Search tips
Search criteria

Results 1-25 (1006132)

Clipboard (0)

Related Articles

1.  Salmonella paratyphi C: Genetic Divergence from Salmonella choleraesuis and Pathogenic Convergence with Salmonella typhi 
PLoS ONE  2009;4(2):e4510.
Although over 1400 Salmonella serovars cause usually self-limited gastroenteritis in humans, a few, e.g., Salmonella typhi and S. paratyphi C, cause typhoid, a potentially fatal systemic infection. It is not known whether the typhoid agents have evolved from a common ancestor (by divergent processes) or acquired similar pathogenic traits independently (by convergent processes). Comparison of different typhoid agents with non-typhoidal Salmonella lineages will provide excellent models for studies on how similar pathogens might have evolved.
Methodologies/Principal Findings
We sequenced a strain of S. paratyphi C, RKS4594, and compared it with previously sequenced Salmonella strains. RKS4594 contains a chromosome of 4,833,080 bp and a plasmid of 55,414 bp. We predicted 4,640 intact coding sequences (4,578 in the chromosome and 62 in the plasmid) and 152 pseudogenes (149 in the chromosome and 3 in the plasmid). RKS4594 shares as many as 4346 of the 4,640 genes with a strain of S. choleraesuis, which is primarily a swine pathogen, but only 4008 genes with another human-adapted typhoid agent, S. typhi. Comparison of 3691 genes shared by all six sequenced Salmonella strains placed S. paratyphi C and S. choleraesuis together at one end, and S. typhi at the opposite end, of the phylogenetic tree, demonstrating separate ancestries of the human-adapted typhoid agents. S. paratyphi C seemed to have suffered enormous selection pressures during its adaptation to man as suggested by the differential nucleotide substitutions and different sets of pseudogenes, between S. paratyphi C and S. choleraesuis.
S. paratyphi C does not share a common ancestor with other human-adapted typhoid agents, supporting the convergent evolution model of the typhoid agents. S. paratyphi C has diverged from a common ancestor with S. choleraesuis by accumulating genomic novelty during adaptation to man.
PMCID: PMC2640428  PMID: 19229335
2.  Genomic Comparison between Salmonella Gallinarum and Pullorum: Differential Pseudogene Formation under Common Host Restriction 
PLoS ONE  2013;8(3):e59427.
Salmonella serovars Enteritidis and Gallinarum are closely related, but their host ranges are very different: the former is host-promiscuous and the latter can infect poultry only. Comparison of their genomic sequences reveals that Gallinarum has undergone much more extensive degradation than Enteritidis. This phenomenon has also been observed in other host restricted Salmonella serovars, such as Typhi and Paratyphi A. The serovar Gallinarum can be further split into two biovars: Gallinarum and Pullorum, which take poultry as their common host but cause distinct diseases, with the former eliciting typhoid and the latter being a dysentery agent. Genomic comparison of the two pathogens, with a focus on pseudogenes, would provide insights into the evolutionary processes that might have facilitated the formation of host-restricted Salmonella pathogens.
Methodologies/Principal Findings
We sequenced the complete genome of Pullorum strains and made comparison with Gallinarum and other Salmonella lineages. The gene contents of Gallinarum and Pullorum were highly similar, but their pseudogene compositions differed considerably. About one fourth of pseudogenes had the same inactivation mutations in Gallinarum and Pullorum but these genes remained intact in Enteritidis, suggesting that the ancestral Gallinarum may have already been restricted to poultry. On the other hand, the remaining pseudogenes were either in the same genes but with different inactivation sites or unique to Gallinarum or Pullorum, reflecting unnecessary functions in infecting poultry.
Our results support the hypothesis that the divergence between Gallinarum and Pullorum was initiated and facilitated by host restriction. Formation of pseudogenes instead of gene deletion is the major form of genomic degradation. Given the short divergence history of Gallinarum and Pullorum, the effect of host restriction on genomic degradation is huge and rapid, and such effect seems to be continuing to work. The pseudogenes may reflect the unnecessary functions for Salmonella within the poultry host.
PMCID: PMC3598799  PMID: 23555032
3.  Genomic Comparison of the Closely Related Salmonella enterica Serovars Enteritidis and Dublin 
The Enteritidis and Dublin serovars of Salmonella enterica are closely related, yet they differ significantly in pathogenicity and epidemiology. S. Enteritidis is a broad host range serovar that commonly causes gastroenteritis and infrequently causes invasive disease in humans. S. Dublin mainly colonizes cattle but upon infecting humans often results in invasive disease.To gain a broader view of the extent of these differences we conducted microarray-based comparative genomics between several field isolates from each serovar. Genome degradation has been correlated with host adaptation in Salmonella, thus we also compared at whole genome scale the available genomic sequences of them to evaluate pseudogene composition within each serovar.
Microarray analysis revealed 3771 CDS shared by both serovars while 33 were only present in Enteritidis and 87 were exclusive to Dublin. Pseudogene evaluation showed 177 inactive CDS in S. Dublin which correspond to active genes in S. Enteritidis, nine of which are also inactive in the host adapted S. Gallinarum and S. Choleraesuis serovars. Sequencing of these 9 CDS in several S. Dublin clinical isolates revealed that they are pseudogenes in all of them, indicating that this feature is not peculiar to the sequenced strain. Among these CDS, shdA (Peyer´s patch colonization factor) and mglA (galactoside transport ATP binding protein), appear also to be inactive in the human adapted S. Typhi and S. Paratyphi A, suggesting that functionality of these genes may be relevant for the capacity of certain Salmonella serovars to infect a broad range of hosts.
PMCID: PMC3282883  PMID: 22371816
Comparative genomics; Host specificity; Pseudogenes; Salmonella; S. Dublin; S. Enteritidis.
