there is still no such vaccine and with about 2.5 million new HIV infections in 2007, an effective vaccine is urgently needed to contain the AIDS epidemic. Vaccines provide protection against infectious diseases by priming the immune system to deal quickly and effectively with viruses and other pathogens. Vaccines do this by exposing the immune system to an immunogen—a fragment or harmless version of the pathogen. The immune system mounts a response against the immunogen and also “learns” from this experience so that if it is ever challenged with a virulent version of the same pathogen, it can quickly contain the threat. Many vaccines work by stimulating an antibody response. Antibodies are proteins made by the immune system that bind to molecules called antigens on the surface of pathogens. Antibodies that inactivate the invader upon binding to it are called “neutralizing” antibodies.
Why Was This Study Done?
Several characteristics of HIV have hampered the development of an effective vaccine. An “envelope” protein consisting of two subunits called gp120 and gp41 covers the outside of HIV. Many regions of this protein change rapidly, so the antibody response stimulated by a vaccine containing the envelope protein of one HIV variant provides little protection against other variants. However, other regions of the protein rarely change, so a vaccine that stimulates the production of antibodies to these “conserved” regions is likely to provide protection against many HIV variants. That is, it will stimulate the production of broadly neutralizing antibodies. Unfortunately, it has been difficult to find HIV vaccines that do this, because these conserved regions are often hidden from the immune system by other parts of the envelope protein. In this study, the researchers investigate the envelope protein of an HIV-1 variant they have isolated that is highly susceptible to inactivation by antibodies specific for these conserved regions. Comparing the envelope protein of this sensitive virus to closely related envelope proteins that are resistant to neutralization could identify features that might, if included in an envelope protein immunogen, produce a vaccine capable of generating broadly neutralizing antibodies.
What Did the Researchers Do and Find?
The researchers isolated a subtype A HIV-1 variant from a newly infected woman in Kenya that was efficiently neutralized by monoclonal antibodies (antibodies made by cells that have been cloned in the laboratory). These antibodies were specific for several different conserved regions of gp41 and gp120. The isolate was also neutralized by antibodies in blood from HIV-1-infected people. The envelope protein of the sensitive variant was the same as that of a resistant variant isolated at the same time from the woman, except for four amino acid changes in conserved regions of gp41 (proteins are made from long strings of amino acids). Using a technique called site-directed mutagenesis, the researchers introduced these amino acid changes into envelope proteins made in the laboratory and determined that just two of these changes were responsible for the neutralization sensitivity of the HIV-1 variant. The introduction of these two changes into the neutralization resistant variant and into the unrelated envelope sequences of another subtype A (common in Africa) HIV-1 variant and a subtype B HIV-1 (common in Europe and the Western Hemisphere) variant increased the sensitivity of all these viruses to antibody neutralization.
What Do These Findings Mean?
These findings show that two amino acid changes in gp41 of a neutralization-sensitive HIV-1 variant are responsible for the sensitivity of this variant to several neutralizing antibodies. The finding that the inclusion of these changes in the envelope protein of neutralization-resistant HIV-1 variants greatly increases their sensitivity to neutralizing antibodies indicates that the normally shielded regions of the protein are somehow made accessible to antibody by these changes. One possibility is that the amino acid changes might modify the overall shape of the envelope protein, thus exposing multiple, normally hidden regions in the HIV-1 envelope protein to antibodies. Importantly, these findings open up the possibility that the inclusion of these modifications in envelope-based immunogens might improve the ability of vaccines to generate broadly neutralizing antibodies against HIV-1.
Additional Information.
Please access these Web sites via the online version of this summary at
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
HIVInSite has comprehensive information on all aspects of HIV/AIDS, including links to resources dealing with HIV vaccine development
Information is available from Avert, an international AIDS charity, on all aspects of HIV and AIDS, including HIV vaccines
The US Centers for Disease Control and prevention provides information on HIV/AIDS including information on its HIV vaccine unit (in English and some information in Spanish)
The AIDS Vaccine Clearinghouse provides clear information about HIV vaccine science, research and product development
The International AIDS Vaccine Initiative also provides straightforward information about the development of HIV vaccines
PMCID: PMC2174964  PMID: 18177204
10.  Linkages between HIV-1 specificity for CCR5 or CXCR4 and in vitro usage of alternative coreceptors during progressive HIV-1 subtype C infection 
Retrovirology  2013;10:98.
Human immunodeficiency virus type 1 (HIV-1) subtype C (C-HIV) is spreading rapidly and is now responsible for >50% of HIV-1 infections worldwide, and >95% of infections in southern Africa and central Asia. These regions are burdened with the overwhelming majority of HIV-1 infections, yet we know very little about the pathogenesis of C-HIV. In addition to CCR5 and CXCR4, the HIV-1 envelope glycoproteins (Env) may engage a variety of alternative coreceptors for entry into transfected cells. Whilst alternative coreceptors do not appear to have a broad role in mediating the entry of HIV-1 into primary cells, characterizing patterns of alternative coreceptor usage in vitro can provide valuable insights into mechanisms of Env-coreceptor engagement that may be important for HIV-1 pathogenesis.
Here, we characterized the ability of luciferase reporter viruses pseudotyped with HIV-1 Envs (n = 300) cloned sequentially from plasma of 21 antiretroviral therapy (ART)-naïve subjects experiencing progression from chronic to advanced C-HIV infection over an approximately 3-year period, who either exclusively maintained CCR5-using (R5) variants (n = 20 subjects) or who experienced a coreceptor switch to CXCR4-using (X4) variants (n = 1 subject), to utilize alternative coreceptors for entry. At a population level, CCR5 usage by R5 C-HIV Envs was strongly linked to usage of FPRL1, CCR3 and CCR8 as alternative coreceptors, with the linkages to FPRL1 and CCR3 usage becoming statistically more robust as infection progressed from chronic to advanced stages of disease. In contrast, acquisition of an X4 Env phenotype at advanced infection was accompanied by a dramatic loss of FPRL1 usage. Env mutagenesis studies confirmed a direct link between CCR5 and FPRL1 usage, and showed that the V3 loop crown, but not other V3 determinants of CCR5-specificity, was the principal Env determinant governing the ability of R5 C-HIV Envs from one particular subject to engage FPRL1.
Our results suggest that, in the absence of coreceptor switching, the ability of R5 C-HIV viruses to engage certain alternative coreceptors in vitro, in particular FPRL1, may reflect an altered use of CCR5 that is selected for during progressive C-HIV infection, and which may contribute to C-HIV pathogenicity.
PMCID: PMC3849974  PMID: 24041034
HIV-1; Env; Subtype C; CCR5; CXCR4; Alternative coreceptor; Pathogenesis
11.  Distinct Molecular Pathways to X4 Tropism for a V3-Truncated Human Immunodeficiency Virus Type 1 Lead to Differential Coreceptor Interactions and Sensitivity to a CXCR4 Antagonist▿ † 
Journal of Virology  2010;84(17):8777-8789.
