Search tips
Search criteria

Results 1-25 (1221303)

Clipboard (0)

Related Articles

1.  Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. 
Journal of Bacteriology  1995;177(24):7050-7059.
Two species belonging to a novel genus of archaea, designated Picrophilus oshimae and Picrophilus torridus, have been isolated from two different solfataric locations in northern Japan. One habitat harboring both organisms was a dry, extremely acidic soil (pH < 0.5) that was heated by solfataric gases to about 55 degrees C. In the laboratory both species grew heterotrophically on yeast extract and poorly on tryptone under aerobic conditions at temperatures between 45 and 65 degrees C; they grew optimally at 60 degrees C. The pH optimum was 0.7, but growth occurred even around pH 0. Under optimal conditions, the generation time was about 6 h, yielding densities of up to 10(10) cells per ml. The cells were surrounded by a highly filigreed regular tetragonal S-layer, and the core lipids of the membrane were mainly bis-phytanyltetraethers. The 16S rRNA sequences of the two species were about 3% different. The complete 16S rRNA sequence of P. oshimae was 9.3% different from that of the closest relative, Thermoplasma acidophilum. The morphology and physiological properties of the two species characterize Picrophilus as a novel genus that is a member of a novel family within the order Thermoplasmales.
PMCID: PMC177581  PMID: 8522509
2.  Characterization of the Replication Initiator Orc1/Cdc6 from the Archaeon Picrophilus torridus 
Journal of Bacteriology  2014;196(2):276-286.
Eukaryotic DNA replication is preceded by the assembly of prereplication complexes (pre-RCs) at or very near origins in G1 phase, which licenses origin firing in S phase. The archaeal DNA replication machinery broadly resembles the eukaryal apparatus, though simpler in form. The eukaryotic replication initiator origin recognition complex (ORC), which serially recruits Cdc6 and other pre-RC proteins, comprises six components, Orc1-6. In archaea, a single gene encodes a protein similar to both the eukaryotic Cdc6 and the Orc1 subunit of the eukaryotic ORC, with most archaea possessing one to three Orc1/Cdc6 orthologs. Genome sequence analysis of the extreme acidophile Picrophilus torridus revealed a single Orc1/Cdc6 (PtOrc1/Cdc6). Biochemical analyses show MBP-tagged PtOrc1/Cdc6 to preferentially bind ORB (origin recognition box) sequences. The protein hydrolyzes ATP in a DNA-independent manner, though DNA inhibits MBP-PtOrc1/Cdc6-mediated ATP hydrolysis. PtOrc1/Cdc6 exists in stable complex with PCNA in Picrophilus extracts, and MBP-PtOrc1/Cdc6 interacts directly with PCNA through a PIP box near its C terminus. Furthermore, PCNA stimulates MBP-PtOrc1/Cdc6-mediated ATP hydrolysis in a DNA-dependent manner. This is the first study reporting a direct interaction between Orc1/Cdc6 and PCNA in archaea. The bacterial initiator DnaA is converted from an active to an inactive form by ATP hydrolysis, a process greatly facilitated by the bacterial ortholog of PCNA, the β subunit of Pol III. The stimulation of PtOrc1/Cdc6-mediated ATP hydrolysis by PCNA and the conservation of PCNA-interacting protein motifs in several archaeal PCNAs suggest the possibility of a similar mechanism of regulation existing in archaea. This mechanism may involve other yet to be identified archaeal proteins.
PMCID: PMC3911243  PMID: 24187082
3.  Molecular and Biochemical Characterization of α-Glucosidase and α-Mannosidase and Their Clustered Genes from the Thermoacidophilic Archaeon Picrophilus torridus†  
Journal of Bacteriology  2006;188(20):7123-7131.
The genes encoding a putative α-glucosidase (aglA) and an α-mannosidase (manA) appear to be physically clustered in the genome of the extreme acidophile Picrophilus torridus, a situation not found previously in any other organism possessing aglA or manA homologs. While archaeal α-glucosidases have been described, no α-mannosidase enzymes from the archaeal kingdom have been reported previously. Transcription start site mapping and Northern blot analysis revealed that despite their colinear orientation and the small intergenic space, the genes are independently transcribed, both producing leaderless mRNA. aglA and manA were cloned and overexpressed in Escherichia coli, and the purified recombinant enzymes were characterized with respect to their physicochemical and biochemical properties. AglA displayed strict substrate specificity and hydrolyzed maltose, as well as longer α-1,4-linked maltooligosaccharides. ManA, on the other hand, hydrolyzed all possible linkage types of α-glycosidically linked mannose disaccharides and was able to hydrolyze α3,α6-mannopentaose, which represents the core structure of many triantennary N-linked carbohydrates in glycoproteins. The probable physiological role of the two enzymes in the utilization of exogenous glycoproteins and/or in the turnover of the organism's own glycoproteins is discussed.
PMCID: PMC1636218  PMID: 17015651
4.  Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis 
BMC Genomics  2007;8:86.
The Archaea are highly diverse in terms of their physiology, metabolism and ecology. Presently, very few molecular characteristics are known that are uniquely shared by either all archaea or the different main groups within archaea. The evolutionary relationships among different groups within the Euryarchaeota branch are also not clearly understood.