4.  S. Typhimurium sseJ gene decreases the S. Typhi cytotoxicity toward cultured epithelial cells 
BMC Microbiology  2010;10:312.
Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.
We investigated whether the S. Typhi trans-complemented with the functional sseJ gene from S. Typhimurium (STM) affects the cytotoxicity toward cultured cell lines. It was found that S. Typhi harbouring sseJSTM presents a similar cytotoxicity level and intracellular retention/proliferation of cultured epithelial cells (HT-29 or HEp-2) as wild type S. Typhimurium. These phenotypes are significantly different from wild type S. Typhi
Based on our results we conclude that the mutation that inactivate the sseJ gene in S. Typhi resulted in evident changes in the behaviour of bacteria in contact with eukaryotic cells, plausibly contributing to the S. Typhi adaptation to the systemic infection in humans.
PMCID: PMC3004891  PMID: 21138562
5.  Invasive Salmonella Typhimurium ST313 with Naturally Attenuated Flagellin Elicits Reduced Inflammation and Replicates within Macrophages 
Invasive non-typhoidal Salmonella (iNTS) are an important cause of septicemia in children under the age of five years in sub-Saharan Africa. A novel genotype of Salmonella enterica subsp. enterica serovar Typhimurium (multi-locus sequence type [ST] 313) circulating in this geographic region is genetically different to from S. Typhimurium ST19 strains that are common throughout the rest of the world. S. Typhimurium ST313 strains have acquired pseudogenes and genetic deletions and appear to be evolving to become more like the typhoidal serovars S. Typhi and S. Paratyphi A. Epidemiological and clinical data show that S. Typhimurium ST313 strains are clinically associated with invasive systemic disease (bacteremia, septicemia, meningitis) rather than with gastroenteritis. The current work summarizes investigations of the broad hypothesis that S. Typhimurium ST313 isolates from Mali, West Africa, will behave differently from ST19 isolates in various in vitro assays. Here, we show that strains of the ST313 genotype are phagocytosed more efficiently and are highly resistant to killing by macrophage cell lines and primary mouse and human macrophages compared to ST19 strains. S. Typhimurium ST313 strains survived and replicated within different macrophages. Infection of macrophages with S. Typhimurium ST19 strains resulted in increased apoptosis and higher production of proinflammatory cytokines, as measured by gene expression and protein production, compared to S. Typhimurium ST313 strains. This difference in proinflammatory cytokine production and cell death between S. Typhimurium ST19 and ST313 strains could be explained, in part, by an increased production of flagellin by ST19 strains. These observations provide further evidence that S. Typhimurium ST313 strains are phenotypically different to ST19 strains and instead share similar pathogenic characteristics with typhoidal Salmonella serovars.
Author Summary
Non-typhoidal Salmonella, such as Salmonella Typhimurium, generally cause self-limiting gastroenteritis. However, in sub-Saharan Africa, a novel genotype called sequence type (ST) 313 is circulating and causes bloodstream infections in infants and HIV-infected individuals. In contrast, the most common genotype found throughout the rest of the world is ST19, which has been highly studied. Currently, the pathogenesis of S. Typhimurium ST313 is not well understood. In our study, we present evidence that S. Typhimurium ST313 strains from Mali, West Africa, survive and replicate better within a diverse set of primary human and murine macrophages and cell lines, inducing significantly less host-cell death as compared to S. Typhimurium ST19. Flagellin expression in the S. Typhimurium ST313 strains was found to be attenuated compared to S. Typhimurium ST19, thereby causing decreased inflammation. We conclude that S. Typhimurium ST313 have evolved phenotypically to be an intermediate between S. Typhimurium ST19 and the highly invasive typhoidal Salmonella serovars S. Typhi and S. Paratyphi A.
PMCID: PMC4287482  PMID: 25569606
6.  Multidrug-Resistant Salmonella enterica Serovar Paratyphi A Harbors IncHI1 Plasmids Similar to Those Found in Serovar Typhi▿  
Journal of Bacteriology  2007;189(11):4257-4264.
Salmonella enterica serovars Typhi and Paratyphi A cause systemic infections in humans which are referred to as enteric fever. Multidrug-resistant (MDR) serovar Typhi isolates emerged in the 1980s, and in recent years MDR serovar Paratyphi A infections have become established as a significant problem across Asia. MDR in serovar Typhi is almost invariably associated with IncHI1 plasmids, but the genetic basis of MDR in serovar Paratyphi A has remained predominantly undefined. The DNA sequence of an IncHI1 plasmid, pAKU_1, encoding MDR in a serovar Paratyphi A strain has been determined. Significantly, this plasmid shares a common IncHI1-associated DNA backbone with the serovar Typhi plasmid pHCM1 and an S. enterica serovar Typhimurium plasmid pR27. Plasmids pAKU_1 and pHCM1 share 14 antibiotic resistance genes encoded within similar mobile elements, which appear to form a 24-kb composite transposon that has transferred as a single unit into different positions into their IncHI1 backbones. Thus, these plasmids have acquired similar antibiotic resistance genes independently via the horizontal transfer of mobile DNA elements. Furthermore, two IncHI1 plasmids from a Vietnamese isolate of serovar Typhi were found to contain features of the backbone sequence of pAKU_1 rather than pHCM1, with the composite transposon inserted in the same location as in the pAKU_1 sequence. Our data show that these serovar Typhi and Paratyphi A IncHI1 plasmids share highly conserved core DNA and have acquired similar mobile elements encoding antibiotic resistance genes in past decades.