During the course of infection, transmitted HIV-1 isolates that initially use CCR5 can acquire the ability to use CXCR4, which is associated with an accelerated progression to AIDS. Although this coreceptor switch is often associated with mutations in the stem of the viral envelope (Env) V3 loop, domains outside V3 can also play a role, and the underlying mechanisms and structural basis for how X4 tropism is acquired remain unknown. In this study we used a V3 truncated R5-tropic Env as a starting point to derive two X4-tropic Envs, termed ΔV3-X4A.c5 and ΔV3-X4B.c7, which took distinct molecular pathways for this change. The ΔV3-X4A.c5 Env clone acquired a 7-amino-acid insertion in V3 that included three positively charged residues, reestablishing an interaction with the CXCR4 extracellular loops (ECLs) and rendering it highly susceptible to the CXCR4 antagonist AMD3100. In contrast, the ΔV3-X4B.c7 Env maintained the V3 truncation but acquired mutations outside V3 that were critical for X4 tropism. In contrast to ΔV3-X4A.c5, ΔV3-X4B.c7 showed increased dependence on the CXCR4 N terminus (NT) and was completely resistant to AMD3100. These results indicate that HIV-1 X4 coreceptor switching can involve (i) V3 loop mutations that establish interactions with the CXCR4 ECLs, and/or (ii) mutations outside V3 that enhance interactions with the CXCR4 NT. The cooperative contributions of CXCR4 NT and ECL interactions with gp120 in acquiring X4 tropism likely impart flexibility on pathways for viral evolution and suggest novel approaches to isolate these interactions for drug discovery.
PMCID: PMC2919036  PMID: 20573813
12.  Discordant Outcomes following Failure of Antiretroviral Therapy Are Associated with Substantial Differences in Human Immunodeficiency Virus-Specific Cellular Immunity 
Journal of Virology  2003;77(10):6041-6049.
Many individuals chronically infected with human immunodeficiency virus type 1 (HIV-1) experience a recrudescence of plasma virus during continuous combination antiretroviral therapy (ART) due either to the emergence of drug-resistant viruses or to poor compliance. In most cases, virologic failure on ART is associated with a coincident decline in CD4+ T lymphocyte levels. However, a proportion of discordant individuals retain a stable or even increasing CD4+ T lymphocyte count despite virological failure. In order to address the nature of these different outcomes, we evaluated virologic and immunologic variables in a prospective, single-blinded, nonrandomized cohort of 53 subjects with chronic HIV-1 infection who had been treated with continuous ART and monitored intensively over a period of 19 months. In all individuals with detectable viremia on ART, multiple drug resistance mutations with similar impacts on viral growth kinetics were detected in the pol gene of circulating plasma virus. Further, C2V3 env gene analysis demonstrated sequences indicative of CCR5 coreceptor usage in the majority of those with detectable plasma viremia. In contrast to this homogeneous virologic pattern, comprehensive screening with a range of antigens derived from HIV-1 revealed substantial immunologic differences. Discordant subjects with stable CD4+ T lymphocyte counts in the presence of recrudescent virus demonstrated potent virus-specific CD4+ and CD8+ T lymphocyte responses. In contrast, subjects with virologic failure associated with declining CD4+ T lymphocyte counts had substantially weaker HIV-specific CD4+ T lymphocyte responses and exhibited a trend towards weaker HIV-specific CD8+ T lymphocyte responses. Importantly the CD4+ response was sustained over periods as long as 11 months, confirming the stability of the phenomenon. These correlative data lead to the testable hypothesis that the consequences of viral recrudescence during continuous ART are modulated by the HIV-specific cellular immune response.
PMCID: PMC154002  PMID: 12719595
13.  Effectiveness of Non-nucleoside Reverse-Transcriptase Inhibitor-Based Antiretroviral Therapy in Women Previously Exposed to a Single Intrapartum Dose of Nevirapine: A Multi-country, Prospective Cohort Study 
PLoS Medicine  2010;7(2):e1000233.
In a comparative cohort study, Jeffrey Stringer and colleagues investigate the risk of ART failure in women who received single-dose nevirapine for PMTCT, and assess the duration of increased risk.
Intrapartum and neonatal single-dose nevirapine (NVP) reduces the risk of mother-to-child HIV transmission but also induces viral resistance to non-nucleoside reverse transcriptase inhibitor (NNRTI) drugs. This drug resistance largely fades over time. We hypothesized that women with a prior single-dose NVP exposure would have no more than a 10% higher cumulative prevalence of failure of their NNRTI-containing antiretroviral therapy (ART) over the first 48 wk of therapy than would women without a prior exposure.
Methods and Findings
We enrolled 355 NVP-exposed and 523 NVP-unexposed women at two sites in Zambia, one site in Kenya, and two sites in Thailand into a prospective, non-inferiority cohort study and followed them for 48 wk on ART. Those who died, discontinued NNRTI-containing ART, or had a plasma viral load ≥400 copies/ml at either the 24 wk or 48 wk study visits and confirmed on repeat testing were characterized as having failed therapy. Overall, 114 of 355 NVP-exposed women (32.1%) and 132 of 523 NVP-unexposed women (25.2%) met criteria for treatment failure. The difference in failure rates between the exposure groups was 6.9% (95% confidence interval [CI] 0.8%–13.0%). The failure rates of women stratified by our predefined exposure interval categories were as follows: 47 of 116 women in whom less than 6 mo elapsed between exposure and starting ART failed therapy (40%; p<0.001 compared to unexposed women); 25 of 67 women in whom 7–12 mo elapsed between exposure and starting ART failed therapy (37%; p = 0.04 compared to unexposed women); and 42 of 172 women in whom more than 12 mo elapsed between exposure and starting ART failed therapy (24%; p = 0.82 compared to unexposed women). Locally weighted regression analysis also indicated a clear inverse relationship between virologic failure and the exposure interval.
Prior exposure to single-dose NVP was associated with an increased risk of treatment failure; however, this risk seems largely confined to women with a more recent exposure. Women requiring ART within 12 mo of NVP exposure should not be prescribed an NNRTI-containing regimen as first-line therapy.
Please see later in the article for the Editors' Summary
Editors' Summary
Every year, acquired immunodeficiency syndrome (AIDS) kills nearly 300,000 children. At the end of 2008, 2.1 million children were positive for the human immunodeficiency virus (HIV), the cause of AIDS, and in that year alone more than 400,000 children were newly infected with HIV. Most HIV-positive children acquire the virus from their mothers during pregnancy or birth or through breastfeeding, so-called mother-to-child transmission (MTCT). Without intervention, 15%–30% of babies born to HIV-positive women become infected with HIV during pregnancy and delivery, and a further 5%–20% become infected through breastfeeding. These rates of infection can be greatly reduced by treating the mother and her newborn baby with antiretroviral drugs. A single dose of nevirapine (a “non-nucleoside reverse transcriptase inhibitor” or NNRTI) given to the mother at the start of labor and to the baby soon after birth reduces the risk of MTCT by nearly a half; a further reduction in risk can be achieved by giving the mother and her baby additional antiretroviral drugs during pregnancy, around the time of birth, and while breast-feeding.