We have carried out comprehensive analyses on each open reading frame (ORFs) in the genomes of 11 archaea (3 Crenarchaeota – Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus acidocaldarius; 8 Euryarchaeota – Pyrococcus abyssi, Methanococcus maripaludis, Methanopyrus kandleri, Methanococcoides burtonii, Halobacterium sp. NCR-1, Haloquadratum walsbyi, Thermoplasma acidophilum and Picrophilus torridus) to search for proteins that are unique to either all Archaea or for its main subgroups. These studies have identified 1448 proteins or ORFs that are distinctive characteristics of Archaea and its various subgroups and whose homologues are not found in other organisms. Six of these proteins are unique to all Archaea, 10 others are only missing in Nanoarchaeum equitans and a large number of other proteins are specific for various main groups within the Archaea (e.g. Crenarchaeota, Euryarchaeota, Sulfolobales and Desulfurococcales, Halobacteriales, Thermococci, Thermoplasmata, all methanogenic archaea or particular groups of methanogens). Of particular importance is the observation that 31 proteins are uniquely present in virtually all methanogens (including M. kandleri) and 10 additional proteins are only found in different methanogens as well as A. fulgidus. In contrast, no protein was exclusively shared by various methanogen and any of the Halobacteriales or Thermoplasmatales. These results strongly indicate that all methanogenic archaea form a monophyletic group exclusive of other archaea and that this lineage likely evolved from Archaeoglobus. In addition, 15 proteins that are uniquely shared by M. kandleri and Methanobacteriales suggest a close evolutionary relationship between them. In contrast to the phylogenomics studies, a monophyletic grouping of archaea is not supported by phylogenetic analyses based on protein sequences.
The identified archaea-specific proteins provide novel molecular markers or signature proteins that are distinctive characteristics of Archaea and all of its major subgroups. The species distributions of these proteins provide novel insights into the evolutionary relationships among different groups within Archaea, particularly regarding the origin of methanogenesis. Most of these proteins are of unknown function and further studies should lead to discovery of novel biochemical and physiological characteristics that are unique to either all archaea or its different subgroups.
PMCID: PMC1852104  PMID: 17394648
5.  Isolation of a New Broad-Host-Range IncQ-Like Plasmid, pTC-F14, from the Acidophilic Bacterium Acidithiobacillus caldus and Analysis of the Plasmid Replicon 
Journal of Bacteriology  2001;183(11):3303-3309.
A moderately thermophilic (45 to 50°C), highly acidophilic (pH 1.5 to 2.5), chemolithotrophic Acidithiobacillus caldus strain, f, was isolated from a biooxidation process used to treat nickel ore. Trans-alternating field electrophoresis analysis of total DNA from the A. caldus cells revealed two plasmids of approximately 14 and 45 kb. The 14-kb plasmid, designated pTC-F14, was cloned and shown by replacement of the cloning vector with a kanamycin resistance gene to be capable of autonomous replication in Escherichia coli. Autonomous replication was also demonstrated in Pseudomonas putida and Agrobacterium tumefaciens LBA 4404, which suggested that pTC-F14 is a broad-host-range plasmid. Sequence analysis of the pTC-F14 replicon region revealed five open reading frames and a replicon organization like that of the broad-host-range IncQ plasmids. Three of the open reading frames encoded replication proteins which were most closely related to those of IncQ-like plasmid pTF-FC2 (amino acid sequence identities: RepA, 81%; RepB, 78%; RepC, 74%). However, the two plasmids were fully compatible and pTC-F14 represents a new IncQ-like plasmid replicon. Surprisingly, asymmetrical incompatibility was found with the less closely related IncQ plasmid R300B derivative pKE462 and the IncQ-like plasmid derivative pIE1108. Analysis of the pTC-F14 oriV region revealed five direct repeats consisting of three perfectly conserved 22-bp iterons flanked by iterons of 23 and 21 bp. Plasmid pTC-F14 had a copy number of 12 to 16 copies per chromosome in both E. coli, and A. caldus. The rep gene products of pTC-F14 and pTF-FC2 were unable to functionally complement each other's oriV regions, but replication occurred when the genes for each plasmid's own RepA, RepB, and RepC proteins were provided in trans. Two smaller open reading frames were found between the repB and repA genes of pTC-F14, which encode proteins with high amino acid sequence identity (PasA, 81%; PasB, 72%) to the plasmid addiction system of pTF-FC2. This is the second time a plasmid stability system of this type has been found on an IncQ-like plasmid.
PMCID: PMC99627  PMID: 11344137
6.  Duplicate polyphenol oxidase genes on barley chromosome 2H and their functional differentiation in the phenol reaction of spikes and grains 
Journal of Experimental Botany  2010;61(14):3983-3993.
Polyphenol oxidases (PPOs) are copper-containing metalloenzymes encoded in the nucleus and transported into the plastids. Reportedly, PPOs cause time-dependent discoloration (browning) of end-products of wheat and barley, which impairs their appearance quality. For this study, two barley PPO homologues were amplified using PCR with a primer pair designed in the copper binding domains of the wheat PPO genes. The full-lengths of the respective PPO genes were cloned using a BAC library, inverse-PCR, and 3′-RACE. Linkage analysis showed that the polymorphisms in PPO1 and PPO2 co-segregated with the phenol reaction phenotype of awns. Subsequent RT-PCR experiments showed that PPO1 was expressed in hulls and awns, and that PPO2 was expressed in the caryopses. Allelic variation of PPO1 and PPO2 was analysed in 51 barley accessions with the negative phenol reaction of awns. In PPO1, amino acid substitutions of five types affecting functionally important motif(s) or C-terminal region(s) were identified in 40 of the 51 accessions tested. In PPO2, only one mutant allele with a precocious stop codon resulting from an 8 bp insertion in the first exon was found in three of the 51 accessions tested. These observations demonstrate that PPO1 is the major determinant controlling the phenol reaction of awns. Comparisons of PPO1 single mutants and the PPO1PPO2 double mutant indicate that PPO2 controls the phenol reaction in the crease on the ventral side of caryopses. An insertion of a hAT-family transposon in the promoter region of PPO2 may be responsible for different expression patterns of the duplicate PPO genes in barley.