PMCID: PMC1913411  PMID: 17384186
7.  Genomic Characterisation of Invasive Non-Typhoidal Salmonella enterica Subspecies enterica Serovar Bovismorbificans Isolates from Malawi 
Invasive Non-typhoidal Salmonella (iNTS) are an important cause of bacteraemia in children and HIV-infected adults in sub-Saharan Africa. Previous research has shown that iNTS strains exhibit a pattern of gene loss that resembles that of host adapted serovars such as Salmonella Typhi and Paratyphi A. Salmonella enterica serovar Bovismorbificans was a common serovar in Malawi between 1997 and 2004.
We sequenced the genomes of 14 Malawian bacteraemia and four veterinary isolates from the UK, to identify genomic variations and signs of host adaptation in the Malawian strains.
Principal Findings
Whole genome phylogeny of invasive and veterinary S. Bovismorbificans isolates showed that the isolates are highly related, belonging to the most common international S. Bovismorbificans Sequence Type, ST142, in contrast to the findings for S. Typhimurium, where a distinct Sequence Type, ST313, is associated with invasive disease in sub-Saharan Africa. Although genome degradation through pseudogene formation was observed in ST142 isolates, there were no clear overlaps with the patterns of gene loss seen in iNTS ST313 isolates previously described from Malawi, and no clear distinction between S. Bovismorbificans isolates from Malawi and the UK.
The only defining differences between S. Bovismorbificans bacteraemia and veterinary isolates were prophage-related regions and the carriage of a S. Bovismorbificans virulence plasmid (pVIRBov).
iNTS S. Bovismorbificans isolates, unlike iNTS S. Typhiumrium isolates, are only distinguished from those circulating elsewhere by differences in the mobile genome. It is likely that these strains have entered a susceptible population and are able to take advantage of this niche. There are tentative signs of convergent evolution to a more human adapted iNTS variant. Considering its importance in causing disease in this region, S. Bovismorbificans may be at the beginning of this process, providing a reference against which to compare changes that may become fixed in future lineages in sub-Saharan Africa.
Author Summary
Bacteraemia and meningitis caused by non-typhoidal Salmonella (including serovars Typhimurium, Enteritidis and Bovismorbificans) are a serious health issue in sub-Saharan Africa, particularly in young children and HIV-infected adults. Previous work has indicated that a distinct S. Typhimurium sequence type, ST313, has evolved and spread in these countries, and may be more human-adapted than isolates found in the developed world. We therefore investigated the genomes of Salmonella enterica serovar Bovismorbificans bacteraemia isolates from Malawi and compared them to genomes of veterinary S. Bovismorbificans isolates from the UK using Next Generation Sequencing Technology and subsequent genomic comparisons to establish if there is a genetic basis for this increase in invasive disease observed among African NTS. Contrary to the previous findings for S. Typhimurium, where a distinct ST is found only in sub-Saharan Africa, we discovered that the S. Bovismorbificans isolates from Malawi belong to the most common ST of the serovar and the genome is highly conserved across all sequenced isolates. The major differences between UK veterinary and African human isolates were due to prophage regions inserted into the genomes of African isolates, coupled with a higher prevalence of a virulence plasmid compared to the UK isolates.
PMCID: PMC3828162  PMID: 24244782
8.  The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen 
Nucleic Acids Research  2005;33(5):1690-1698.
Salmonella enterica serovar Choleraesuis (S.Choleraesuis), a highly invasive serovar among non-typhoidal Salmonella, usually causes sepsis or extra-intestinal focal infections in humans. S.Choleraesuis infections have now become particularly difficult to treat because of the emergence of resistance to multiple antimicrobial agents. The 4.7 Mb genome sequence of a multidrug-resistant S.Choleraesuis strain SC-B67 was determined. Genome wide comparison of three sequenced Salmonella genomes revealed that more deletion events occurred in S.Choleraesuis SC-B67 and S.Typhi CT18 relative to S.Typhimurium LT2. S.Choleraesuis has 151 pseudogenes, which, among the three Salmonella genomes, include the highest percentage of pseudogenes arising from the genes involved in bacterial chemotaxis signal-transduction pathways. Mutations in these genes may increase smooth swimming of the bacteria, potentially allowing more effective interactions with and invasion of host cells to occur. A key regulatory gene of TetR/AcrR family, acrR, was inactivated through the introduction of an internal stop codon resulting in overexpression of AcrAB that appears to be associated with ciprofloxacin resistance. While lateral gene transfer providing basic functions to allow niche expansion in the host and environment is maintained during the evolution of different serovars of Salmonella, genes providing little overall selective benefit may be lost rapidly. Our findings suggest that the formation of pseudogenes may provide a simple evolutionary pathway that complements gene acquisition to enhance virulence and antimicrobial resistance in S.Choleraesuis.
PMCID: PMC1069006  PMID: 15781495
9.  Live Oral Typhoid Vaccine Ty21a Induces Cross-Reactive Humoral Immune Responses against Salmonella enterica Serovar Paratyphi A and S. Paratyphi B in Humans 
Enteric fever caused by Salmonella enterica serovar Paratyphi A infection has emerged as an important public health problem. Recognizing that in randomized controlled field trials oral immunization with attenuated S. enterica serovar Typhi live vaccine Ty21a conferred significant cross-protection against S. Paratyphi B but not S. Paratyphi A disease, we undertook a clinical study to ascertain whether humoral immune responses could explain the field trial results. Ty21a immunization of adult residents of Maryland elicited predominantly IgA antibody-secreting cells (ASC) that recognize S. Typhi lipopolysaccharide (LPS). Cross-reactivity to S. Paratyphi A LPS was significantly lower than that to S. Paratyphi B LPS. ASC producing IgG and IgA that bind LPS from each of these Salmonella serovars expressed CD27 and integrin α4β7 (gut homing), with a significant proportion coexpressing CD62L (secondary lymphoid tissue homing). No significant differences were observed in serum antibody against LPS of the different serovars. Levels of IgA B memory (BM) cells to S. Typhi LPS were significantly higher than those against S. Paratyphi A or B LPS, with no differences observed between S. Paratyphi A and B. The response of IgA BM to outer membrane proteins (OMP) from S. Typhi was significantly stronger than that to OMP of S. Paratyphi A but similar to that to OMP of S. Paratyphi B. The percentages of IgG or IgA BM responders to LPS or OMP from these Salmonella strains were similar. Whereas cross-reactive humoral immune responses to S. Paratyphi A or B antigens are demonstrable following Ty21a immunization, they cannot explain the efficacy data gleaned from controlled field trials.
