PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1069525)

Clipboard (0)
None

Related Articles

1.  Noninvasive assessment of bone health in Indian patients with chronic kidney disease 
Indian Journal of Nephrology  2013;23(3):161-167.
Abnormalities in mineral and bone disease are common in chronic kidney disease (CKD). Evaluation of bone health requires measurement of parameters of bone turnover, mineralization, and volume. There are no data on bone health in CKD patients from India. In this cross-sectional study, we evaluated serum biomarkers of bone turnover: Bone-specific alkaline phosphatase (BAP) and total deoxypyridinoline (tDPD) along with parathyroid hormone, 25(OH) vitamin D, and bone mineral density (BMD) using dual absorption X-ray absorptiometry in a cohort of 74 treatment-naive patients with newly diagnosed stage 4 and 5 CKD (age 42 ± 14.5 years, 54 men) and 52 non-CKD volunteers (age 40.2 ± 9.3 years, 40 men). Compared to the controls, CKD subjects showed elevated intact PTH (iPTH), BAP, and tDPD and lower BMD. There was a strong correlation between iPTH and BAP (r = 0.88, P < 0.0001), iPTH and tDPD (r = 0.51, P < 0.0001), and BAP and tDPD (r = 0.46, P = 0.0004). The iPTH elevation was greater than twice the upper range of normal in 73% cases, and BAP was >40 U/L in 66% cases. The combination of these markers suggests high turnover bone disease in over 60% cases. The prevalence of osteopenia and osteoporosis was 37% and 12%, respectively. Osteoporotic subjects had higher iPTH, BAP, and tDPD, suggesting a role of high turnover in genesis of osteoporosis. Vitamin D deficiency was seen in 80%, and another 13% had insufficient levels. Vitamin D correlated inversely with BAP (r = −0.3, P = 0.009), and levels were lower in those with iPTH >300 pg/ml (P = 0.0.04). In conclusion, over 60% of newly diagnosed Indian stage 4–5 CKD patients show biochemical parameters consistent with high turnover bone disease. High turnover could contribute to the development of osteoporosis in CKD subjects. Deficiency of 25 (OH) vitamin D is widespread and seems to have a role in the genesis of renal bone disease. Studies on the effect of supplementation of native vitamin D are needed.
doi:10.4103/0971-4065.111831
PMCID: PMC3692139  PMID: 23814412
Bone mineral density; bone-specific alkaline phosphatase; chronic kidney disease; deoxypyrinolidine; parathyroid hormone; renal osteodystrophy; vitamin D
2.  Alendronate increases BMD at appendicular and axial skeletons in patients with established osteoporosis 
Background
To identify high-risk patients and provide pharmacological treatment is one of the effective approaches in prevention of osteoporotic fractures. This study investigated the effect of 12-month Alendronate treatment on bone mineral density (BMD) and bone turnover biochemical markers in postmenopausal women with one or more non-traumatic fractures, i.e. patients with established osteoporosis.
Methods
A total of 118 Hong Kong postmenopausal Chinese women aged 50 to 75 with low-energy fracture at distal radius (Colles' fracture) were recruited for BMD measurement at lumbar spine and non-dominant hip using Dual-Energy X-ray Absorptiometry (DXA). 47 women with BMD T-score below -2 SD at either side were identified as patients with established osteoporosis and then randomized into Alendronate group (n = 22) and placebo control group (n = 25) for BMD measurement at spine and hip using DXA and distal radius of the non-fracture side by peripheral quantitative computed tomography (pQCT), and bone turnover markers, including bone forming alkaline phosphatase (BALP) and bone resorbing urinary Deoxypyridinoline (DPD). All measurements were repeated at 6 and 12 months.
Results
Alendronate treatment significantly increased BMD, more in weight-bearing skeletons (5.1% at spine and 2.5% at hip) than in non-weight bearing skeleton (0.9% at distal radius) after 12 months treatment. Spine T-score was significant improved in Alendronate group (p < 0.01) (from -2.2 to -1.9) but not in control placebo group. The Alendronate treatment effect was explained by significant suppression of bone turnover.
Conclusion
12 months Alendronate treatment was effective to increase BMD at both axial and appendicular skeletons in postmenopausal women with established osteoporosis.
doi:10.1186/1749-799X-2-9
PMCID: PMC1885425  PMID: 17511887
3.  Vitamin K Supplementation in Postmenopausal Women with Osteopenia (ECKO Trial): A Randomized Controlled Trial 
PLoS Medicine  2008;5(10):1-12.