PMCID: PMC2935872  PMID: 20616156
Gene duplication; grasses; Hordeum vulgare; mutant; phenol reaction; PPO
7.  The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion 
BMC Genomics  2012;13:395.
Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals.
Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes.
Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on primary sequence data. The dynamic nature of this gene family differentiates PPO from other oxidative enzymes, and is consistent with a protein important for a diversity of functions relating to environmental adaptation.
PMCID: PMC3472199  PMID: 22897796
8.  Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility 
BMC Microbiology  2008;8:203.
Iron is an essential nutrient but can be toxic at high intracellular concentrations and organisms have evolved tightly regulated mechanisms for iron uptake and homeostasis. Information on iron management mechanisms is available for organisms living at circumneutral pH. However, very little is known about how acidophilic bacteria, especially those used for industrial copper bioleaching, cope with environmental iron loads that can be 1018 times the concentration found in pH neutral environments. This study was motivated by the need to fill this lacuna in knowledge. An understanding of how microorganisms thrive in acidic ecosystems with high iron loads requires a comprehensive investigation of the strategies to acquire iron and to coordinate this acquisition with utilization, storage and oxidation of iron through metal responsive regulation. In silico prediction of iron management genes and Fur regulation was carried out for three Acidithiobacilli: Acidithiobacillus ferrooxidans (iron and sulfur oxidizer) A. thiooxidans and A. caldus (sulfur oxidizers) that can live between pH 1 and pH 5 and for three strict iron oxidizers of the Leptospirillum genus that live at pH 1 or below.
Acidithiobacilli have predicted FeoB-like Fe(II) and Nramp-like Fe(II)-Mn(II) transporters. They also have 14 different TonB dependent ferri-siderophore transporters of diverse siderophore affinity, although they do not produce classical siderophores. Instead they have predicted novel mechanisms for dicitrate synthesis and possibly also for phosphate-chelation mediated iron uptake. It is hypothesized that the unexpectedly large number and diversity of Fe(III)-uptake systems confers versatility to this group of acidophiles, especially in higher pH environments (pH 4–5) where soluble iron may not be abundant. In contrast, Leptospirilla have only a FtrI-Fet3P-like permease and three TonB dependent ferri-dicitrate siderophore systems. This paucity of iron uptake systems could reflect their obligatory occupation of extremely low pH environments where high concentrations of soluble iron may always be available and were oxidized sulfur species might not compromise iron speciation dynamics. Presence of bacterioferritin in the Acidithiobacilli, polyphosphate accumulation functions and variants of FieF-like diffusion facilitators in both Acidithiobacilli and Leptospirilla, indicate that they may remove or store iron under conditions of variable availability. In addition, the Fe(II)-oxidizing capacity of both A. ferrooxidans and Leptospirilla could itself be a way to evade iron stress imposed by readily available Fe(II) ions at low pH. Fur regulatory sites have been predicted for a number of gene clusters including iron related and non-iron related functions in both the Acidithiobacilli and Leptospirilla, laying the foundation for the future discovery of iron regulated and iron-phosphate coordinated regulatory control circuits.
In silico analyses of the genomes of acidophilic bacteria are beginning to tease apart the mechanisms that mediate iron uptake and homeostasis in low pH environments. Initial models pinpoint significant differences in abundance and diversity of iron management mechanisms between Leptospirilla and Acidithiobacilli, and begin to reveal how these two groups respond to iron cycling and iron fluctuations in naturally acidic environments and in industrial operations. Niche partitions and ecological successions between acidophilic microorganisms may be partially explained by these observed differences. Models derived from these analyses pave the way for improved hypothesis testing and well directed experimental investigation. In addition, aspects of these models should challenge investigators to evaluate alternative iron management strategies in non-acidophilic model organisms.
PMCID: PMC2631029  PMID: 19025650
9.  The Nonphosphorylative Entner-Doudoroff Pathway in the Thermoacidophilic Euryarchaeon Picrophilus torridus Involves a Novel 2-Keto-3-Deoxygluconate- Specific Aldolase▿  
Journal of Bacteriology  2009;192(4):964-974.
The pathway of glucose degradation in the thermoacidophilic euryarchaeon Picrophilus torridus has been studied by in vivo labeling experiments and enzyme analyses. After growth of P. torridus in the presence of [1-13C]- and [3-13C]glucose, the label was found only in the C-1 and C-3 positions, respectively, of the proteinogenic amino acid alanine, indicating the exclusive operation of an Entner-Doudoroff (ED)-type pathway in vivo. Cell extracts of P. torridus contained all enzyme activities of a nonphosphorylative ED pathway, which were not induced by glucose. Two key enzymes, gluconate dehydratase (GAD) and a novel 2-keto-3-deoxygluconate (KDG)-specific aldolase (KDGA), were characterized. GAD is a homooctamer of 44-kDa subunits, encoded by Pto0485. KDG aldolase, KDGA, is a homotetramer of 32-kDa subunits. This enzyme was highly specific for KDG with up to 2,000-fold-higher catalytic efficiency compared to 2-keto-3-deoxy-6-phosphogluconate (KDPG) and thus differs from the bifunctional KDG/KDPG aldolase, KD(P)GA of crenarchaea catalyzing the conversion of both KDG and KDPG with a preference for KDPG. The KDGA-encoding gene, kdgA, was identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) as Pto1279, and the correct translation start codon, an ATG 24 bp upstream of the annotated start codon of Pto1279, was determined by N-terminal amino acid analysis. The kdgA gene was functionally overexpressed in Escherichia coli. Phylogenetic analysis revealed that KDGA is only distantly related to KD(P)GA, both enzymes forming separate families within the dihydrodipicolinate synthase superfamily. From the data we conclude that P. torridus degrades glucose via a strictly nonphosphorylative ED pathway with a novel KDG-specific aldolase, thus excluding the operation of the branched ED pathway involving a bifunctional KD(P)GA as a key enzyme.