PMCID: PMC3370435  PMID: 22492745
10.  Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. 
Infection and Immunity  1990;58(7):2262-2275.
Multilocus enzyme electrophoresis was employed to measure chromosomal genotypic diversity and evolutionary relationships among 761 isolates of the serovars Salmonella typhi, S. paratyphi A, S. paratyphi B, S. paratyphi C, and S. sendai, which are human-adapted agents of enteric fever, and S. miami and S. java, which are serotypically similar to S. sendai and S. paratyphi B, respectively, but cause gastroenteritis in both humans and animals. To determine the phylogenetic positions of the clones of these forms within the context of the salmonellae of subspecies I, comparative data for 22 other common serovars were utilized. Except for S. paratyphi A and S. sendai, the analysis revealed no close phylogenetic relationships among clones of different human-adapted serovars, which implies convergence in host adaptation and virulence factors. Clones of S. miami are not allied with those of S. sendai or S. paratyphi A, being, instead, closely related to strains of S. panama. Clones of S. paratyphi B and S. java belong to a large phylogenetic complex that includes clones of S. typhimurium, S. heidelberg, S. saintpaul, and S. muenchen. Most strains of S. paratyphi B belong to a globally distributed clone that is highly polymorphic in biotype, bacteriophage type, and several other characters, whereas strains of S. java represent seven diverse lineages. The flagellar monophasic forms of S. java are genotypically more similar to clones of S. typhimurium than to other clones of S. java or S. paratyphi B. Clones of S. paratyphi C are related to those of S. choleraesuis. DNA probing with a segment of the viaB region specific for the Vi capsular antigen genes indicated that the frequent failure of isolates of S. paratyphi C to express Vi antigen is almost entirely attributable to regulatory processes rather than to an absence of the structural determinant genes themselves. Two clones of S. typhisuis are related to those of S. choleraesuis and S. paratyphi C, but a third clone is not. Although the clones of S. decatur and S. choleraesuis are serologically and biochemically similar, they are genotypically very distinct. Two clones of S. typhi were distinguished, one globally distributed and another apparently confined to Africa; both clones are distantly related to those of all other serovars studied.
PMCID: PMC258807  PMID: 1973153
11.  Convergent Molecular Evolution of Genomic Cores in Salmonella enterica and Escherichia coli 
Journal of Bacteriology  2012;194(18):5002-5011.
One of the strongest signals of adaptive molecular evolution of proteins is the occurrence of convergent hot spot mutations: repeated changes in the same amino acid positions. We performed a comparative genome-wide analysis of mutation-driven evolution of core (omnipresent) genes in 17 strains of Salmonella enterica subspecies I and 22 strains of Escherichia coli. More than 20% of core genes in both Salmonella and E. coli accumulated hot spot mutations, with a predominance of identical changes having recent evolutionary origin. There is a significant overlap in the functional categories of the adaptively evolving genes in both species, although mostly via separate molecular mechanisms. As a strong evidence of the link between adaptive mutations and virulence in Salmonella, two human-restricted serovars, Typhi and Paratyphi A, shared the highest number of genes with serovar-specific hot spot mutations. Many of the core genes affected by Typhi/Paratyphi A-specific mutations have known virulence functions. For each species, a list of nonrecombinant core genes (and the hot spot mutations therein) under positive selection is provided.
PMCID: PMC3430314  PMID: 22797756
12.  Genomic Comparison of Salmonella enterica Serovars and Salmonella bongori by Use of an S. enterica Serovar Typhimurium DNA Microarray 
Journal of Bacteriology  2003;185(2):553-563.
The genus Salmonella consists of over 2,200 serovars that differ in their host range and ability to cause disease despite their close genetic relatedness. The genetic factors that influence each serovar's level of host adaptation, how they evolved or were acquired, their influence on the evolution of each serovar, and the phylogenic relationships between the serovars are of great interest as they provide insight into the mechanisms behind these differences in host range and disease progression. We have used an Salmonella enterica serovar Typhimurium spotted DNA microarray to perform genomic hybridizations of various serovars and strains of both S. enterica (subspecies I and IIIa) and Salmonella bongori to gain insight into the genetic organization of the serovars. Our results are generally consistent with previously published DNA association and multilocus enzyme electrophoresis data. Our findings also reveal novel information. We observe a more distant relationship of serovar Arizona (subspecies IIIa) from the subspecies I serovars than previously measured. We also observe variability in the Arizona SPI-2 pathogenicity island, indicating that it has evolved in a manner distinct from the other serovars. In addition, we identify shared genetic features of S. enterica serovars Typhi, Paratyphi A, and Sendai that parallel their unique ability to cause enteric fever in humans. Therefore, whereas the taxonomic organization of Salmonella into serogroups provides a good first approximation of genetic relatedness, we show that it does not account for genomic changes that contribute to a serovar's degree of host adaptation.
PMCID: PMC145314  PMID: 12511502
13.  Composition, Acquisition, and Distribution of the Vi Exopolysaccharide-Encoding Salmonella enterica Pathogenicity Island SPI-7 
Journal of Bacteriology  2003;185(17):5055-5065.
