PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (550006)

Clipboard (0)
None

Related Articles

1.  GDAP: a web tool for genome-wide protein disulfide bond prediction 
Nucleic Acids Research  2004;32(Web Server issue):W360-W364.
The Genomic Disulfide Analysis Program (GDAP) provides web access to computationally predicted protein disulfide bonds for over one hundred microbial genomes, including both bacterial and achaeal species. In the GDAP process, sequences of unknown structure are mapped, when possible, to known homologous Protein Data Bank (PDB) structures, after which specific distance criteria are applied to predict disulfide bonds. GDAP also accepts user-supplied protein sequences and subsequently queries the PDB sequence database for the best matches, scans for possible disulfide bonds and returns the results to the client. These predictions are useful for a variety of applications and have previously been used to show a dramatic preference in certain thermophilic archaea and bacteria for disulfide bonds within intracellular proteins. Given the central role these stabilizing, covalent bonds play in such organisms, the predictions available from GDAP provide a rich data source for designing site-directed mutants with more stable thermal profiles. The GDAP web application is a gateway to this information and can be used to understand the role disulfide bonds play in protein stability both in these unusual organisms and in sequences of interest to the individual researcher. The prediction server can be accessed at http://www.doe-mbi.ucla.edu/Services/GDAP.
doi:10.1093/nar/gkh376
PMCID: PMC441514  PMID: 15215411
2.  The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles 
PLoS Biology  2005;3(9):e309.
Thermophilic organisms flourish in varied high-temperature environmental niches that are deadly to other organisms. Recently, genomic evidence has implicated a critical role for disulfide bonds in the structural stabilization of intracellular proteins from certain of these organisms, contrary to the conventional view that structural disulfide bonds are exclusively extracellular. Here both computational and structural data are presented to explore the occurrence of disulfide bonds as a protein-stabilization method across many thermophilic prokaryotes. Based on computational studies, disulfide-bond richness is found to be widespread, with thermophiles containing the highest levels. Interestingly, only a distinct subset of thermophiles exhibit this property. A computational search for proteins matching this target phylogenetic profile singles out a specific protein, known as protein disulfide oxidoreductase, as a potential key player in thermophilic intracellular disulfide-bond formation. Finally, biochemical support in the form of a new crystal structure of a thermophilic protein with three disulfide bonds is presented together with a survey of known structures from the literature. Together, the results provide insight into biochemical specialization and the diversity of methods employed by organisms to stabilize their proteins in exotic environments. The findings also motivate continued efforts to sequence genomes from divergent organisms.
Certain thermophiles are found to stabilize their proteins in extreme environments with additional disulfide bonds. A phylogenetic profile identifies a protein disulfide oxidoreductase critical to the stabilization process.
doi:10.1371/journal.pbio.0030309
PMCID: PMC1188242  PMID: 16111437
3.  Discovery of a thermophilic protein complex stabilized by topologically interlinked chains 
Journal of molecular biology  2007;368(5):1332-1344.
A growing number of organisms have been discovered inhabiting extreme environments, including temperatures in excess of 100 °C. How cellular proteins from such organisms retain their native folds under extreme conditions is still not fully understood. Recent computational and structural studies have identified disulfide bonding as an important mechanism for stabilizing intracellular proteins in certain thermophilic microbes. Here, we present the first proteomic analysis of intracellular disulfide bonding in the hyperthermophilic archaeon Pyrobaculum aerophilum. Our study reveals that the utilization of disulfide bonds extends beyond individual proteins to include many protein-protein complexes. We report the 1.6Å crystal structure of one such complex, a citrate synthase homodimer. The structure contains two intramolecular disulfide bonds, one per subunit, which result in the cyclization of each protein chain in such a way that the two chains are topologically interlinked, rendering them inseparable. This unusual feature emphasizes the variety and sophistication of the molecular mechanisms that can be achieved by evolution.
doi:10.1016/j.jmb.2007.02.078
PMCID: PMC1955483  PMID: 17395198
disulfide bond; protein stability; catenane; citrate synthase; thermophile
4.  Dinosolve: a protein disulfide bonding prediction server using context-based features to enhance prediction accuracy 
BMC Bioinformatics  2013;14(Suppl 13):S9.