PMCID: PMC2812977  PMID: 20023024
10.  Thermostable and site-specific DNA binding of the gene product ORF56 from the Sulfolobus islandicus plasmid pRN1, a putative archael plasmid copy control protein 
Nucleic Acids Research  2001;29(4):904-913.
There is still a lack of information on the specific characteristics of DNA-binding proteins from hyperthermophiles. Here we report on the product of the gene orf56 from plasmid pRN1 of the acidophilic and thermophilic archaeon Sulfolobus islandicus. orf56 has not been characterised yet but low sequence similarily to several eubacterial plasmid-encoded genes suggests that this 6.5 kDa protein is a sequence-specific DNA-binding protein. The DNA-binding properties of ORF56, expressed in Escherichia coli, have been investigated by EMSA experiments and by fluorescence anisotropy measurements. Recombinant ORF56 binds to double-stranded DNA, specifically to an inverted repeat located within the promoter of orf56. Binding to this site could down-regulate transcription of the orf56 gene and also of the overlapping orf904 gene, encoding the putative initiator protein of plasmid replication. By gel filtration and chemical crosslinking we have shown that ORF56 is a dimeric protein. Stoichiometric fluorescence anisotropy titrations further indicate that ORF56 binds as a tetramer to the inverted repeat of its target binding site. CD spectroscopy points to a significant increase in ordered secondary structure of ORF56 upon binding DNA. ORF56 binds without apparent cooperativity to its target DNA with a dissociation constant in the nanomolar range. Quantitative analysis of binding isotherms performed at various salt concentrations and at different temperatures indicates that approximately seven ions are released upon complex formation and that complex formation is accompanied by a change in heat capacity of –6.2 kJ/mol. Furthermore, recombinant ORF56 proved to be highly thermostable and is able to bind DNA up to 85°C.
PMCID: PMC29613  PMID: 11160922
11.  Identification of an extensive gene cluster among a family of PPOs in Trifolium pratense L. (red clover) using a large insert BAC library 
BMC Plant Biology  2009;9:94.
Polyphenol oxidase (PPO) activity in plants is a trait with potential economic, agricultural and environmental impact. In relation to the food industry, PPO-induced browning causes unacceptable discolouration in fruit and vegetables: from an agriculture perspective, PPO can protect plants against pathogens and environmental stress, improve ruminant growth by increasing nitrogen absorption and decreasing nitrogen loss to the environment through the animal's urine. The high PPO legume, red clover, has a significant economic and environmental role in sustaining low-input organic and conventional farms. Molecular markers for a range of important agricultural traits are being developed for red clover and improved knowledge of PPO genes and their structure will facilitate molecular breeding.
A bacterial artificial chromosome (BAC) library comprising 26,016 BAC clones with an average 135 Kb insert size, was constructed from Trifolium pratense L. (red clover), a diploid legume with a haploid genome size of 440–637 Mb. Library coverage of 6–8 genome equivalents ensured good representation of genes: the library was screened for polyphenol oxidase (PPO) genes.
Two single copy PPO genes, PPO4 and PPO5, were identified to add to a family of three, previously reported, paralogous genes (PPO1–PPO3). Multiple PPO1 copies were identified and characterised revealing a subfamily comprising three variants PPO1/2, PPO1/4 and PPO1/5. Six PPO genes clustered within the genome: four separate BAC clones could be assembled onto a predicted 190–510 Kb single BAC contig.
A PPO gene family in red clover resides as a cluster of at least 6 genes. Three of these genes have high homology, suggesting a more recent evolutionary event. This PPO cluster covers a longer region of the genome than clusters detected in rice or previously reported in tomato. Full-length coding sequences from PPO4, PPO5, PPO1/5 and PPO1/4 will facilitate functional studies and provide genetic markers for plant breeding.
PMCID: PMC3224681  PMID: 19619287
12.  Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli. 
Applied and Environmental Microbiology  1997;63(11):4523-4527.
Acidophilic heterotrophic strain GS19h of the genus Acidocella exhibited extremely high resistance to CdSO4 and ZnSO4, with a MIC of 1 M for each. The respective MICs for an Acidocella aminolytica strain were 400 and 600 mM. The MICs of NiSO4 for the above strains were 200 and 175 mM, respectively. These strains were also resistant to CuSO4, the MICs being 20 and 40 mM, respectively. An Acidocella facilis strain showed resistance only to ZnSO4, with a MIC of 150 mM. The metal salts, in general, extended the lag period, log period, and generation time, with decreases in growth rate and optimum growth. A. aminolytica and strain GS19h each contain more than one plasmid, while A. facilis contains none. After transformation by electroporation with the plasmid preparation from strain GS19h, an Acidiphilium multivorum strain became highly resistant to cadmium and zinc, and the plasmid profile of the transformed cells was found to differ from that of the original Acidiphilium multivorum strain. Escherichia coli HB101 and DH5 alpha also exhibited more resistance to these metals, especially zinc, after transformation with the total plasmid preparation of strain GS19h or a 24.0-MDa plasmid of the same strain, although no plasmid was detected in the transformed cells. Thus, the results derived mainly through genetic experiments demonstrate for the first time the plasmid-mediated transfer of metal resistance for an acidophilic bacterium.