Why Was This Study Done?
Single-dose nevirapine is the mainstay of MTCT prevention programs in many poor countries but can induce resistance to nevirapine and to other NNRTIs. The drugs used to treat HIV infections fall into several different classes defined by how they stop viral growth. HIV can become resistant to any of these drugs and a virus strain that is resistant to one member of a drug class is often also resistant to other members of the same class. Because most first-line antiretroviral therapies (ARTs; cocktails of antiretroviral drugs) used in developing countries contain an NNRTI and because HIV-positive mothers eventually need ART to safeguard their own health, the resistance to NNRTIs that is induced in women by single-dose nevirapine might decrease the chances that ART will work for them later. In this multi-country, prospective cohort study, the researchers compare the effectiveness of NNRTI-containing ART in a group (cohort) of women previously exposed to single-dose nevirapine during childbirth to its effectiveness in a group of unexposed women. They also investigate whether the length of time between nevirapine exposure and ART initiation affects ART effectiveness.
What Did the Researchers Do and Find?
The researchers enrolled 355 HIV-positive nevirapine-exposed women and 523 HIV-positive nevirapine-unexposed women in Zambia, Kenya, and Thailand who were just starting NNRTI-containing ART and followed them for 48 weeks. They defined ART failure as death, discontinuation of NNRTI-containing ART, or a high virus load in the blood (virologic failure) at 24 or 48 weeks. ART failed in nearly a third of the nevirapine-exposed women but in only a quarter of the nevirapine-unexposed women. Women who began ART within 6 months of taking single-dose nevirapine to prevent MTCT were twice as likely to experience ART failure as women not exposed to single-dose nevirapine. Women who began ART 7–12 months after single-dose nevirapine had a slightly increased risk of ART failure compared to unexposed women but this increased risk was not statistically significant; that is, it could have occurred by chance. Women who began ART more than 12 months after single-dose nevirapine did not have an increased risk of ART failure compared to unexposed women. Finally, the researchers used a statistical method called locally weighted regression analysis to confirm that an increase in the interval between single-dose nevirapine and ART initiation decreased the risk of virologic failure.
What Do These Findings Mean?
These findings, which confirm and extend the results of previous studies and which are likely to be generalizable to other resource-poor countries, indicate that single-dose nevirapine given to women to prevent MTCT increases their risk of subsequent ART failure. More positively, they also show that this increased failure risk is largely confined to women who begin ART within a year of exposure to nevirapine. Because of the study design, it is possible that the nevirapine-exposed women share some additional, undefined characteristic that makes them more likely to fail ART than unexposed women. Even so, these findings suggest that, provided NNRTI-containing ART is not given to HIV-positive women within a year of nevirapine exposure, single-dose nevirapine can be safely used to prevent MTCT without compromising the mother's future antiretroviral treatment options.
Additional Information
Please access these Web sites via the online version of this summary at
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS, on treatments for HIV/AIDS, and on HIV infection in infants and children
HIV InSite has comprehensive information on all aspects of HIV/AIDS
Information is available from Avert, an international AIDS charity, on many aspects of HIV/AIDS, including information on children, HIV, and AIDS and on preventing mother-to-child transmission of HIV (in English and Spanish)
UNICEF also has information about children and HIV and AIDS (in several languages)
The World Health Organization has information on mother-to-child transmission of HIV
PMCID: PMC2821896  PMID: 20169113
14.  Extensive Recombination among Human Immunodeficiency Virus Type 1 Quasispecies Makes an Important Contribution to Viral Diversity in Individual Patients 
Journal of Virology  2006;80(5):2472-2482.
Although recombination during human immunodeficiency virus type 1 (HIV-1) replication in vitro and in vivo has been documented, little information is available concerning the extent that recombination contributes to the diversity of HIV-1 quasispecies in the course of infection in individual patents. To investigate the impact of recombination on viral diversity, we developed a technique that permits the isolation of contemporaneous clonal viral populations resulting from single infectious events by plasma-derived viruses, thereby permitting the assessment of recombination throughout the viral genomes, including widely separated loci, from individual patients. A comparison of the genomic sequences of clonal viruses from six patients, including patients failing treatment with antiretroviral therapy, demonstrated strong evidence for extensive recombination. Recombination increased viral diversity through two distinct mechanisms. First, evolutionary bottlenecks appeared to be restricted to minimal segments of the genome required to obtain selective advantage, thereby preserving diversity in adjacent regions. Second, recombination between adjacent gene segments appeared to generate diversity in both pol and env genes. Thus, the shuffling of resistance mutations within the genes coding for the protease and reverse transcriptase, as well as recombination between these regions, could increase the diversity of drug resistance genotypes. These findings demonstrate that recombination in HIV-1 contributes to the diversity of viral quasispecies by restricting evolutionary bottlenecks to gene segments and by generating novel genotypes in pol and env, supporting the idea that recombination may be critical to adaptive evolution of HIV in the face of constantly moving selective pressures, whether exerted by the immune system or antiretroviral therapy.
PMCID: PMC1395372  PMID: 16474154
15.  Role of the Human Immunodeficiency Virus Type 1 Envelope Gene in Viral Fitness 
Journal of Virology  2003;77(16):9069-9073.
A human host offers a variety of microenvironments to the infecting human immunodeficiency virus type 1 (HIV-1), resulting in various selective pressures, most of them directed against the envelope (env) gene. Therefore, it seems evident that the replicative capacity of the virus is largely related to viral entry. In this study we have used growth competition experiments and TaqMan real-time PCR detection to measure the fitness of subtype B HIV-1 primary isolates and autologous env-recombinant viruses in order to analyze the contribution of wild-type env sequences to overall HIV-1 fitness. A significant correlation was observed between fitness values obtained for wild-type HIV-1 isolates and those for the corresponding env-recombinant viruses (r = 0.93; P = 0.002). Our results suggest that the env gene, which is linked to a myriad of viral characteristics (e.g., entry into the host cell, transmission, coreceptor usage, and tropism), plays a major role in fitness of wild-type HIV-1. In addition, this new recombinant assay may be useful for measuring the contribution of HIV-1 env to fitness in viruses resistant to novel antiretroviral entry inhibitors.
PMCID: PMC167250  PMID: 12885922
16.  Intra-Host Evolutionary Rates in HIV-1C env and gag during Primary Infection 
HIV-1 nucleotide substitution rates are central for understanding the evolution of HIV-1. Their accurate estimation is critical for analysis of viral dynamics, identification of divergence time of HIV variants, inference of HIV transmission clusters, and modeling of viral evolution.