Vi capsular polysaccharide production is encoded by the viaB locus, which has a limited distribution in Salmonella enterica serovars. In S. enterica serovar Typhi, viaB is encoded on a 134-kb pathogenicity island known as SPI-7 that is located between partially duplicated tRNApheU sites. Functional and bioinformatic analysis suggests that SPI-7 has a mosaic structure and may have evolved as a consequence of several independent insertion events. Analysis of viaB-associated DNA in Vi-positive S. enterica serovar Paratyphi C and S. enterica serovar Dublin isolates revealed the presence of similar SPI-7 islands. In S. enterica serovars Paratyphi C and Dublin, the SopE bacteriophage and a 15-kb fragment adjacent to the intact tRNApheU site were absent. In S. enterica serovar Paratyphi C only, a region encoding a type IV pilus involved in the adherence of S. enterica serovar Typhi to host cells was missing. The remainder of the SPI-7 islands investigated exhibited over 99% DNA sequence identity in the three serovars. Of 30 other Salmonella serovars examined, 24 contained no insertions at the equivalent tRNApheU site, 2 had a 3.7-kb insertion, and 4 showed sequence variation at the tRNApheU-phoN junction, which was not analyzed further. Sequence analysis of the SPI-7 region from S. enterica serovar Typhi strain CT18 revealed significant synteny with clusters of genes from a variety of saprophytic bacteria and phytobacteria, including Pseudomonas aeruginosa and Xanthomonas axonopodis pv. citri. This analysis suggested that SPI-7 may be a mobile element, such as a conjugative transposon or an integrated plasmid remnant.
PMCID: PMC180996  PMID: 12923078
14.  Paratyphoid Fever: Splicing the Global Analyses 
The incidence of enteric fever caused by Salmonella enterica serovar Paratyphi A (S. Paratyphi A) is increasing in many parts of the world. Although there is no major outbreak of paratyphoid fever in recent years, S. Paratyphi A infection still remains a public health problem in many tropical countries. Therefore, surveillance studies play an important role in monitoring infections and the emergence of multidrug resistance, especially in endemic countries such as India, Nepal, Pakistan and China. In China, enteric fever was caused predominantly by S. Paratyphi A rather than by Salmonella enterica serovar Typhi (S. Typhi). Sometimes, S. Paratyphi A infection can evolve into a carrier state which increases the risk of transmission for travellers. Hence, paratyphoid fever is usually classified as a “travel-associated” disease. To date, diagnosis of paratyphoid fever based on the clinical presentation is not satisfactory as it resembles other febrile illnesses, and could not be distinguished from S. Typhi infection. With the availability of Whole Genome Sequencing technology, the genomes of S. Paratyphi A could be studied in-depth and more specific targets for detection will be revealed. Hence, detection of S. Paratyphi A with Polymerase Chain Reaction (PCR) method appears to be a more reliable approach compared to the Widal test. On the other hand, due to increasing incidence of S. Paratyphi A infections worldwide, the need to produce a paratyphoid vaccine is essential and urgent. Hence various vaccine projects that involve clinical trials have been carried out. Overall, this review provides the insights of S. Paratyphi A, including the bacteriology, epidemiology, management and antibiotic susceptibility, diagnoses and vaccine development.
PMCID: PMC4045793  PMID: 24904229
Salmonella Paratyphi A; paratyphoid fever; epidemiology; antibiotic resistance; diagnosis; vaccine.
15.  Diverse genome structures of Salmonella paratyphi C 
BMC Genomics  2007;8:290.
Salmonella paratyphi C, like S. typhi, is adapted to humans and causes typhoid fever. Previously we reported different genome structures between two strains of S. paratyphi C, which suggests that S. paratyphi C might have a plastic genome (large DNA segments being organized in different orders or orientations on the genome). As many but not all host-adapted Salmonella pathogens have large genomic insertions as well as the supposedly resultant genomic rearrangements, bacterial genome plasticity presents an extraordinary evolutionary phenomenon. Events contributing to genomic plasticity, especially large insertions, may be associated with the formation of particular Salmonella pathogens.
We constructed a high resolution genome map in S. paratyphi C strain RKS4594 and located four insertions totaling 176 kb (including the 90 kb SPI7) and seven deletions totaling 165 kb relative to S. typhimurium LT2. Two rearrangements were revealed, including an inversion of 1602 kb covering the ter region and the translocation of the 43 kb I-CeuI F fragment. The 23 wild type strains analyzed in this study exhibited diverse genome structures, mostly as a result of recombination between rrn genes. In at least two cases, the rearrangements involved recombination between genomic sites other than the rrn genes, possibly homologous genes in prophages. Two strains had a 20 kb deletion between rrlA and rrlB, which is a highly conservative region and no deletion has been reported in this region in any other Salmonella lineages.
S. paratyphi C has diverse genome structures among different isolates, possibly as a result of large genomic insertions, e.g., SPI7. Although the Salmonella typhoid agents may not be more closely related among them than each of them to other Salmonella lineages, they may have evolved in similar ways, i.e., acquiring typhoid-associated genes followed by genome structure rearrangements. Comparison of multiple Salmonella typhoid agents at both single sequenced genome and population levels will facilitate the studies on the evolutionary process of typhoid pathogenesis, especially the identification of typhoid-associated genes.
PMCID: PMC2000905  PMID: 17718928
16.  Estimating the Burden of Paratyphoid A in Asia and Africa 
Despite the increasing availability of typhoid vaccine in many regions, global estimates of mortality attributable to enteric fever appear stable. While both Salmonella enterica serovar Typhi (S. Typhi) and serovar Paratyphi (S. Paratyphi) cause enteric fever, limited data exist estimating the burden of S. Paratyphi, particularly in Asia and Africa.