PMCID: PMC168771  PMID: 9361438
13.  Cloning and Expression Analysis of Litchi (Litchi Chinensis Sonn.) Polyphenol Oxidase Gene and Relationship with Postharvest Pericarp Browning 
PLoS ONE  2014;9(4):e93982.
Polyphenol oxidase (PPO) plays a key role in the postharvest pericarp browning of litchi fruit, but its underlying mechanism remains unclear. In this study, we cloned the litchi PPO gene (LcPPO, JF926153), and described its expression patterns. The LcPPO cDNA sequence was 2120 bps in length with an open reading frame (ORF) of 1800 bps. The ORF encoded a polypeptide with 599 amino acid residues, sharing high similarities with other plant PPO. The DNA sequence of the ORF contained a 215-bp intron. After carrying out quantitative RT-PCR, we proved that the LcPPO expression was tissue-specific, exhibiting the highest level in the flower and leaf. In the pericarp of newly-harvested litchi fruits, the LcPPO expression level was relatively high compared with developing fruits. Regardless of the litchi cultivar and treatment conditions, the LcPPO expression level and the PPO activity in pericarp of postharvest fruits exhibited the similar variations. When the fruits were stored at room temperature without packaging, all the pericarp browning index, PPO activity and the LcPPO expression level of litchi pericarps were reaching the highest in Nandaowuhe (the most rapid browning cultivar), but the lowest in Ziniangxi (the slowest browning cultivar) within 2 d postharvest. Preserving the fruits of Feizixiao in 0.2-μm plastic bag at room temperature would decrease the rate of pericarp water loss, delay the pericarp browning, and also cause the reduction of the pericarp PPO activity and LcPPO expression level within 3 d postharvest. In addition, postharvest storage of Feizixiao fruit stored at 4°C delayed the pericarp browning while decreasing the pericarp PPO activity and LcPPO expression level within 2 d after harvest. Thus, we concluded that the up-regulation of LcPPO expression in pericarp at early stage of postharvest storage likely enhanced the PPO activity and further accelerated the postharvest pericarp browning of litchi fruit.
PMCID: PMC3998928  PMID: 24763257
14.  The protein ORF80 from the acidophilic and thermophilic archaeon Sulfolobus islandicus binds highly site-specifically to double-stranded DNA and represents a novel type of basic leucine zipper protein 
Nucleic Acids Research  2001;29(24):4973-4982.
The cryptic high copy number plasmid pRN1 from the thermophilic and acidophilic crenarchaeote Sulfolobus islandicus shares three conserved open reading frames with other S.islandicus plasmids. One of the open reading frames, namely orf80, encodes a 9.5 kDa protein that has no homology to any characterised protein. Recombinant ORF80 purified from Escherichia coli binds to double-stranded DNA in a sequence-specific manner as suggested by EMSA experiments and DNase I footprints. Two highly symmetrical binding sites separated by ∼60 bp were found upstream of the orf80 gene. Both binding sites contain two TTAA motifs as well as other conserved bases. Fluorescence measurements show that short duplex DNAs derived from a single binding site sequence are bound with submicromolar affinity and moderate cooperativity by ORF80. On DNA fragments carrying both binding sites, a rather large protein–DNA complex is formed in a highly cooperative manner. ORF80 contains an N-terminal leucine zipper motif and a highly basic domain at its C-terminus. Compared to all known basic leucine zipper proteins the order of the domains is reversed in ORF80. ORF80 may therefore constitute a new subclass of basic leucine zipper DNA-binding proteins.
PMCID: PMC97583  PMID: 11812827
15.  Identification of replication origins in archaeal genomes based on the Z-curve method 
Archaea  2004;1(5):335-346.
The Z-curve is a three-dimensional curve that constitutes a unique representation of a DNA sequence, i.e., both the Z-curve and the given DNA sequence can be uniquely reconstructed from the other. We employed Z-curve analysis to identify one replication origin in the Methanocaldococcus jannaschii genome, two replication origins in the Halobacterium species NRC-1 genome and one replication origin in the Methanosarcina mazei genome. One of the predicted replication origins of Halobacterium species NRC-1 is the same as a replication origin later identified by in vivo experiments. The Z-curve analysis of the Sulfolobus solfataricus P2 genome suggested the existence of three replication origins, which is also consistent with later experimental results. This review aims to summarize applications of the Z-curve in identifying replication origins of archaeal genomes, and to provide clues about the locations of as yet unidentified replication origins of the Aeropyrum pernix K1, Methanococcus maripaludis S2, Picrophilus torridus DSM 9790 and Pyrobaculum aerophilum str. IM2 genomes.
PMCID: PMC2685548  PMID: 15876567
Halobacterium; Methanocaldococcus jannaschii; Methanosarcina mazei
16.  Relationships between the physicochemical properties of an amphiphilic triblock copolymers/DNA complexes and their intramuscular transfection efficiency 
Nucleic Acids Research  2006;35(3):728-739.
Poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer (PEO-PPO-PEO) based plasmid delivery systems are increasingly drawing attention in the field of nonviral gene transfer because of their proven in vivo transfection capability. They result from the simple association of DNA molecules with uncharged polymers. We examined the physicochemical properties of PEO-PPO-PEO/DNA mixtures, in which the PEO-PPO-PEO is Lutrol® (PEO75-PPO30-PEO75), formulated under various conditions. We found that interactions between PEO-PPO-PEO and DNA are mediated by the central hydrophobic block within the block copolymer. Dynamic light scattering and cryo-electron microscopy showed that the mean diameter of transfecting particles as well as their stability depended on the PEO-PPO-PEO/DNA ratio and on the ionic composition of the formulating medium. The most active formulation promoting a good tissue-distribution and an optimal transfection was characterized by a reduced electrophoretic mobility, a mean hydrodynamic diameter of ∼250–300 nm and by a conserved B-DNA form as shown by circular dichroism studies. Our study also revealed that the stability of these formulations strongly depended on a concentration balance between the DNA and the PEO-PPO-PEO, over which the DNA conformation was modified, micron-sized particles were generated, and the transgene expression was declined. We showed that the physicochemical properties of PEO-PPO-PEO/DNA formulations directly impact the level of gene expression in transfected muscles.
PMCID: PMC1807968  PMID: 17182627
17.  Isolation and Characterization of Two Novel Plasmids from Pathogenic Leptospira interrogans Serogroup Canicola Serovar Canicola Strain Gui44 
Previous genomic analysis of pathogenic Leptospira has identified two circular chromosomes but no plasmid. This study aims to investigate potential extrachromosomal elements of L.interrogans serovar Canicola strain Gui44.
Two novel plasmids, pGui1 and pGui2, were isolated from the pathogenic strain Gui44, using a modified alkaline lysis method. Southern blotting was performed to determine the presence and size of them. Then, 454 and Hiseq sequencing were applied to obtain and analyze the complete sequences of the two plasmids. Furthermore, real-time quantitative PCR and next-generation sequencing were used to compare relative copy numbers of the two plasmids with that of the chromosomes. Finally, after serial passages in vitro for more than 2 years, the strain Gui44 was subsequently re-sequenced to estimate stability of the two plasmids.
Principal Findings
The larger plasmid, pGui1, 74,981 base pairs (bp) in length with GC content of 34.63%, possesses 62 open reading frames (ORFs). The smaller plasmid, pGui2, is 66,851 bp in length with GC content of 33.33%, and contains 63 ORFs. The replication initiation proteins encoded by pGui1 and pGui2 demonstrate significant sequence similarity with LA1839 (86% and 88%), a well-known replication protein in another pathogenic L.interrogans serovar Lai strain Lai, suggesting the ability for autonomous plasmid replication. Quantitative PCR and next-generation sequencing confirms a single copy of both plasmids and their stable presence in the strain Gui44 with in vitro serial passages after more than 2 years. Interestingly, the two plasmids both contain a significant number of novel genes (35 in pGui1 and 52 in pGui2).
This report confirms the presence of two separate circular plasmids in serovar Canicola strain Gui44 and provides a new understanding of genomic organization, adaptation, evolution and pathogenesis of Leptospira, which will aid in the development of in vivo genetic manipulation systems in pathogenic Leptospira species.
Author Summary
Leptospira species are the causative agent of leptospirosis, one of the most common animal to human transmitted diseases. Previous genomic analysis of L.interrogans serovar Lai and Copenhageni has identified the presence of large (4.33 mega base) and small (350 kilo base) circular chromosomes without evidence of any plasmids. Detailed understanding of Leptospira and its pathogenicity was delayed by the lack of available genetic tools. In this study we confirm the existence of two novel plasmids in L.interrogans serovar Canicola strain Gui44, an epidemic strain in China. Some novel genes identified in the two plasmids may play important roles in the characterization of the strain. The two plasmids will provide useful information in understanding the diversity of Leptospira genome and markedly improve our understanding of the evolution and pathogenesis of L.interrogans. In particular, it will contribute to the development of genetic manipulation systems in pathogenic Leptospira species.
PMCID: PMC4140679  PMID: 25144555
18.  Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs 
BMC Plant Biology  2014;14:62.
Polyphenol oxidase (PPO), often encoded by a multi-gene family, causes oxidative browning, a significant problem in many food products. Low-browning potatoes were produced previously through suppression of PPO gene expression, but the contribution of individual PPO gene isoform to the oxidative browning process was unknown. Here we investigated the contributions of different PPO genes to total PPO protein activity, and the correlations between PPO protein level, PPO activity and tuber tissue browning potential by suppression of all previously characterized potato PPO genes, both individually and in combination using artificial microRNAs (amiRNAs) technology.
Survey of the potato genome database revealed 9 PPO-like gene models, named StuPPO1 to StuPPO9 in this report. StuPPO1, StuPPO2, StuPPO3 and StuPPO4 are allelic to the characterized POTP1/P2, POT32, POT33 and POT72, respectively. Fewer ESTs were found to support the transcriptions of StuPPO5 to StuPPO8. StuPPO9 related ESTs were expressed at significant higher levels in pathogen-infected potato tissues. A series of browning phenotypes were obtained by suppressing StuPPO1 to StuPPO4 genes alone and in combination. Down-regulation of one or several of the PPO genes did not usually cause up-regulation of the other PPO genes in the transgenic potato tubers, but resulted in reduced PPO protein levels. The different PPO genes did not contribute equally to the total PPO protein content in the tuber tissues, with StuPPO2 accounting for ~ 55% as the major contributor, followed by StuPPO1, ~ 25-30% and StuPPO3 and StuPPO4 together with less than 15%. Strongly positive correlations between PPO protein level, PPO activity and browning potential were demonstrated in our analysis. Low PPO activity and low-browning potatoes were produced by simultaneous down-regulation of StuPPO2 to StuPPO4, but the greatest reduction occurred when StuPPO1 to StuPPO4 were all suppressed.