Intra-patient nucleotide substitution rates in HIV-1C gag and env gp120 V1C5 were analyzed in a longitudinal cohort of 32 individuals infected with a single viral variant. Viral quasispecies were derived by single genome amplification/sequencing from serially sampled blood specimens collected at median (IQR) of 5 (4–6) times per subject from enrollment (during Fiebig stages II to V) over a median (IQR) of 417 (351–471) days post-seroconversion (p/s). HIV-1C evolutionary rates were estimated by BEAST v.1.6.1 using a relaxed lognormal molecular clock model. The effect of antiretroviral therapy (ART) on substitution rates in gag and env was assessed in a subset of six individuals who started ARV therapy during the follow-up period.
During primary HIV-1C infection, the intra-patient substitution rates were estimated at a median (IQR) of 5.22E-03 (3.28E-03–7.55E-03) substitutions per site per year of infection within gag, and 1.58E-02 (9.99E-03–2.04E-02) substitutions per site per year within env gp120 V1C5. The substitution rates in env gp120 V1C5 were higher than in gag (p<0.001, Wilcoxon signed rank test). The median (IQR) relative rates of evolution at codon positions 1, 2, and 3 were 0.73 (0.48–0.84), 0.67 (0.52–0.86), and 1.54 (1.21–1.71) in gag, and 1.01 (0.86–1.15), 1.05 (0.99–1.21), and 0.86 (0.67–0.94) in env gp120 V1C5, respectively. A first to the third position codon rate ratio > 1.0 within env was found in 25 (78.1%) cases, but only in 4 (12.5%) cases in gag, while a second to the third position codon rate ratio > 1.0 in env was observed in 26 (81.3%) cases, but in gag only in 2 (6.3%) cases (p<0.001 for both comparisons, Fisher’s exact test). No ART effect on substitution rates in gag and env was found, at least within the first 3–4 months after ART initiation. Individuals with early viral set point ≥ 4.0 log10 copies/ml had higher substitution rates in env gp120 V1C5 (median (IQR) 1.88E-02 (1.54E-02–2.46E-02) vs. 1.04E (7.24E-03–1.55E-02) substitutions per site per year; p=0.017, Mann-Whitney sum rank test), while individuals with early viral set point ≥ 3.0 log10 copies/ml had higher substitution rates in gag (median (IQR) 5.66E-03 (3.45E-03–7.94E-03) vs. 1.78E-03 (4.57E-04–5.15E-03); p=0.028; Mann-Whitney sum rank test).
The results suggest that in primary HIV-1C infection, (1) intra-host evolutionary rates in env gp120 V1C5 are about 3-fold higher than in gag; (2) selection pressure in env is more frequent than in gag; (3) initiation of ART does not change substitution rates in HIV-1C env or gag, at least within the first 3–4 months after starting ART; and (4) intra-host evolutionary rates in gag and env gp120 V1C5 are higher in individuals with elevated levels of early viral set point.
PMCID: PMC3759599  PMID: 23523818
HIV-1; subtype C; evolutionary rates; substitution rates; primary infection
17.  Nevirapine- Versus Lopinavir/Ritonavir-Based Initial Therapy for HIV-1 Infection among Women in Africa: A Randomized Trial 
PLoS Medicine  2012;9(6):e1001236.
In a randomized control trial, Shahin Lockman and colleagues compare nevirapine-based therapy with lopinavir/ritonavir-based therapy for HIV-infected women without previous exposure to antiretroviral treatment.
Nevirapine (NVP) is widely used in antiretroviral treatment (ART) of HIV-1 globally. The primary objective of the AA5208/OCTANE trial was to compare the efficacy of NVP-based versus lopinavir/ritonavir (LPV/r)-based initial ART.
Methods and Findings
In seven African countries (Botswana, Kenya, Malawi, South Africa, Uganda, Zambia, and Zimbabwe), 500 antiretroviral-naïve HIV-infected women with CD4<200 cells/mm3 were enrolled into a two-arm randomized trial to initiate open-label ART with tenofovir (TDF)/emtricitabine (FTC) once/day plus either NVP (n = 249) or LPV/r (n = 251) twice/day, and followed for ≥48 weeks. The primary endpoint was time from randomization to death or confirmed virologic failure ([VF]) (plasma HIV RNA<1 log10 below baseline 12 weeks after treatment initiation, or ≥400 copies/ml at or after 24 weeks), with comparison between treatments based on hazard ratios (HRs) in intention-to-treat analysis. Equivalence of randomized treatments was defined as finding the 95% CI for HR for virological failure or death in the range 0.5 to 2.0. Baseline characteristics were (median): age = 34 years, CD4 = 121 cells/mm3, HIV RNA = 5.2 log10copies/ml. Median follow-up = 118 weeks; 29 (6%) women were lost to follow-up. 42 women (37 VFs, five deaths; 17%) in the NVP and 50 (43 VFs, seven deaths; 20%) in the LPV/r arm reached the primary endpoint (HR 0.85, 95% CI 0.56–1.29). During initial assigned treatment, 14% and 16% of women receiving NVP and LPV/r experienced grade 3/4 signs/symptoms and 26% and 22% experienced grade 3/4 laboratory abnormalities. However, 35 (14%) women discontinued NVP because of adverse events, most in the first 8 weeks, versus none for LPV/r (p<0.001). VF, death, or permanent treatment discontinuation occurred in 80 (32%) of NVP and 54 (22%) of LPV/r arms (HR = 1.7, 95% CI 1.2–2.4), with the difference primarily due to more treatment discontinuation in the NVP arm. 13 (45%) of 29 women tested in the NVP versus six (15%) of 40 in the LPV/r arm had any drug resistance mutation at time of VF.
Initial ART with NVP+TDF/FTC demonstrated equivalent virologic efficacy but higher rates of treatment discontinuation and new drug resistance compared with LPV/r+TDF/FTC in antiretroviral-naïve women with CD4<200 cells/mm3.
Trial registration NCT00089505
Please see later in the article for the Editors' Summary
Editors' Summary
About 34 million people (mostly living in low- or middle-income countries) are currently infected with HIV, the virus that causes AIDS. HIV destroys CD4 lymphocytes and other immune cells, leaving infected individuals susceptible to other infections. Early in the AIDS epidemic, most HIV-infected people died within 10 years of infection. Then, in 1996, antiretroviral therapy (ART)—cocktails of drugs that attack different parts of HIV—became available. For people living in affluent countries, HIV/AIDS became a chronic condition. But, because ART was expensive, for people living in developing countries, HIV/AIDS remained a fatal illness. In 2006, the international community set a target of achieving universal access to ART by 2010 and, although this target has not been reached, by the end of 2010, 6.6 million of the estimated 15 million people in need of ART in developing countries were receiving one of the ART regimens recommended by the World Health Organization (WHO) in its 2010 guidelines.
Why Was This Study Done?