Background
Vitamin K has been widely promoted as a supplement for decreasing bone loss in postmenopausal women, but the long-term benefits and potential harms are unknown. This study was conducted to determine whether daily high-dose vitamin K1 supplementation safely reduces bone loss, bone turnover, and fractures.
Methods and Findings
This single-center study was designed as a 2-y randomized, placebo-controlled, double-blind trial, extended for earlier participants for up to an additional 2 y because of interest in long-term safety and fractures. A total of 440 postmenopausal women with osteopenia were randomized to either 5 mg of vitamin K1 or placebo daily. Primary outcomes were changes in BMD at the lumbar spine and total hip at 2 y. Secondary outcomes included changes in BMD at other sites and other time points, bone turnover markers, height, fractures, adverse effects, and health-related quality of life. This study has a power of 90% to detect 3% differences in BMD between the two groups. The women in this study were vitamin D replete, with a mean serum 25-hydroxyvitamin D level of 77 nmol/l at baseline. Over 2 y, BMD decreased by −1.28% and −1.22% (p = 0.84) (difference of −0.06%; 95% confidence interval [CI] −0.67% to 0.54%) at the lumbar spine and −0.69% and −0.88% (p = 0.51) (difference of 0.19%; 95% CI −0.37% to 0.75%) at the total hip in the vitamin K and placebo groups, respectively. There were no significant differences in changes in BMD at any site between the two groups over the 2- to 4-y period. Daily vitamin K1 supplementation increased serum vitamin K1 levels by 10-fold, and decreased the percentage of undercarboxylated osteocalcin and total osteocalcin levels (bone formation marker). However, C-telopeptide levels (bone resorption marker) were not significantly different between the two groups. Fewer women in the vitamin K group had clinical fractures (nine versus 20, p = 0.04) and fewer had cancers (three versus 12, p = 0.02). Vitamin K supplements were well-tolerated over the 4-y period. There were no significant differences in adverse effects or health-related quality of life between the two groups. The study was not powered to examine fractures or cancers, and their numbers were small.
Conclusions
Daily 5 mg of vitamin K1 supplementation for 2 to 4 y does not protect against age-related decline in BMD, but may protect against fractures and cancers in postmenopausal women with osteopenia. More studies are needed to further examine the effect of vitamin K on fractures and cancers.
Trial registration: ClinicalTrials.gov (#NCT00150969) and Current Controlled Trials (#ISRCTN61708241)
Angela Cheung and colleagues investigate whether vitamin K1 can prevent bone loss among postmenopausal women with osteopenia.
Editors' Summary
Background.
Osteoporosis is a bone disease in which the bones gradually become less dense and more likely to break. In the US, 10 million people have osteoporosis and 18 million have osteopenia, a milder condition that precedes osteoporosis. In both conditions, insufficient new bone is made and/or too much old bone is absorbed. Although bone appears solid and unchanging, very little bone in the human body is more than 10 y old. Old bone is continually absorbed and new bone built using calcium, phosphorous, and proteins. Because the sex hormones control calcium and phosphorous deposition in the bones and thus bone strength, the leading cause of osteoporosis in women is reduced estrogen levels after menopause. In men, an age-related decline in testosterone levels can cause osteoporosis. Most people discover they have osteoporosis only when they break a bone, but the condition can be diagnosed and monitored using bone mineral density (BMD) scans. Treatments can slow down or reverse bone loss (antiresorptive therapies) and some (bone formation therapies) can even make bone and build bone tissue.
Why Was This Study Done?
Although regular exercise and a healthy diet can help to keep bones strong, other ways of preventing osteoporosis are badly needed. Recently, the lay media has promoted vitamin K supplements as a way to reduce bone loss in postmenopausal women. Vitamin K (which is found mainly in leafy green vegetables) is required for a chemical modification of proteins called carboxylation. This modification is essential for the activity of three bone-building proteins. In addition, there is some evidence that low bone density and fractures are associated with a low vitamin K intake. However, little is known about the long-term benefits or harms of vitamin K supplements. In this study, the researchers investigate whether a high-dose daily vitamin K supplement can safely reduce bone loss, bone turnover, and fractures in postmenopausal women with osteopenia in a randomized controlled trial called the “Evaluation of the Clinical Use of Vitamin K Supplementation in Post-Menopausal Women With Osteopenia” (ECKO) trial.
What Did the Researchers Do and Find?