StuPPO1 to StuPPO4 genes contributed to browning reactions in tuber tissues but their effect was not equal. Different PPO genes may be regulated independently reflecting their diversified functions. Our results show that amiRNAs can be used to suppress closely related members of highly conserved multi-gene family. This approach also suggests a new strategy for breeding low-browning crops using small DNA inserts.
PMCID: PMC4007649  PMID: 24618103
Artificial microRNA (amiRNA); Enzymatic browning; Polyphenol oxidase gene family; Solanum tuberosum L
19.  Characterization of I-Ppo, an intron-encoded endonuclease that mediates homing of a group I intron in the ribosomal DNA of Physarum polycephalum. 
Molecular and Cellular Biology  1990;10(7):3386-3396.
A novel and only recently recognized class of enzymes is composed of the site-specific endonucleases encoded by some group I introns. We have characterized several aspects of I-Ppo, the endonuclease that mediates the mobility of intron 3 in the ribosomal DNA of Physarum polycephalum. This intron is unique among mobile group I introns in that it is located in nuclear DNA. We found that I-Ppo is encoded by an open reading frame in the 5' half of intron 3, upstream of the sequences required for self-splicing of group I introns. Either of two AUG initiation codons could start this reading frame, one near the beginning of the intron and the other in the upstream exon, leading to predicted polypeptides of 138 and 160 amino acid residues. The longer polypeptide was the major form translated in vitro in a reticulocyte extract. From nuclease assays of proteins synthesized in vitro with partially deleted DNAs, we conclude that both polypeptides possess endonuclease activity. We also have expressed I-Ppo in Escherichia coli, using a bacteriophage T7 RNA polymerase expression system. The longer polypeptide also was the predominant form made in this system. It showed enzymatic activity in bacteria in vivo, as demonstrated by the cleavage of a plasmid carrying the target site. Like several other intron-encoded endonucleases, I-Ppo makes a four-base staggered cut in its ribosomal DNA target sequence, very near the site where intron 3 becomes integrated in crosses of intron 3-containing and intron 3-lacking Physarum strains.
PMCID: PMC360768  PMID: 2355911
20.  Prophenoloxidase from Pieris rapae: gene cloning, activity, and transcription in response to venom/calyx fluid from the endoparasitoid wasp Cotesia glomerata *  
Prophenoloxidase (PPO) plays an important role in melanization, necessary for defense against intruding parasitoids. Parasitoids have evolved to inject maternal virulence factors into the host hemocoel to suppress hemolymph melanization for the successful development of their progeny. In this study, the full-length complementary DNA (cDNA) of a Pieris rapae PPO was cloned. Its cDNA contained a 2 076-base pair (bp) open reading frame (ORF) encoding 691 amino acids (aa). Two putative copper-binding sites, a proteolytic activation site, three conserved hemocyanin domains, and a thiol ester motif were found in the deduced amino acid sequence. According to both multiple alignment and phylogenetic analysis, P. rapae PPO gene cloned here is a member of the lepidopteran PPO-2 family. Injection of Cotesia glomerata venom or calyx fluid resulted in reduction of P. rapae hemolymph phenoloxidase activity, demonstrating the ability to inhibit the host′s melanization. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) showed that transcripts of P. rapae PPO-2 in the haemocytes from larvae had not significantly changed following venom injection, suggesting that the regulation of PPO messenger RNA (mRNA) expression by venom was not employed by C. glomerata to cause failure of melanization in parasitized host. While decreased P. rapae PPO-2 gene expression was observed in the haemocytes after calyx fluid injection, no detectable transcriptional change was induced by parasitization, indicating that transcriptional down-regulation of PPO by calyx fluid might play a minor role involved in inhibiting the host′s melanization.
PMCID: PMC3030955  PMID: 21265042
Prophenoloxidase; Cloning; Venom; Calyx fluid; Gene expression; Parasitoid
21.  Complete DNA Sequence and Comparative Analysis of the 50-Kilobase Virulence Plasmid of Salmonella enterica Serovar Choleraesuis 
Infection and Immunity  2001;69(4):2612-2620.
The complete nucleotide sequence of pKDSC50, a large virulence plasmid from Salmonella enterica serovar Choleraesuis strain RF-1, has been determined. We identified 48 of the open reading frames (ORFs) encoded by the 49,503-bp molecule. pKDSC50 encodes a known virulence-associated operon, the spv operon, which is composed of genes essential for systemic infection by nontyphoidal Salmonella. Analysis of the genetic organization of pKDSC50 suggests that the plasmid is composed of several virulence-associated genes, which include the spvRABCD genes, plasmid replication and maintenance genes, and one insertion sequence element. A second virulence-associated region including the pef (plasmid-encoded fimbria) operon and rck (resistance to complement killing) gene, which has been identified on the virulence plasmid of S. enterica serovar Typhimurium, was absent. Two different replicon regions, similar to the RepFIIA and RepFIB replicons, were found. Both showed high similarity to those of the pO157 plasmid of enterohemorrhagic Escherichia coli O157:H7 and the enteropathogenic E. coli (EPEC) adherence factor plasmid harbored by EPEC strain B171 (O111:NM), as well as the virulence plasmids of Salmonella serovars Typhimurium and Enteritidis. Comparative analysis of the nucleotide sequences of the 50-kb virulence plasmid of serovar Choleraesuis and the 94-kb virulence plasmid of serovar Typhimurium revealed that 47 out of 48 ORFs of the virulence plasmid of serovar Choleraesuis are highly homologous to the corresponding ORFs of the virulence plasmid of serovar Typhimurium, suggesting a common ancestry.