A widely used combination for the initial treatment of HIV-infected people (particularly women) in resource-limited settings is tenofovir and emtricitabine (both nucleotide reverse transcriptase inhibitors; reverse transcriptase is essential for HIV replication) and nevirapine (NVP, a non-nucleoside reverse transcriptase inhibitor). However, little is known about the efficacy of this NVP-based ART combination. Moreover, its efficacy and toxicity has not been compared with regimens containing lopinavir/ritonavir (LPV/r). LPV/r, which inhibits the viral protease that is essential for HIV replication, is available in resource-limited settings but is usually reserved for second-line treatment. LPV/r-based ART is more expensive than NVP-based ART but if it were more effective or better tolerated than NVP-based ART, then first-line treatment with LPV/r-based ART might be cost-effective in resource-limited settings. Conversely, evidence of the clinical equivalence of NVP-based and LPV/r-based ART would provide support for NVP-based ART as an initial therapy. In this randomized equivalence trial, the researchers compare the efficacy and toxicity of NVP-based and LVP/r-based initial therapy for HIV infection among antiretroviral-naïve African women. In a randomized trial, patients are assigned different treatments by the play of chance and followed to compare the effects of these treatments; an equivalence trial asks whether the effects of two treatments are statistically equivalent.
What Did the Researchers Do and Find?
The researchers followed 500 antiretroviral-naïve HIV-infected women with a low CD4 cell count living in seven African countries, half of whom received NVP-based ART and half of whom received LPV/r-based ART, for an average of 118 weeks and recorded the time to virologic failure (the presence of virus in the blood above pre-specified levels) or death among the participants. Forty-two women in the NVP arm reached this primary endpoint (37 virologic failures and five deaths) compared to 50 women in the LPV/r arm (43 virologic failures and seven deaths), a result that indicates equivalent virologic efficacy according to preset statistical criteria. During the initial assigned treatment, similar proportions of women in both treatment arms developed serious drug-related signs and symptoms and laboratory abnormalities. However, whereas 14% of the women in the NVP arm discontinued treatment because of adverse effects, none of the women in the LPV/r arm discontinued treatment. Finally, nearly half of the women tested in the NVP arm but only 15% of the women tested in the LVP/r arm had developed any drug resistance at the time of virologic failure.
What Do These Findings Mean?
These findings indicate that, among HIV-infected, treatment-naïve African women, initial NVP-based ART is as effective as LPV/r-based ART in terms of virologic failure and death although more women in the NVP arm discontinued treatment or developed new drug resistance than in the LPV/r arm. Several limitations of this study may affect the accuracy of these findings. In particular, some of the study participants may have been exposed to single-dose NVP during childbirth to prevent mother-to-child transmission of HIV; in a parallel randomized trial, the researchers found that LPV/r-based ART was superior to NVP-based ART among women with prior exposure to single-dose NVP. Moreover, the duration of the current study means the long-term effects of the two treatments cannot be compared. Nevertheless, these findings support the WHO recommendation of NVP-based ART with careful early toxicity monitoring as an initial affordable and effective HIV treatment regiment in resource-limited settings, until access to better-tolerated and more potent regimens is possible.
Additional Information
Please access these Web sites via the online version of this summary at
Information is available from the US National Institute of Allergy and Infectious Diseases on all aspects of HIV infection and AIDS
NAM/aidsmap provides basic information about HIV/AIDS, and summaries of recent research findings on HIV care and treatment (in several languages)
Information is available from Avert, an international AIDS charity on many aspects of HIV/AIDS, including detailed information on HIV treatment and care (in English and Spanish)
WHO provides information about universal access to AIDS treatment (in English, French and Spanish); its 2010 ART guidelines can be downloaded
More information about this trial, the OCTANE trial, is available
MedlinePlus provides detailed information about nevirapine and lopinavir/ritinovir (in English and Spanish)
Patient stories about living with HIV/AIDS are available through Avert; the nonprofit website Healthtalkonline also provides personal stories about living with HIV, including stories about taking anti-HIV drugs and the challenges of anti-HIV drugs
PMCID: PMC3373629  PMID: 22719231
18.  Longitudinal analysis of HIV-1 coreceptor tropism by single and triplicate HIV-1 RNA and DNA sequencing in patients undergoing successful first-line antiretroviral therapy 
Meini, Genny | Rossetti, Barbara | Bianco, Claudia | Ceccherini-Silberstein, Francesca | Di Giambenedetto, Simona | Sighinolfi, Laura | Monno, Laura | Castagna, Antonella | Rozera, Gabriella | D'Arminio Monforte, Antonella | Zazzi, Maurizio | De Luca, Andrea | Moroni, M. | Angarano, G. | Antinori, A. | Armignacco, O. | d'Arminio Monforte, A. | Castelli, F. | Cauda, R. | Di Perri, G. | Galli, M. | Iardino, R. | Ippolito, G. | Lazzarin, A. | Perno, C. F. | von Schloesser, F. | Viale, P. | d'Arminio Monforte, A. | Antinori, A. | Castagna, A. | Ceccherini-Silberstein, F. | Cozzi-Lepri, A. | Girardi, E. | Lo Caputo, S. | Mussini, C. | Puoti, M. | Andreoni, M. | Ammassari, A. | Antinori, A. | Balotta, C. | Bonfanti, P. | Bonora, S. | Borderi, M. | Capobianchi, M. R. | Castagna, A. | Ceccherini-Silberstein, F. | Cingolani, A. | Cinque, P. | Cozzi-Lepri, A. | d'Arminio Monforte, A | De Luca, A. | Di Biagio, A. | Girardi, E. | Gianotti, N. | Gori, A. | Guaraldi, G. | Lapadula, G. | Lichtner, M. | Lo Caputo, S. | Madeddu, G. | Maggiolo, F. | Marchetti, G. | Marcotullio, S. | Monno, L. | Mussini, C. | Puoti, M. | Quiros Roldan, E. | Rusconi, S. | Cozzi-Lepri, A. | Cicconi, P. | Fanti, I. | Formenti, T. | Galli, L. | Lorenzini, P. | Giacometti, A. | Costantini, A. | Angarano, G. | Monno, L. | Santoro, C. | Maggiolo, F. | Suardi, C. | Viale, P. | Vanino, E. | Verucchi, G. | Castelli, F. | Quiros Roldan, E. | Minardi, C. | Quirino, T. | Abeli, C. | Manconi, P.E. | Piano, P. | Vecchiet, J. | Falasca, K. | Sighinolfi, L. | Segala, D. | Mazzotta, F. | Lo Caputo, S. | Cassola, G. | Viscoli, G. | Alessandrini, A. | Piscopo, R. | Mazzarello, G. | Mastroianni, C. | Belvisi, V. | Bonfanti, P. | Caramma, I. | Castelli, A. P. | Galli, M. | Lazzarin, A. | Rizzardini, G. | Puoti, M. | d'Arminio Monforte, A. | Ridolfo, A. L. | Piolini, R. | Castagna, A. | Salpietro, S. | Carenzi, L. | Moioli, M. C. | Cicconi, P. | Marchetti, G. | Mussini, C. | Puzzolante, C. | Gori, A. | Lapadula, G. | Abrescia, N. | Chirianni, A. | Guida, M. G. | Gargiulo, M. | Baldelli, F. | Francisci, D. | Parruti, G. | Ursini, T. | Magnani, G. | Ursitti, M. A. | Cauda, R. | Andreoni, M. | Antinori, A. | Vullo, V. | Cingolani, A. | d'Avino, A. | Ammassari, A. | Gallo, L. | Nicastri, E. | Acinapura, R. | Capozzi, M. | Libertone, R. | Tebano, G. | Cattelan, A. | Mura, M. S. | Madeddu, G. | Caramello, P. | Di Perri, G. | Orofino, G. C. | Bonora, S. | Sciandra, M. | Pellizzer, G. | Manfrin, V.