Background
Disulfide bonds play an important role in protein folding and structure stability. Accurately predicting disulfide bonds from protein sequences is important for modeling the structural and functional characteristics of many proteins.
Methods
In this work, we introduce an approach of enhancing disulfide bonding prediction accuracy by taking advantage of context-based features. We firstly derive the first-order and second-order mean-force potentials according to the amino acid environment around the cysteine residues from large number of cysteine samples. The mean-force potentials are integrated as context-based scores to estimate the favorability of a cysteine residue in disulfide bonding state as well as a cysteine pair in disulfide bond connectivity. These context-based scores are then incorporated as features together with other sequence and evolutionary information to train neural networks for disulfide bonding state prediction and connectivity prediction.
Results
The 10-fold cross validated accuracy is 90.8% at residue-level and 85.6% at protein-level in classifying an individual cysteine residue as bonded or free, which is around 2% accuracy improvement. The average accuracy for disulfide bonding connectivity prediction is also improved, which yields overall sensitivity of 73.42% and specificity of 91.61%.
Conclusions
Our computational results have shown that the context-based scores are effective features to enhance the prediction accuracies of both disulfide bonding state prediction and connectivity prediction. Our disulfide prediction algorithm is implemented on a web server named "Dinosolve" available at: http://hpcr.cs.odu.edu/dinosolve.
doi:10.1186/1471-2105-14-S13-S9
PMCID: PMC3849605  PMID: 24267383
5.  Intramolecular Disulfide Bond between Catalytic Cysteines in an Intein Precursor 
Protein splicing is a self-catalyzed and spontaneous post-translational process in which inteins excise themselves out of precursor proteins while the exteins are ligated together. We report the first discovery of an intramolecular disulfide bond between the two active site cysteines, Cys1 and Cys+1, in an intein precursor composed of the hyperthermophilic P. abyssi PolII intein and extein. The existence of this intramolecular disulfide bond is demonstrated by the effect of reducing agent on the precursor, mutagenesis, and liquid chromatography–mass spectrometry (LC-MS) with tandem MS (MS/MS) of the tryptic peptide containing the intramolecular disulfide bond. The disulfide bond inhibits protein splicing, and splicing can be induced by reducing agents such as tris (2-carboxyethyl) phosphine (TCEP). The stability of the intramolecular disulfide bond is enhanced by electrostatic interactions between the N- and C-exteins but is reduced by elevated temperature. The presence of this intramolecular disulfide bond may contribute to the redox control of splicing activity in hypoxia and at low temperature and point to the intriguing possibility that inteins may act as switches to control extein function.
doi:10.1021/ja211010g
PMCID: PMC3279520  PMID: 22280304
intein; protein splicing; intramolecular disulfide bond; extein; catalytic cysteine; MS
6.  Structure and Function of Cold Shock Proteins in Archaea▿  
Journal of Bacteriology  2007;189(15):5738-5748.