PMCID: PMC98198  PMID: 11254626
22.  Dental practice satisfaction with preferred provider organizations 
Despite their increasing share of the dental insurance market, little is known about dental practices' satisfaction with preferred provider organizations (PPOs). This analysis examined practice satisfaction with dental PPOs and the extent to which satisfaction was a function of communications from the plan, claims handling and compensation.
Data were collected through telephone surveys with dental practices affiliated with MetLife between January 2002 and December 2004. Each respondent was asked a series of questions related to their satisfaction with a systematically selected PPO with which they were affiliated. Six different PPO plans had sufficient observations to allow for comparative analysis (total n = 4582). Multiple imputation procedures were used to adjust for item non-response.
While the average level of overall satisfaction with the target plan fell between "very satisfied" and "satisfied," regression models revealed substantial differences in overall satisfaction across the 6 PPOs (p < .05). Statistically significant differences between plans in overall satisfaction were largely explained by differences in the perceived adequacy of compensation. However, differences in overall satisfaction involving two of the PPOs were also driven by satisfaction with claims handling.
Results demonstrate the importance of compensation to dental practice satisfaction with PPOs. However, these results also highlight the critical role of service-related factors in differentiating plans and suggest that there are important non-monetary dimensions of PPO performance that can be used to recruit and retain practices.
PMCID: PMC2194688  PMID: 18005426
23.  Protective role of TNF-α, IL-10 and IL-2 in mice infected with the Oshima strain of Tick-borne encephalitis virus 
Scientific Reports  2014;4:5344.
Tick-borne encephalitis virus (TBEV) causes acute central nervous system disease. Here, we investigated the roles of the TNF-α, IL-10 and other cytokines in appropriate KO mice following infection with Oshima and Sofjin strains of TBEV. Following infection with the Oshima strain, mortality rates were significantly increased in TNF-α KO and IL-10 KO mice compared with wild type (WT) mice. These results suggested that TNF-α and IL-10 play protective roles against fatal infection due to Oshima strain infection. However, viral loads and proinflammatory cytokine levels in the brain of TNF-α KO andIL-10 KO mice were not significantly different compared with those of WT mice. On the other hand, all WT, TNF-α KO and IL-10 KO mice died following infection with Sofjin strain. Interestingly, Sofjin-infected mice did not exhibit an up-regulated mRNA level of IL-2 in the spleen in all groups of mice, whereas Oshima-infected mice showed significantly increased level of IL-2 compared with mock-infected mice. From these results, we suggest that TNF-α, IL-10 and IL-2 are key factors for disease remission from fatal encephalitis due to infection with Oshima strain of TBEV.
PMCID: PMC4061546  PMID: 24938868
24.  Genetic and Biological Characterization of Tick-Borne Encephalitis Virus Isolated from Wild Rodents in Southern Hokkaido, Japan in 2008 
Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis in humans. A recent epizootiological survey indicated that endemic foci of TBEV have been maintained in the southern part of Hokkaido until recently. In this study, we sought to isolate TBEV from wild rodents in the area. One virus, designated Oshima 08-As, was isolated from an Apodemus speciosus captured in Hokuto in 2008. Oshima 08-As was classified as the Far Eastern subtype of TBEV and formed a cluster with the other strains isolated in Hokkaido from 1995 to 1996. Thirty-six nucleotide differences resulted in 12 amino acid changes between Oshima 08-As and Oshima 5–10 isolated in 1995. Oshima 08-As caused high mortality and morbidity in a mouse model compared with Oshima 5–10. Although similar transient viral multiplication in the spleen was observed in the mice infected with Oshima 08-As and Oshima 5–10, greater viral multiplication with an inflammatory response was noted in the brains of mice infected with Oshima 08-As than those infected with Oshima 5–10. These data indicate that a few naturally occurring mutations affect the pathogenicity of the Oshima strains endemic in the southern part of Hokkaido.
PMCID: PMC3669602  PMID: 23590320
Tick-borne encephalitis virus; Oshima 08-As; Oshima 5–10; Hokkaido
25.  Transfer and expression of degradative and antibiotic resistance plasmids in acidophilic bacteria. 
The genetic accessibility of selected acidophilic bacteria was investigated to evaluate their applicability to degrading pollutants in acidic environments. The IncP1 antibiotic resistance plasmids RP4 and pVK101 and the phenol degradation-encoding plasmid pPGH11 were transferred from neutrophilic bacteria into the extreme acidophilic eubacterium Acidiphilium cryptum at frequencies of 1.8 x 10(-2) to 9.8 x 10(-4) transconjugants per recipient cell. The IncQ antibiotic resistance plasmid pSUP106 was mobilizable to A. cryptum by triparental matings at a frequency of 10(-5) transconjugants per recipient cell. In the transconjugants, antibiotic resistances and the ability to degrade phenol were expressed. A. cryptum AC6 (pPGH11) grew with 2.5 mM phenol at a doubling time of 12 h and a yield of 0.52 g (dry cell weight) per g of phenol. A. cryptum harbored five native plasmids of 255 to 6.3 kb in size. Plasmids RP4 and pVK101 were transferred from Escherichia coli into Acidobacterium capsulatum at frequencies of 10(-3) and 2.3 x 10(-4) and to the facultative autotroph Thiobacillus acidophilus at frequencies of 1.1 x 10(-5) and 2.9 x 10(-6) transconjugants per recipient cell, respectively. Plasmid pPGH11 could not be transferred into the latter strains. T. acidophilus wild type contained six so far cryptic plasmids of 220 to 5 kb.
PMCID: PMC201419  PMID: 8161188

Results 1-25 (1221303)