We performed a systematic review of both English and Chinese-language databases to estimate the regional burden of paratyphoid within Africa and Asia. Distinct from previous reviews of the topic, we have presented two separate measures of burden; both incidence and proportion of enteric fever attributable to paratyphoid. Included articles reported laboratory-confirmed Salmonella serovar classification, provided clear methods on sampling strategy, defined the age range of participants, and specified the time period of the study.
A total of 64 full-text articles satisfied inclusion criteria and were included in the qualitative synthesis. Paratyphoid A was commonly identified as a cause of enteric fever throughout Asia. The highest incidence estimates in Asia came from China; four studies estimated incidence rates of over 150 cases/100,000 person-years. Paratyphoid A burden estimates from Africa were extremely limited and with the exception of Nigeria, few population or hospital-based studies from Africa reported significant Paratyphoid A burden.
While significant gaps exist in the existing population-level estimates of paratyphoid burden in Asia and Africa, available data suggest that paratyphoid A is a significant cause of enteric fever in Asia. The high variability in documented incidence and proportion estimates of paratyphoid suggest considerable geospatial variability in the burden of paratyphoid fever. Additional efforts to monitor enteric fever at the population level will be necessary in order to accurately quantify the public health threat posed by S. Paratyphi A, and to improve the prevention and treatment of enteric fever.
Author Summary
Enteric fever due to Salmonella enterica serovar Typhi (S. Typhi) and serovar Paratyphi (S. Paratyphi A, B, C) remains a global public health concern. While numerous studies have estimated the levels or burden of S. Typhi, there are only limited data estimating the burden of S. Paratyphi A, particularly in Asia and Africa. We reviewed both English and Chinese-language databases for estimates of the regional burden within Africa and Asia, including new paratyphoid A cases/year and proportion of enteric fever cases attributable to paratyphoid A. S. Paratyphi A appears to constitute a significant proportion of all cases of enteric fever in Asia, though population level estimates are limited, especially in Africa. There was high variability in reported paratyphoid A burden estimates, which suggests considerable geospatial variability in the burden of paratyphoid fever. Improved efforts to monitor enteric fever at the population level are warranted in order to correctly measure the public health threat posed by S. Paratyphi A and to determine the potential need for S. Paratyphi specific prevention and treatment interventions.
PMCID: PMC4046978  PMID: 24901439
17.  Reliable Means of Diagnosis and Serovar Determination of Blood-Borne Salmonella Strains: Quick PCR Amplification of Unique Genomic Loci by Novel Primer Sets▿  
Journal of Clinical Microbiology  2009;47(8):2435-2441.
Typhoid fever is becoming an ever increasing threat in the developing countries. We have improved considerably upon the existing PCR-based diagnosis method by designing primers against a region that is unique to Salmonella enterica subsp. enterica serovar Typhi and Salmonella enterica subsp. enterica serovar Paratyphi A, corresponding to the STY0312 gene in S. Typhi and its homolog SPA2476 in S. Paratyphi A. An additional set of primers amplify another region in S. Typhi CT18 and S. Typhi Ty2 corresponding to the region between genes STY0313 to STY0316 but which is absent in S. Paratyphi A. The possibility of a false-negative result arising due to mutation in hypervariable genes has been reduced by targeting a gene unique to typhoidal Salmonella serovars as a diagnostic marker. The amplified region has been tested for genomic stability by amplifying the region from clinical isolates of patients from various geographical locations in India, thereby showing that this region is potentially stable. These set of primers can also differentiate between S. Typhi CT18, S. Typhi Ty2, and S. Paratyphi A, which have stable deletions in this specific locus. The PCR assay designed in this study has a sensitivity of 95% compared to the Widal test which has a sensitivity of only 63%. As observed, in certain cases, the PCR assay was more sensitive than the blood culture test was, as the PCR-based detection could also detect dead bacteria.
PMCID: PMC2725699  PMID: 19535522
18.  Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin 
PLoS Pathogens  2012;8(6):e1002733.
Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella.
Author Summary
The process of Salmonella host-adaptation is traditionally considered to involve acquisition of novel genetic elements encoding specific virulence factors or loss of genes representing liability for the more pathogenic strains. Here, by analysis of the mannose-sensitive fimbrial adhesin FimH, we demonstrate that in addition to horizontal gene transfer and genome degradation, single amino acid replacement plays an important role in the differential adaptive evolution of Salmonella. We show that acquisition of specific structural mutations in FimH variants of host-adapted (systemically invasive) serovars results in either significantly enhanced or, alternatively, completely inactivated mannose-binding, whereas systemically non-invasive serovars retain a primordial relatively low-binding (shear-dependent) phenotype. A phylogenetic analysis indicates that these mutations are commonly of a convergent nature and occur under strong positive selection illustrating the role of point amino acid changes in convergent evolution of host-adapted Salmonella. Although we show increased bacterial adhesiveness and cell-invasiveness of the high-binding mutants, the physiologic role of the non-binding mutations in FimH remains to be determined.
PMCID: PMC3369946  PMID: 22685400
19.  Chromosomal Rearrangements in Salmonella enterica Serovar Typhi Strains Isolated from Asymptomatic Human Carriers 
mBio  2011;2(3):e00060-11.