Archaea are abundant and drive critical microbial processes in the Earth's cold biosphere. Despite this, not enough is known about the molecular mechanisms of cold adaptation and no biochemical studies have been performed on stenopsychrophilic archaea (e.g., Methanogenium frigidum). This study examined the structural and functional properties of cold shock proteins (Csps) from archaea, including biochemical analysis of the Csp from M. frigidum. csp genes are present in most bacteria and some eucarya but absent from most archaeal genome sequences, most notably, those of all archaeal thermophiles and hyperthermophiles. In bacteria, Csps are small, nucleic acid binding proteins involved in a variety of cellular processes, such as transcription. In this study, archaeal Csp function was assessed by examining the ability of csp genes from psychrophilic and mesophilic Euryarchaeota and Crenarchaeota to complement a cold-sensitive growth defect in Escherichia coli. In addition, an archaeal gene with a cold shock domain (CSD) fold but little sequence identity to Csps was also examined. Genes encoding Csps or a CSD structural analog from three psychrophilic archaea rescued the E. coli growth defect. The three proteins were predicted to have a higher content of solvent-exposed basic residues than the noncomplementing proteins, and the basic residues were located on the nucleic acid binding surface, similar to their arrangement in E. coli CspA. The M. frigidum Csp was purified and found to be a single-domain protein that folds by a reversible two-state mechanism and to exhibit a low conformational stability typical of cold-adapted proteins. Moreover, M. frigidum Csp was characterized as binding E. coli single-stranded RNA, consistent with its ability to complement function in E. coli. The studies show that some Csp and CSD fold proteins have retained sufficient similarity throughout evolution in the Archaea to be able to function effectively in the Bacteria and that the function of the archaeal proteins relates to cold adaptation. The initial biochemical analysis of M. frigidum Csp has developed a platform for further characterization and demonstrates the potential for expanding molecular studies of proteins from this important archaeal stenopsychrophile.
doi:10.1128/JB.00395-07
PMCID: PMC1951829  PMID: 17545280
7.  The role of disulfide bond in hyperthermophilic endocellulase 
Extremophiles  2013;17(4):593-599.
The hyperthermophilic endocellulase, EGPh (glycosyl hydrolase family 5) from Pyrococcus horikoshii possesses 4 cysteine residues forming 2 disulfide bonds, as identified by structural analysis. One of the disulfide bonds is located at the proximal region of the active site in EGPh, which exhibits a distinct pattern from that of the thermophilic endocellulase EGAc (glycosyl hydrolase family 5) of Acidothermus cellulolyticus despite the structural similarity between the two endocellulases. The structural similarity between EGPh and EGAc suggests that EGPh possesses a structure suitable for changing the position of the disulfide bond corresponding to that in EGAc. Introduction of this alternative disulfide bond in EGPh, while removing the original disulfide bond, did not result in a loss of enzymatic activity but the EGPh was no longer hyperthermostable. These results suggest that the contribution of disulfide bond to hyperthermostability at temperature higher than 100 °C is restrictive, and that its impact is dependent on the specific structural environment of the hyperthermophilic proteins. The data suggest that the structural position and environment of the disulfide bond has a greater effect on high-temperature thermostability of the enzyme than on the potential energy of the dihedral angle that contributes to disulfide bond cleavage.
doi:10.1007/s00792-013-0542-8
PMCID: PMC3691470  PMID: 23624891
Disulfide bond; Cellulase; Archaea; Thermostability; Crystal structure; Protein engineering
8.  Import of stably folded proteins into peroxisomes. 
Molecular Biology of the Cell  1995;6(6):675-683.
By virtue of their synthesis in the cytoplasm, proteins destined for import into peroxisomes are obliged to traverse the single membrane of this organelle. Because the targeting signal for most peroxisomal matrix proteins is a carboxy-terminal tripeptide sequence (SKL or its variants), these proteins must remain import competent until their translation is complete. We sought to determine whether stably folded proteins were substrates for peroxisomal import. Prefolded proteins stabilized with disulfide bonds and chemical cross-linkers were shown to be substrates for peroxisomal import, as were mature folded and disulfide-bonded IgG molecules containing the peroxisomal targeting signal. In addition, colloidal gold particles conjugated to proteins bearing the peroxisomal targeting signal were translocated into the peroxisomal matrix. These results support the concept that proteins may fold in the mammalian cytosol, before their import into the peroxisome, and that protein unfolding is not a prerequisite for peroxisomal import.
Images
PMCID: PMC301228  PMID: 7579687
9.  Being Aquifex aeolicus: Untangling a Hyperthermophile’s Checkered Past 
Genome Biology and Evolution  2013;5(12):2478-2497.
Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyperthermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria. Depending on which sets of genes are privileged, either Thermotogae or Epsilonproteobacteria is the most plausible adjacent lineage to the Aquificae. Both scenarios require massive sharing of genes to explain the history of this enigmatic group, whose history is further complicated by specific affinities of different members of Aquificae to different partner lineages.
doi:10.1093/gbe/evt195
PMCID: PMC3879981  PMID: 24281050
Aquifex aeolicus; Thermotogae; phylogenomics; hyperthermophiles; lateral gene transfer
10.  Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E.coli 
Background
Disulfide bonds are one of the most common post-translational modifications found in proteins. The production of proteins that contain native disulfide bonds is challenging, especially on a large scale. Either the protein needs to be targeted to the endoplasmic reticulum in eukaryotes or to the prokaryotic periplasm. These compartments that are specialised for disulfide bond formation have an active catalyst for their formation, along with catalysts for isomerization to the native state. We have recently shown that it is possible to produce large amounts of prokaryotic disulfide bond containing proteins in the cytoplasm of wild-type bacteria such as E. coli by the introduction of catalysts for both of these processes.
Results
Here we show that the introduction of Erv1p, a sulfhydryl oxidase and a disulfide isomerase allows the efficient formation of natively folded eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli. The production of disulfide bonded proteins was also aided by the use of an appropriate fusion protein to keep the folding intermediates soluble and by choice of media. By combining the pre-expression of a sulfhydryl oxidase and a disulfide isomerase with these other factors, high level expression of even complex disulfide bonded eukaryotic proteins is possible
Conclusions
Our results show that the production of eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli is possible. The required exogenous components can be put onto a single plasmid vector allowing facile transfer between different prokaryotic strains. These results open up new avenues for the use of E. coli as a microbial cell factory.
doi:10.1186/1475-2859-10-1
PMCID: PMC3022669  PMID: 21211066
11.  Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli 
Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli.
Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm.
This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.
doi:10.1186/1475-2859-8-26
PMCID: PMC2689190  PMID: 19442264
12.  Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail 
Most Kunitz proteins like BPTI and α-dendrotoxin are stabilized by three disulfide bonds. The crystal structure shows how subtle repacking of non-covalent interactions may compensate for disulfide bond loss in a naturally occurring two-disulfide variant, conkunitzin-S1, the first discovered member of a new conotoxin family.
Cone snails (Conus) are predatory marine mollusks that immobilize prey with venom containing 50–200 neurotoxic polypeptides. Most of these polypeptides are small disulfide-rich conotoxins that can be classified into families according to their respective ion-channel targets and patterns of cysteine–cysteine disulfides. Conkunitzin-S1, a potassium-channel pore-blocking toxin isolated from C. striatus venom, is a member of a newly defined conotoxin family with sequence homology to Kunitz-fold proteins such as α-dendrotoxin and bovine pancreatic trypsin inhibitor (BPTI). While conkunitzin-S1 and α-dendrotoxin are 42% identical in amino-acid sequence, conkunitzin-S1 has only four of the six cysteines normally found in Kunitz proteins. Here, the crystal structure of conkunitzin-S1 is reported. Conkunitzin-S1 adopts the canonical 310–β–β–α Kunitz fold complete with additional distinguishing structural features including two completely buried water molecules. The crystal structure, although completely consistent with previously reported NMR distance restraints, provides a greater degree of precision for atomic coordinates, especially for S atoms and buried solvent molecules. The region normally cross-linked by cysteines II and IV in other Kunitz proteins retains a network of hydrogen bonds and van der Waals interactions comparable to those found in α-dendrotoxin and BPTI. In conkunitzin-S1, glycine occupies the sequence position normally reserved for cysteine II and the special steric properties of glycine allow additional van der Waals contacts with the glutamine residue substituting for cysteine IV. Evolution has thus defrayed the cost of losing a disulfide bond by augmenting and optimizing weaker yet nonetheless effective non-covalent interactions.
doi:10.1107/S0907444906021123
PMCID: PMC2924234  PMID: 16929098
conotoxin; BPTI; α-dendroxin; native chemical ligation; conus
13.  Consistent mutational paths predict eukaryotic thermostability 
Background
Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published.