Maraviroc has been shown to be effective in patients harbouring CCR5-tropic HIV-1. While this CCR5 antagonist has initially been used in salvage therapy, its excellent safety profile makes it ideal for antiretroviral treatment simplification strategies in patients with suppressed plasma viraemia. The aim of this study was to compare HIV-1 tropism as detected in baseline plasma RNA and peripheral blood mononuclear cell (PBMC) DNA prior to first-line therapy and to analyse tropism evolution while on successful treatment.
HIV-1 tropism was determined using triplicate genotypic testing combined with geno2pheno[coreceptor] analysis at a 10% false positive rate in 42 patients. Paired pre-treatment plasma RNA and PBMC DNA and two subsequent PBMC DNA samples (the first obtained after reaching undetectable plasma HIV-1 RNA and the second after at least 2 years of suppression of plasma viraemia) were evaluated.
Coreceptor tropism was completely concordant in paired pre-treatment RNA and DNA, with 26.2% of HIV-1 sequences predicted to be non-CCR5-tropic. During follow-up, coreceptor tropism switches were detected in 4 (9.5%) patients without any preferential direction. Although false positive rate discrepancies within triplicates were common, the rate of discordance of coreceptor tropism assignment among triplicate results in this mostly CCR5-tropic dataset was only 2.1%, questioning the added value of triplicate testing compared with single testing.
HIV-1 coreceptor tropism changes during virologically successful first-line treatment are infrequent. HIV-1 DNA analysis may thus support the choice of a CCR5 antagonist in treatment switch strategies; however, maraviroc treatment outcome data are required to confirm this option.
PMCID: PMC3954119  PMID: 24155059
HIV type 1; V3; gp120; genotype interpretation
19.  Replication-Competent Variants of Human Immunodeficiency Virus Type 2 Lacking the V3 Loop Exhibit Resistance to Chemokine Receptor Antagonists▿  
Journal of Virology  2007;81(18):9956-9966.
Entry of human immunodeficiency virus type 1 (HIV-1) and HIV-2 requires interactions between the envelope glycoprotein (Env) on the virus and CD4 and a chemokine receptor, either CCR5 or CXCR4, on the cell surface. The V3 loop of the HIV gp120 glycoprotein plays a critical role in this process, determining tropism for CCR5- or CXCR4-expressing cells, but details of how V3 interacts with these receptors have not been defined. Using an iterative process of deletion mutagenesis and in vitro adaptation of infectious viruses, variants of HIV-2 were derived that could replicate without V3, either with or without a deletion of the V1/V2 variable loops. The generation of these functional but markedly minimized Envs required adaptive changes on the gp120 core and gp41 transmembrane glycoprotein. V3-deleted Envs exhibited tropism for both CCR5- and CXCR4-expressing cells, suggesting that domains on the gp120 core were mediating interactions with determinants shared by both coreceptors. Remarkably, HIV-2 Envs with V3 deletions became resistant to small-molecule inhibitors of CCR5 and CXCR4, suggesting that these drugs inhibit wild-type viruses by disrupting a specific V3 interaction with the coreceptor. This study represents a proof of concept that HIV Envs lacking V3 alone or in combination with V1/V2 that retain functional domains required for viral entry can be derived. Such minimized Envs may be useful in understanding Env function, screening for new inhibitors of gp120 core interactions with chemokine receptors, and designing novel immunogens for vaccines.
PMCID: PMC2045409  PMID: 17609282
20.  Frequent CXCR4 tropism of HIV-1 subtype A and CRF02_AG during late-stage disease - indication of an evolving epidemic in West Africa 
Retrovirology  2010;7:23.
HIV-1 is one of the fastest evolving pathogens, and is distinguished by geographic and genetic variants that have been classified into different subtypes and circulating recombinant forms (CRFs). Early in infection the primary coreceptor is CCR5, but during disease course CXCR4-using HIV-1 populations may emerge. This has been correlated with accelerated disease progression in HIV-1 subtype B. Basic knowledge of HIV-1 coreceptor tropism is important due to the recent introduction of coreceptor antagonists in antiretroviral therapy, and subtype-specific differences regarding how frequently HIV-1 CXCR4-using populations appear in late-stage disease need to be further investigated. To study how frequently CXCR4-using populations appear in late-stage disease among HIV-1 subtype A and CRF02_AG, we evaluated the accuracy of a recombinant virus phenotypic assay for these subtypes, and used it to determine the HIV-1 coreceptor tropism of plasma samples collected during late-stage disease in Guinea-Bissau. We also performed a genotypic analysis and investigated subtype-specific differences in the appearance of CXCR4 tropism late in disease.
We found that the recombinant virus phenotypic assay accurately predicted HIV-1 coreceptor tropism of subtype A and CRF02_AG. Over the study period (1997-2007), we found an increasing and generally high frequency of CXCR4 tropism (86%) in CRF02_AG. By sequence analysis of the V3 region of our samples we developed a novel genotypic rule for predicting CXCR4 tropism in CRF02_AG, based on the combined criteria of the total number of charged amino acids and net charge. This rule had higher sensitivity than previously described genotypic rules and may be useful for development of future genotypic tools for this CRF. Finally, we conducted a literature analysis, combining data of 498 individuals in late-stage disease, and found high amounts of CXCR4 tropism for all major HIV-1 subtypes (60-77%), except for subtype C (15%).
The increase in CXCR4 tropism over time suggests an evolving epidemic of CRF02_AG. The results of the literature analysis demonstrate the need for further studies investigating subtype-specific emergence for CXCR4-tropism; this may be particularly important due to the introduction of CCR5-antagonists in HIV treatment regimens.