Host-specific serovars of Salmonella enterica often have large-scale chromosomal rearrangements that occur by recombination between rrn operons. Two hypotheses have been proposed to explain these rearrangements: (i) replichore imbalance from horizontal gene transfer drives the rearrangements to restore balance, or (ii) the rearrangements are a consequence of the host-specific lifestyle. Although recent evidence has refuted the replichore balance hypothesis, there has been no direct evidence for the lifestyle hypothesis. To test this hypothesis, we determined the rrn arrangement type for 20 Salmonella enterica serovar Typhi strains obtained from human carriers at periodic intervals over multiple years. These strains were also phage typed and analyzed for rearrangements that occurred over long-term storage versus routine culturing. Strains isolated from the same carrier at different time points often exhibited different arrangement types. Furthermore, colonies isolated directly from the Dorset egg slants used to store the strains also had different arrangement types. In contrast, colonies that were repeatedly cultured always had the same arrangement type. Estimated replichore balance of isolated strains did not improve over time, and some of the rearrangements resulted in decreased replicore balance. Our results support the hypothesis that the restricted lifestyle of host-specific Salmonella is responsible for the frequent chromosomal rearrangements in these serovars.
Although it was previously thought that bacterial chromosomes were stable, comparative genomics has demonstrated that bacterial chromosomes are dynamic, undergoing rearrangements that change the order and expression of genes. While most Salmonella strains have a conserved chromosomal arrangement type, rearrangements are very common in host-specific Salmonella strains. This study suggests that chromosome rearrangements in the host-specific Salmonella enterica serovar Typhi, the causal agent of typhoid fever, occur within the human host over time. The results also indicate that rearrangements can occur during long-term maintenance on laboratory medium. Although these genetic changes do not limit survival under slow-growth conditions, they may limit the survival of Salmonella Typhi in other environments, as predicted for the role of pseudogenes and genome reduction in niche-restricted bacteria.
PMCID: PMC3107234  PMID: 21652779
20.  Live Oral Salmonella enterica Serovar Typhi Vaccines Ty21a and CVD 909 Induce Opsonophagocytic Functional Antibodies in Humans That Cross-React with S. Paratyphi A and S. Paratyphi B 
Live oral Salmonella enterica serovar Typhi vaccine Ty21a induces specific antibodies that cross-react against Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Paratyphi B, although their functional role in clearance remains unknown. We utilized an in vitro assay with THP-1 macrophages to compare the phagocytosis and survival of Salmonella opsonized with heat-inactivated human sera obtained before and after vaccination with Ty21a or a live oral S. Typhi vaccine, CVD 909. Opsonization with postvaccination sera predominantly increased the phagocytosis of S. Typhi relative to the corresponding prevaccination sera, and increases were also observed with S. Paratyphi A and S. Paratyphi B, albeit of lower magnitudes. Relative to prevaccination sera, opsonization with the postvaccination sera reduced the survival inside macrophages of S. Typhi but not of S. Paratyphi A or S. Paratyphi B. Higher anti-S. Typhi O antigen (lipopolysaccharide [LPS]) IgG, but not IgA, antibody titers correlated significantly with postvaccination increases in opsonophagocytosis. No differences were observed between immunization with four doses of Ty21a or one dose of CVD 909. Ty21a and CVD 909 induced cross-reactive functional antibodies, predominantly against S. Typhi. IgG anti-LPS antibodies may be important in phagocytic clearance of these organisms. Therefore, measurement of functional antibodies might be important in assessing the immunogenicity of a new generation of typhoid and paratyphoid A vaccines. (The CVD 909 study has been registered at under registration no. NCT00326443.)
PMCID: PMC3957674  PMID: 24429069
21.  Genetic Determinants and Polymorphisms Specific for Human-Adapted Serovars of Salmonella enterica That Cause Enteric Fever 
Journal of Clinical Microbiology  2006;44(6):2007-2018.
Salmonella enterica serovars Typhi, Paratyphi A, and Sendai are human-adapted pathogens that cause typhoid (enteric) fever. The acute prevalence in some global regions and the disease severity of typhoidal Salmonella have necessitated the development of rapid and specific detection tests. Most of the methodologies currently used to detect serovar Typhi do not identify serovars Paratyphi A or Sendai. To assist in this aim, comparative sequence analyses were performed at the loci of core bacterial genetic determinants and Salmonella pathogenicity island 2 genes encoded by clinically significant S. enterica serovars. Genetic polymorphisms specific for serovar Typhi (at trpS), as well as polymorphisms unique to human-adapted typhoidal serovars (at sseC and sseF), were observed. Furthermore, entire coding sequences unique to human-adapted typhoidal Salmonella strains (i.e., serovar-specific genetic loci rather than polymorphisms) were observed in publicly available comparative genomic DNA microarray data sets. These polymorphisms and loci were developed into real-time PCR, standard PCR, and liquid microsphere suspension array-based molecular protocols and tested for with a panel of clinical and reference subspecies I S. enterica strains. A proportion of the nontyphoidal Salmonella strains hybridized with the allele-specific oligonucleotide probes for sseC and sseF; but the trpS allele was unique to serovar Typhi (with a singular serovar Paratyphi B strain as an exception), and the coding sequences STY4220 and STY4221 were unique among serovars Typhi, Paratyphi A, and Sendai. These determinants provided phylogenetic data on the genetic relatedness of serovars Typhi, Paratyphi A, and Sendai; and the protocols developed might allow the rapid identification of these Salmonella serovars that cause enteric fever.
PMCID: PMC1489402  PMID: 16757591
22.  Rapid Multiplex PCR and Real-Time TaqMan PCR Assays for Detection of Salmonella enterica and the Highly Virulent Serovars Choleraesuis and Paratyphi C▿ †  
Journal of Clinical Microbiology  2008;46(12):4018-4022.