Results
Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1), we could also characterise the molecular consequences of some of these mutations.
Conclusions
The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.
doi:10.1186/1471-2148-13-7
PMCID: PMC3546890  PMID: 23305080
Thermophily; Comparative genomics; Protein engineering; Eukaryotes; Fungi
14.  Identification and enzymatic activities of four protein disulfide isomerase (PDI) isoforms of Leishmania amazonensis 
Parasitology research  2007;102(3):437-446.
Leishmania parasites primarily infect cells of macrophage lineage and can cause leishmaniasis in the skin, mucosal, and visceral organs, depending on both host- and parasite-derived factors. The protein disulfide isomerases (PDIs) are thiol-disulfide oxidoreductases that catalyze the formation, reduction, and isomerization of disulfide bonds of proteins in cells. Although four Leishmania PDI genes are functionally inferred from homology in the genome sequences, only two of them have been expressed as active proteins to date. The functional relationship among various PDI enzymes remains largely unclear. In this study, we expressed and partially characterized all four L. amazonensis PDIs encoding 52-, 47-, 40-, and 15-kDa proteins. Homology analysis showed that the sequence identity between L. amazonensis (New World) PDIs and their counterpart PDI sequences from L. major (Old World) ranged from 76% to 99%. Kinetic characterization indicated that while the 15-, 40-, and 47- kDa PDI proteins displayed both insulin isomerase and reductase activities, the 52-kDa protein had only isomerase activity with no detectable reductase activity. All four PDI proteins were recognized by sera from L. amazonensis-infected mice and were sensitive to inhibition by standard PDI inhibitors. This study describes the enzymatic activities of recombinant L. amazonensis PDIs and suggests a role for these proteins in parasite development.
doi:10.1007/s00436-007-0784-4
PMCID: PMC2745823  PMID: 18058133
Leishmania; Protein disulfide isomerase (PDI)
15.  Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli 
Background
The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction.
Results
Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3) pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p.
Conclusions
Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory.
doi:10.1186/1475-2859-9-67
PMCID: PMC2946281  PMID: 20836848
16.  A Novel Insight into the Oxidoreductase Activity of Helicobacter pylori HP0231 Protein 
PLoS ONE  2012;7(10):e46563.
Background
The formation of a disulfide bond between two cysteine residues stabilizes protein structure. Although we now have a good understanding of the Escherichia coli disulfide formation system, the machineries at work in other bacteria, including pathogens, are poorly characterized. Thus, the objective of this work was to improve our understanding of the disulfide formation machinery of Helicobacter pylori, a leading cause of ulcers and a risk factor for stomach cancer worldwide.
Methods and Results
The protein HP0231 from H. pylori, a structural counterpart of E. coli DsbG, is the focus of this research. Its function was clarified by using a combination of biochemical, microbiological and genetic approaches. In particular, we determined the biochemical properties of HP0231 as well as its redox state in H. pylori cells.
Conclusion
Altogether our results show that HP0231 is an oxidoreductase that catalyzes disulfide bond formation in the periplasm. We propose to call it HpDsbA.
doi:10.1371/journal.pone.0046563
PMCID: PMC3463561  PMID: 23056345
17.  Post-transcriptional modification in archaeal tRNAs: identities and phylogenetic relations of nucleotides from mesophilic and hyperthermophilic Methanococcales 
Nucleic Acids Research  2001;29(22):4699-4706.