PMCID: PMC2855529  PMID: 20307309
21.  Sensitive Deep-Sequencing-Based HIV-1 Genotyping Assay To Simultaneously Determine Susceptibility to Protease, Reverse Transcriptase, Integrase, and Maturation Inhibitors, as Well as HIV-1 Coreceptor Tropism 
With 29 individual antiretroviral drugs available from six classes that are approved for the treatment of HIV-1 infection, a combination of different phenotypic and genotypic tests is currently needed to monitor HIV-infected individuals. In this study, we developed a novel HIV-1 genotypic assay based on deep sequencing (DeepGen HIV) to simultaneously assess HIV-1 susceptibilities to all drugs targeting the three viral enzymes and to predict HIV-1 coreceptor tropism. Patient-derived gag-p2/NCp7/p1/p6/pol-PR/RT/IN- and env-C2V3 PCR products were sequenced using the Ion Torrent Personal Genome Machine. Reads spanning the 3′ end of the Gag, protease (PR), reverse transcriptase (RT), integrase (IN), and V3 regions were extracted, truncated, translated, and assembled for genotype and HIV-1 coreceptor tropism determination. DeepGen HIV consistently detected both minority drug-resistant viruses and non-R5 HIV-1 variants from clinical specimens with viral loads of ≥1,000 copies/ml and from B and non-B subtypes. Additional mutations associated with resistance to PR, RT, and IN inhibitors, previously undetected by standard (Sanger) population sequencing, were reliably identified at frequencies as low as 1%. DeepGen HIV results correlated with phenotypic (original Trofile, 92%; enhanced-sensitivity Trofile assay [ESTA], 80%; TROCAI, 81%; and VeriTrop, 80%) and genotypic (population sequencing/Geno2Pheno with a 10% false-positive rate [FPR], 84%) HIV-1 tropism test results. DeepGen HIV (83%) and Trofile (85%) showed similar concordances with the clinical response following an 8-day course of maraviroc monotherapy (MCT). In summary, this novel all-inclusive HIV-1 genotypic and coreceptor tropism assay, based on deep sequencing of the PR, RT, IN, and V3 regions, permits simultaneous multiplex detection of low-level drug-resistant and/or non-R5 viruses in up to 96 clinical samples. This comprehensive test, the first of its class, will be instrumental in the development of new antiretroviral drugs and, more importantly, will aid in the treatment and management of HIV-infected individuals.
PMCID: PMC4023761  PMID: 24468782
22.  Reduced evolutionary rates in HIV-1 reveal extensive latency periods among replicating lineages 
Retrovirology  2014;11:81.
HIV-1 can persist for the duration of a patient’s life due in part to its ability to hide from the immune system, and from antiretroviral drugs, in long-lived latent reservoirs. Latent forms of HIV-1 may also be disproportionally involved in transmission. Thus, it is important to detect and quantify latency in the HIV-1 life cycle.
We developed a novel molecular clock–based phylogenetic tool to investigate the prevalence of HIV-1 lineages that have experienced latency. The method removes alternative sources that may affect evolutionary rates, such as hypermutation, recombination, and selection, to reveal the contribution of generation-time effects caused by latency. Our method was able to recover latent lineages with high specificity and sensitivity, and low false discovery rates, even on relatively short branches on simulated phylogenies. Applying the tool to HIV-1 sequences from 26 patients, we show that the majority of phylogenetic lineages have been affected by generation-time effects in every patient type, whether untreated, elite controller, or under effective or failing treatment. Furthermore, we discovered extensive effects of latency in sequence data (gag, pol, and env) from reservoirs as well as in the replicating plasma population. To better understand our phylogenetic findings, we developed a dynamic model of virus-host interactions to investigate the proportion of lineages in the actively replicating population that have ever been latent. Assuming neutral evolution, our dynamic modeling showed that under most parameter conditions, it is possible for a few activated latent viruses to propagate so that in time, most HIV-1 lineages will have been latent at some time in their past.
These results suggest that cycling in and out of latency plays a major role in the evolution of HIV-1. Thus, no aspect of HIV-1 evolution can be fully understood without considering latency - including treatment, drug resistance, immune evasion, transmission, and pathogenesis.
Electronic supplementary material
The online version of this article (doi:10.1186/s12977-014-0081-0) contains supplementary material, which is available to authorized users.
PMCID: PMC4201670  PMID: 25318357
HIV-1 latency; Phylogenetics; Molecular clock; False discovery rate; Dynamic modeling
23.  Longitudinal Analysis of Cerebrospinal Fluid and Plasma HIV-1 Envelope Sequences Isolated From a Single Donor with HIV Asymptomatic Neurocognitive Impairment 
Journal of virology & antiviral research  2015;4(1):10.4172/2324-8955.1000135.
Combined antiretroviral treatment (cART) has changed the clinical presentation of HIV-associated neurocognitive disorders (HAND) to that of the milder forms of the disease. Asymptomatic neurocognitive impairment (ANI) is now more prevalent and is associated with increased morbidity and mortality risk in HIV-1–infected people. HIV-1 envelope (env) genetic heterogeneity has been detected within the central nervous system (CNS) of individuals with ANI. Changes within env determine co-receptor use, cellular tropism, and neuropathogenesis. We hypothesize that compartmental changes are associated with HIV-1 env C2V4 during ANI and sought to analyze paired HIV-1 env sequences from plasma and cerebrospinal fluid (CSF) of a female subject undergoing long-term cART.
Paired plasma and CSF samples were collected at 12-month intervals and HIV-1 env C2V4 was cloned and sequenced.
Phylogenetic analysis of paired samples consistently showed genetic variants unique to the CSF. Phenotypic prediction showed CCR5 (R5) variants for all CSF-derived sequences and showed minor X4 variants (or dual-tropic) in the plasma at later time points. Viral compartmentalization was evident throughout the study, suggesting that the occurrence of distinctive env strains may contribute to the neuropathogenesis of HAND.
Our study provides new insights about the genetic characteristics within the C2V4 of HIV-1 env that persist after long-term cART and during the course of persistent ANI.
PMCID: PMC4498488  PMID: 26167513
HIV; HAND; envelope; evolution; asymptomatic neurocognitive impairment; plasma; cerebrospinal fluid
24.  Episodic Sexual Transmission of HIV Revealed by Molecular Phylodynamics 
PLoS Medicine  2008;5(3):e50.
The structure of sexual contact networks plays a key role in the epidemiology of sexually transmitted infections, and their reconstruction from interview data has provided valuable insights into the spread of infection. For HIV, the long period of infectivity has made the interpretation of contact networks more difficult, and major discrepancies have been observed between the contact network and the transmission network revealed by viral phylogenetics. The high rate of HIV evolution in principle allows for detailed reconstruction of links between virus from different individuals, but often sampling has been too sparse to describe the structure of the transmission network. The aim of this study was to analyze a high-density sample of an HIV-infected population using recently developed techniques in phylogenetics to infer the short-term dynamics of the epidemic among men who have sex with men (MSM).
Methods and Findings
Sequences of the protease and reverse transcriptase coding regions from 2,126 patients, predominantly MSM, from London were compared: 402 of these showed a close match to at least one other subtype B sequence. Nine large clusters were identified on the basis of genetic distance; all were confirmed by Bayesian Monte Carlo Markov chain (MCMC) phylogenetic analysis. Overall, 25% of individuals with a close match with one sequence are linked to 10 or more others. Dated phylogenies of the clusters using a relaxed clock indicated that 65% of the transmissions within clusters took place between 1995 and 2000, and 25% occurred within 6 mo after infection. The likelihood that not all members of the clusters have been identified renders the latter observation conservative.