Salmonella enterica is a human pathogen with over 2,500 serovars characterized. S. enterica serovars Choleraesuis and Paratyphi C are two globally distributed serovars. We have developed a rapid molecular-typing method to detect serovars Choleraesuis and Paratyphi C in food samples by using a comparative-genomics approach to identify regions unique to each serovar from the sequenced genomes. A Salmonella-specific primer pair based on oriC was designed as an internal control to establish accuracy, sensitivity, and reproducibility. Serovar-specific primer sets based on regions of difference between serovars Choleraesuis and Paratyphi C were designed for real-time PCR assays. Three primer sets were used to screen a collection of over 100 Salmonella strains, and both serovars Choleraesuis and Paratyphi C gave unique amplification patterns. To develop the technique for practical use, its sensitivity for detection of Salmonella spp. in a food matrix was determined by spiking experiments. The technique was also adapted for a real-time PCR rapid-detection assay for both serovars Choleraesuis and Paratyphi C that complements the current procedures for Salmonella sp. isolation and serotyping.
PMCID: PMC2593286  PMID: 18923008
23.  An Allele of an Ancestral Transcription Factor Dependent on a Horizontally Acquired Gene Product 
PLoS Genetics  2012;8(12):e1003060.
Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.
Author Summary
Horizontally acquired genes are typically viewed as independent units that confer new traits when introduced into different bacterial species. However, preexisting proteins in a bacterium can impact the ability of horizontally acquired gene products to bring about new functions when they target ancestral pathways. Here, we establish that a single amino acid difference in the ancestral transcription factor PmrA alters its dependence on the horizontally acquired gene product PmrD to promote gene expression within closely related Salmonella serovars. Consequently, S. enterica serovar Typhimurium, which infects a wide range of animals, expresses PmrA-dependent genes and displays antibiotic resistance in conditions that activate the PmrA and/or PmrD proteins. By contrast, the human-adapted S. enterica serovar Paratyphi B only does so in the presence of both PmrA- and PmrD-activating conditions. Bacteria harboring the Paratyphi B pmrA gene also exhibited enhanced biofilm formation, which may contribute to serovar Paratyphi B's persistent infection of the gallbladder. Our findings demonstrate that the ability of horizontally acquired genes to confer new traits can be affected by ancestral proteins, even within one bacterial species. Therefore, a protein's function in a given organism must be appreciated in the context of other proteins operating within the same genetic network.
PMCID: PMC3531487  PMID: 23300460
24.  Salmonella enterica Serovars Typhi and Paratyphi A are avirulent in newborn and infant mice even when expressing virulence plasmid genes of Salmonella Typhimurium 
Salmonella enterica serovars Typhi and Paratyphi A are human host-restricted pathogens. Therefore, there is no small susceptible animal host that can be used to assess the virulence and safety of vaccine strains derived from these Salmonella serovars. However, infant mice have been used to evaluate virulence and colonization by another human host-restricted pathogen, Vibrio cholerae.
The possibility that infant mice host could be adapted for Salmonella led us to investigate the susceptibility of newborn and infant mice to oral infection with S. Typhi and S. Paratyphi A. Salmonella enterica serovar Typhimurium causes enteric fever in adult mice and this system has been used as a model for human typhoid. The pSTV virulence plasmid, not present in S. Typhi and S. Paratyphi A, plays an essential role in S. Typhimurium colonization and systemic infection of mice. We also conjugated pSTV into S. Typhi and S. Paratyphi A serovars and evaluated these transconjugants in newborn and infant mice.
We determined that the spv virulence genes from the S. Typhimurium virulence plasmid are expressed in S. Typhi and S. Paratyphi A in a RpoS dependent fashion. Also, we determined that S. Typhi and S. Paratyphi A with and without pSTV transiently colonize newborn and infant mice tissues.
Newborn and infant mice infected with S. Typhi and S. Paratyphi A do not succumb to the infection and that carriage of the S. Typhimurium virulence plasmid, pSTV, did not influence these results.
PMCID: PMC4059606  PMID: 21252450
Salmonella Typhi; Salmonella Paratyphi A; newborn mice; infant mice; virulence plasmid
25.  Genomic diversity and adaptation of Salmonella enterica serovar Typhimurium from analysis of six genomes of different phage types 
BMC Genomics  2013;14:718.
Salmonella enterica serovar Typhimurium (or simply Typhimurium) is the most common serovar in both human infections and farm animals in Australia and many other countries. Typhimurium is a broad host range serovar but has also evolved into host-adapted variants (i.e. isolated from a particular host such as pigeons). Six Typhimurium strains of different phage types (defined by patterns of susceptibility to lysis by a set of bacteriophages) were analysed using Illumina high-throughput genome sequencing.
Variations between strains were mainly due to single nucleotide polymorphisms (SNPs) with an average of 611 SNPs per strain, ranging from 391 SNPs to 922 SNPs. There were seven insertions/deletions (indels) involving whole or partial gene deletions, four inactivation events due to IS200 insertion and 15 pseudogenes due to early termination. Four of these inactivated or deleted genes may be virulence related. Nine prophage or prophage remnants were identified in the six strains. Gifsy-1, Gifsy-2 and the sopE2 and sspH2 phage remnants were present in all six genomes while Fels-1, Fels-2, ST64B, ST104 and CP4-57 were variably present. Four strains carried the 90-kb plasmid pSLT which contains several known virulence genes. However, two strains were found to lack the plasmid. In addition, one strain had a novel plasmid similar to Typhi strain CT18 plasmid pHCM2.
The genome data suggest that variations between strains were mainly due to accumulation of SNPs, some of which resulted in gene inactivation. Unique genetic elements that were common between host-adapted phage types were not found. This study advanced our understanding on the evolution and adaptation of Typhimurium at genomic level.
PMCID: PMC3853940  PMID: 24138507
Typhimurium; Genome; Next generation sequencing; Phage type; Evolution; Single nucleotide polymorphism

Results 1-25 (1006132)