Post-transcriptional modifications in archaeal RNA are known to be phylogenetically distinct but relatively little is known of tRNA from the Methanococci, a lineage of methanogenic marine euryarchaea that grow over an unusually broad temperature range. Transfer RNAs from Methanococcus vannielii, Methanococcus maripaludis, the thermophile Methanococcus thermolithotrophicus, and hyperthermophiles Methanococcus jannaschii and Methanococcus igneus were studied to determine whether modification patterns reflect the close phylogenetic relationships inferred from small ribosomal subunit RNA sequences, and to examine modification differences associated with temperature of growth. Twenty-four modified nucleosides were characterized, including the complex tricyclic nucleoside wyosine characteristic of position 37 in tRNAPhe and known previously only in eukarya, plus two new wye family members of presently unknown structure. The hypermodified nucleoside 5-methylaminomethyl-2-thiouridine, reported previously only in bacterial tRNA at the first position of the anticodon, was identified by liquid chromatography-electrospray ionization mass spectrometry in four of the five organisms. The ribose-methylated nucleosides, 2′-O-methyladenosine, N2,2′-O-dimethylguanosine and N2,N2,2′-O-trimethylguanosine, were found only in hyperthermophile tRNA, consistent with their proposed roles in thermal stabilization of tRNA.
PMCID: PMC92529  PMID: 11713320
18.  Catalysis of Protein Disulfide Bond Isomerization in a Homogeneous Substrate† 
Biochemistry  2005;44(36):12168-12178.
Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a _-hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N-and C-terminus contain a fluorescence donor (tryptophan) and acceptor (N_-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E°_ = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys—Gly—His—Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/KM = 1.7 _ 105 M–1M s–1, which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that catalysis of disulfide bond isomerization by PDI does not necessarily involve a cycle of substrate reduction/oxidation.
doi:10.1021/bi0507985
PMCID: PMC2526094  PMID: 16142915
19.  Lineage-specific partitions in archaeal transcription 
Archaea  2006;2(2):117-125.
The phylogenetic distribution of the components comprising the transcriptional machinery in the crenarchaeal and euryarchaeal lineages of the Archaea was analyzed in a systematic manner by genome-wide profiling of transcription complements in fifteen complete archaeal genome sequences. Initially, a reference set of transcription-associated proteins (TAPs) consisting of sequences functioning in all aspects of the transcriptional process, and originating from the three domains of life, was used to query the genomes. TAP-families were detected by sequence clustering of the TAPs and their archaeal homologues, and through extensive database searching, these families were assigned a function. The phylogenetic origins of archaeal genes matching hidden Markov model profiles of protein domains associated with transcription, and those encoding the TAP-homologues, showed there is extensive lineage-specificity of proteins that function as regulators of transcription: most of these sequences are present solely in the Euryarchaeota, with nearly all of them homologous to bacterial DNA-binding proteins. Strikingly, the hidden Markov model profile searches revealed that archaeal chromatin and histone-modifying enzymes also display extensive taxon-restrictedness, both across and within the two phyla.
PMCID: PMC2686387  PMID: 17350932
genome profiling; protein families; sequence clustering; transcription-associated proteins
20.  The conserved disulfide bond of human tear lipocalin modulates conformation and lipid binding in a ligand selective manner 
Biochimica et biophysica acta  2011;1814(5):671-683.