Reconstruction of the HIV transmission network using a dated phylogeny approach has revealed the HIV epidemic among MSM in London to have been episodic, with evidence of multiple clusters of transmissions dating to the late 1990s, a period when HIV prevalence is known to have doubled in this population. The quantitative description of the transmission dynamics among MSM will be important for parameterization of epidemiological models and in designing intervention strategies.
Using viral genotype data from HIV drug resistance testing at a London clinic, Andrew Leigh Brown and colleagues derive the structure of the transmission network through phylogenetic analysis.
Editors' Summary
Human immunodeficiency virus (HIV), the cause of acquired immunodeficiency syndrome (AIDS), is mainly spread through unprotected sex with an infected partner. Like other sexually transmitted diseases, HIV/AIDS spreads through networks of sexual contacts. The characteristics of these complex networks (which include people who have serial sexual relationships with single partners and people who have concurrent sexual relationships with several partners) affect how quickly diseases spread in the short term and how common the disease is in the long term. For many sexually transmitted diseases, sexual contact networks can be reconstructed from interview data. The information gained in this way can be used for partner notification so that transmitters of the disease and people who may have been unknowingly infected can be identified, treated, and advised about disease prevention. It can also be used to develop effective community-based prevention strategies.
Why Was This Study Done?
Although sexual contact networks have provided valuable information about the spread of many sexually transmitted diseases, they cannot easily be used to understand HIV transmission patterns. This is because the period of infectivity with HIV is long and the risk of infection from a single sexual contact with an infected person is low. Another way to understand the spread of HIV is through phylogenetics, which examines the genetic relatedness of viruses obtained from different individuals. Frequent small changes in the genetic blueprint of HIV allow the virus to avoid the human immune response and to become resistant to antiretroviral drugs. In this study, the researchers use recently developed analytical methods, viral sequences from a large proportion of a specific HIV-infected population, and information on when each sample was taken, to learn about transmission of HIV/AIDS in London among men who have sex with men (MSM; a term that encompasses gay, bisexual, and transgendered men and heterosexual men who sometimes have sex with men). This new approach, which combines information on viral genetic variation and viral population dynamics, is called “molecular phylodynamics.”
What Did the Researchers Do and Find?
The researchers compared the sequences of the genes encoding the HIV-1 protease and reverse transcriptase from more than 2,000 patients, mainly MSM, attending a large London HIV clinic between 1997 and 2003. 402 of these sequences closely matched at least one other subtype B sequence (the HIV/AIDS epidemic among MSM in the UK primarily involves HIV subtype B). Further analysis showed that the patients from whom this subset of sequences came formed six clusters of ten or more individuals, as well as many smaller clusters, based on the genetic relatedness of their HIV viruses. The researchers then used information on the date when each sample was collected and a “relaxed clock” approach (which accounts for the possibility that different sequences evolve at different rates) to determine dated phylogenies (patterns of genetic relatedness that indicate when gene sequences change) for the clusters. These phylogenies indicated that at least in one in four transmissions between the individuals in the large clusters occurred within 6 months of infection, and that most of the transmissions within each cluster occurred over periods of 3–4 years during the late 1990s.
What Do These Findings Mean?
This phylodynamic reconstruction of the HIV transmission network among MSM in a London clinic indicates that the HIV epidemic in this population has been episodic with multiple clusters of transmission occurring during the late 1990s, a time when the number of HIV infections in this population doubled. It also suggests that transmission of the virus during the early stages of HIV infection is likely to be an important driver of the epidemic. Whether these results apply more generally to the MSM population at risk for transmitting or acquiring HIV depends on whether the patients in this study are representative of that group. Additional studies are needed to determine this, but if the patterns revealed here are generalizable, then this quantitative description of HIV transmission dynamics should help in the design of strategies to strengthen HIV prevention among MSM.
Additional Information.
Please access these Web sites via the online version of this summary at
Read a related PLoS Medicine Perspective article
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
HIV InSite has comprehensive information on all aspects of HIV/AIDS, including a list of organizations that provide information for gay men and MSM
The US Centers for Disease Control and Prevention provides information on HIV/AIDS and on HIV/AIDS among MSM (in English and Spanish)
Information is available from Avert, an international AIDS charity, on HIV, AIDS, and men who have sex with men
The Center for AIDS Prevention Studies (University of California, San Francisco) provides information on sexual networks and HIV prevention
The US National Center for Biotechnology Information provides a science primer on molecular phylogenetics
UK Collaborative Group on HIV Drug Resistance maintains a database of resistance tests
HIV i-Base offers HIV treatment information for health-care professionals and HIV-positive people
The NIH-funded HIV Sequence Database contains data on genetic sequences, resistance, immunology, and vaccine trials
PMCID: PMC2267814  PMID: 18351795
25.  Clinical Resistance to Enfuvirtide Does Not Affect Susceptibility of Human Immunodeficiency Virus Type 1 to Other Classes of Entry Inhibitors▿  
Journal of Virology  2007;81(7):3240-3250.
The clinical use of the human immunodeficiency virus (HIV) fusion inhibitor enfuvirtide (ENF) can select for drug-resistant HIV-1 strains bearing mutations in the HR1 region of the viral envelope (Env) protein. We analyzed the properties of multiple Env proteins isolated from five patients who experienced an initial decline in viral load after ENF therapy followed by subsequent rebound due to emergence of ENF-resistant HIV-1. Prior to ENF therapy, each patient harbored genetically and phenotypically diverse Env proteins that used CCR5 and/or CXCR4 to elicit membrane fusion. Coreceptor usage patterns of the Envs isolated from two patients underwent homogenization following ENF therapy, whereas in the other three patients, recombination appeared to allow the introduction of a single HR1 sequence with ENF resistance mutations into phenotypically distinct Env proteins. Analysis of individual Env clones also revealed that prior to ENF therapy, there was sometimes marked heterogeneity in the susceptibility of individual Env proteins to coreceptor inhibitors. After virologic failure, all Envs acquired resistance to ENF but exhibited no consistent change in their sensitivity to the fusion inhibitor T-1249 or to coreceptor inhibitors. In summary, using patient-derived Env proteins, we found that ENF failure was associated with emergence of high-level resistance to ENF due largely to mutations in HR1 but that susceptibility to other entry inhibitors was unaffected, that in these late-stage patients there was greater clonal variability to coreceptor than to fusion inhibitors, and that recombination events in vivo could sometimes restore Env genotypic and phenotypic heterogeneity by introducing drug-resistant gp41 sequences into heterologous gp120 backgrounds.
PMCID: PMC1866075  PMID: 17251281

Results 1-25 (1217196)