The primary aim of this study is the elucidation of the mechanism of disulfide induced alteration of ligand binding in human tear lipocalin (TL). Disulfide bonds may act as dynamic scaffolds to regulate conformational changes that alter protein function including receptor-ligand interactions. A single disulfide bond, (Cys61-Cys153), exists in TL that is highly conserved in the lipocalin superfamily. Circular dichroism and fluorescence spectroscopies were applied to investigate the mechanism by which disulfide bond removal effects protein stability, dynamics and ligand binding properties. Although the secondary structure is not altered by disulfide elimination, TL shows decreased stability against urea denaturation. Free energy change (ΔG0) decreases from 4.9± 0.2 to 2.1± 0.3 kcal/mol with removal of the disulfide bond. Furthermore, ligand binding properties of TL without the disulfide vary according to the type of ligand. The binding of a bulky ligand, NBD-cholesterol, has a decreased time constant (from 11.8± 0.2 to 3.3 s). In contrast, the NBD-labeled phospholipid shows a moderate decrease in the time constant for binding, from 33.2± 0.2 to 22.2± 0.4 s. FRET experiments indicate that the hairpin CD is directly involved in modulation of both ligand binding and flexibility of TL. In TL complexed with palmitc acid (PA-TL), the distance between the residues 62 of strand D and 81 of loop EF is decreased by disulfide bond reduction. Consequently, removal of the disulfide bond boosts flexibility of the protein to reach a CD-EF loop distance (24.3 Å, between residues 62 and 81), which is not accessible for the protein with an intact disulfide bond (26.2 Å). The results suggest that enhanced flexibility of the protein promotes a faster accommodation of the ligand inside the cavity and energetically favorable ligand-protein complex.
doi:10.1016/j.bbapap.2011.03.017
PMCID: PMC3103136  PMID: 21466861
excited protein states; ligand binding; tear lipocalin; protein dynamics; disulfide motive; FRET; time-resolved fluorescence
21.  Disulfide Bond Formation in the Herpes Simplex Virus 1 UL6 Protein Is Required for Portal Ring Formation and Genome Encapsidation▿ 
Journal of Virology  2011;85(17):8616-8624.
The herpes simplex virus 1 (HSV-1) UL6 portal protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for the encapsidation of the viral genome. We have demonstrated previously that the leucine zipper region of UL6 is important for intersubunit interactions and stable ring formation (J. K. Nellissery, R. Szczepaniak, C. Lamberti, and S. K. Weller, J. Virol. 81:8868–8877, 2007). We now demonstrate that intersubunit disulfide bonds exist between monomeric subunits and contribute to portal ring formation and/or stability. Intersubunit disulfide bonds were detected in purified portal rings by SDS-PAGE under nonreducing conditions. Furthermore, the treatment of purified portal rings with dithiothreitol (DTT) resulted in the disruption of the rings, suggesting that disulfide bonds confer stability to this complex structure. The UL6 protein contains nine cysteines that were individually mutated to alanine. Two of these mutants, C166A and C254A, failed to complement a UL6 null mutant in a transient complementation assay. Furthermore, viral mutants bearing the C166A and C254A mutations failed to produce infectious progeny and were unable to cleave or package viral DNA. In cells infected with C166A or C254A, B capsids were produced which contained UL6 at reduced levels compared to those seen in wild-type capsids. In addition, C166A and C254A mutant proteins expressed in insect cells infected with recombinant baculovirus failed to form ring structures. Cysteines at positions 166 and 254 thus appear to be required for intersubunit disulfide bond formation. Taken together, these results indicate that disulfide bond formation is required for portal ring formation and/or stability and for the production of procapsids that are capable of encapsidation.
doi:10.1128/JVI.00123-11
PMCID: PMC3165836  PMID: 21593161
22.  Oxidative Folding: Cellular Strategies for Dealing with the Resultant Equimolar Production of Reactive Oxygen Species 
Antioxidants & Redox Signaling  2009;11(9):2317-2331.
Abstract
All eukaryotic cells possess an endoplasmic reticulum (ER), which is the site for synthesizing proteins that populate the cell surface or extracellular space. The environment of the ER is oxidizing, which supports the formation of intra- and interchain disulfide bonds that serve to stabilize the folding and assembly of nascent proteins. Recent experimental data reveal that the formation of disulfide bonds does not occur spontaneously but results from the enzymatic transfer of disulfide bonds through a number of intermediate proteins, with molecular oxygen serving as the terminal electron acceptor. Thus, each disulfide bond that forms during oxidative folding should produce a single reactive oxygen species (ROS). Dedicated secretory tissues like the pancreas and plasma cells have been estimated to form up to 3–6 million disulfide bonds per minute, which would be expected to result in the production of the same number of molecules of ROS. Although the methods used to deal with this amount of oxidative stress are not well understood, recent research suggests that different types of cells use distinct strategies and that the unfolded protein response (UPR) is a critical component of the defense. Antioxid. Redox Signal. 11, 2317–2331.
doi:10.1089/ars.2009.2501
PMCID: PMC2819804  PMID: 19243234
23.  Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). 
Journal of Bacteriology  1991;173(10):3138-3148.
Nucleoside modification has been studied in unfractionated tRNA from 11 thermophilic archaea (archaebacteria), including phylogenetically diverse representatives of thermophilic methanogens and sulfur-metabolizing hyperthermophiles which grow optimally in the temperature range of 56 (Thermoplasma acidophilum) to 105 degrees C (Pyrodictium occultum), and for comparison from the most thermophilic bacterium (eubacterium) known, Thermotoga maritima (80 degrees C). Nine nucleosides are found to be unique to the archaea, six of which are structurally novel in being modified both in the base and by methylation in ribose and occur primarily in tRNA from the extreme thermophiles in the Crenarchaeota of the archaeal phylogenetic tree. 2-Thiothymine occurs in tRNA from Thermococcus sp., and constitutes the only known occurrence of the thymine moiety in archaeal RNA, in contrast to its near-ubiquitous presence in tRNA from bacteria and eukarya. A total of 33 modified nucleosides are rigorously characterized in archaeal tRNA in the present study, demonstrating that the structural range of posttranscriptional modifications in archaeal tRNA is more extensive than previously known. From a phylogenetic standpoint, certain tRNA modifications occur in the archaea which are otherwise unique to either the bacterial or eukaryal domain, although the overall patterns of modification are more typical of eukaryotes than bacteria.
PMCID: PMC207908  PMID: 1708763
24.  Proteomic Properties Reveal Phyloecological Clusters of Archaea 
PLoS ONE  2012;7(10):e48231.
In this study, we propose a novel way to describe the variety of environmental adaptations of Archaea. We have clustered 57 Archaea by using a non-redundant set of proteomic features, and verified that the clusters correspond to environmental adaptations to the archaeal habitats. The first cluster consists dominantly of hyperthermophiles and hyperthermoacidophilic aerobes. The second cluster joins together halophilic and extremely halophilic Archaea, while the third cluster contains mesophilic (mostly methanogenic) Archaea together with thermoacidophiles. The non-redundant subset of proteomic features was found to consist of five features: the ratio of charged residues to uncharged, average protein size, normalized frequency of beta-sheet, normalized frequency of extended structure and number of hydrogen bond donors. We propose this clustering to be termed phyloecological clustering. This approach could give additional insights into relationships among archaeal species that may be hidden by sole phylogenetic analysis.
doi:10.1371/journal.pone.0048231
PMCID: PMC3485053  PMID: 23133575
25.  Cloning and characterization of the gene for a protein thiol-disulfide oxidoreductase in Bacillus brevis. 
Journal of Bacteriology  1995;177(3):745-749.
The gene (bdb) for protein thiol-disulfide oxidoreductase cloned from Bacillus brevis was found to encode a polypeptide consisting of 117 amino acid residues with a signal peptide of 27 residues. Bdb contains a well-conserved motif, Cys-X-X-Cys, which functions as the active center of disulfide oxidoreductases such as DsbA, protein disulfide isomerase, and thioredoxin. The deduced amino acid sequence showed significant homology with those of several bacterial thioredoxins. The bdb gene complemented the Escherichia coli dsbA mutation, restoring motility by means of flagellar and alkaline phosphatase activity. The Bdb protein overproduced in B. brevis was enzymatically active in both reduction and oxidization of disulfide bonds in vitro. Immunoblotting indicated that Bdb could function at the periphery of the cell.
PMCID: PMC176652  PMID: 7836310

Results 1-25 (550006)