In the study, 440 postmenopausal women with osteopenia were randomized to receive 5mg of vitamin K1 (the type of vitamin K in North American food; the recommended daily adult intake of vitamin K1 is about 0.1 mg) or an inactive tablet (placebo) daily for 2 y; 261 of the women continued their treatment for 2 y to gather information about the long-term effects of vitamin K1 supplementation. All the women had regular bone density scans of their lower back and hips and were examined for fractures and for changes in bone turnover. After 2 y and after 4 y, lower back and hip bone density measurements had decreased by similar amounts in both treatment groups. The women who took vitamin K1 had 10-fold higher amounts of vitamin K1 in their blood than the women who took placebo and lower amounts of a bone formation marker; the levels of a bone resorption marker were similar in both groups. Over the 4-y period, fewer women in the vitamin K group had fractures (nine versus 20 women in the placebo group), and fewer had cancer (three versus 12). Finally, vitamin K supplementation was well tolerated over the 4-y period and adverse health effects were similar in the two treatment groups.
What Do These Findings Mean?
These findings indicate that a high daily dose of vitamin K1 provides no protection against the age-related decline in bone density in postmenopausal women with osteopenia, but that vitamin K1 supplementation may protect against fractures and cancers in these women. The apparent contradiction between the effects of vitamin K1 on bone density and on fractures could mean that vitamin K1 supplements strengthen bone by changing factors other than bone density, e.g., by changing its fine structure rather than making it denser. However, because so few study participants had fractures, the difference in the fracture rate between the two treatment groups might have occurred by chance. Larger studies are therefore needed to examine the effect of vitamin K1 on fractures (and on cancer) and, until these are done, high-dose vitamin K1 supplementation should not be recommended for the prevention of osteoporosis.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050196.
The US National Institute of Arthritis and Musculoskeletal and Skin Diseases provides detailed information about osteoporosis (in English and Spanish) and links to other resources, including an interactive web tool called Check Up On Your Bones
MedlinePlus provides links to additional information about osteoporosis (in English and Spanish)
The MedlinePlus Encyclopedia has a page about vitamin K
The UK Food Standards Agency provides information about vitamin K
Full details about the ECKO trial are available on the ClinicalTrials.gov Web site
The Canadian Task Force for Preventive Health Care provides recommendations on the prevention of osteoporosis and osteoporotic fractures in postmenopausal women
Osteoporosis Canada provides information on current topics related to osteoporosis
doi:10.1371/journal.pmed.0050196
PMCID: PMC2566998  PMID: 18922041
4.  Negative correlation between bone mineral density and TSH receptor antibodies in long-term euthyroid postmenopausal women with treated Graves’ disease 
Thyroid Research  2013;6:11.
Background
Thyrotoxicosis is a cause of secondary osteoporosis. High concentrations of triiodotironine (T3) in Graves’ disease stimulate bone turnover, but it is unclear if euthyroidism will always normalize bone metabolism. Thyrotropin (TSH) is known to affect directly the bone metabolism through the TSH receptor and TSH receptor antibodies (TRAb) may have an important role in bone turn-over.
The aim of our study was to determine, in pre and postmenopausal euthyroidism patients with previous overt hyperthyroidism due to Graves’ disease the bone mineral density (BMD) as well as factors that could affect BMD in each group, including TRAb.
Methods
Cross-sectional, non-interventional study. Fifty-seven patients with previous hyperthyroidism due to Graves’ disease (premenopausal: 30, postmenopausal: 27) that remained euthyroid for at least 6 months prior to study were included and compared with fifty- two matched respective controls. Thyrotoxine (T4), TSH, TRAb and BMD were measured.
Results
Only euthyroid postmenopausal patients with a history of hyperthyroidism due to Graves’ disease showed lower whole body BMD than matched controls. The BMD expressed as Z-score was less in whole body and lumbar spine in postmenopausal in relation to premenopausal women with previous overt hyperthyroidism due to Graves’ disease.
In the postmenopausal patients, the Z-score of lumbar spine BMD correlated negatively with TRAb (r = −0,53, p < 0.008), positively with the time of evolution of the disease (r = +0.42, p < 0.032) and positively with the time of euthyroidism (r = + 0.50, p < 0.008), but neither with serum T4 nor TSH. In a multiple regression analysis TRAb was the only significant independent variable in relation to lumbar spine BMD (F = 3. 90, p < 0.01).
Conclusions
In euthyroid women with a history of Graves’ hyperthyroidism, BMD was only affected in the postmenopausal group. The negative correlation of Z-score of lumbar spine BMD with TRAb suggests that this antibody may affect the bone metabolism.
doi:10.1186/1756-6614-6-11
PMCID: PMC3847206  PMID: 24020400
5.  Predictors of bone disease in Egyptian prepubertal children with β-thalassaemia major 
Introduction
Thalassaemic osteopathy is a multifactorial disorder and limited information exists about bone accrual and bone mineral density (BMD) in prepubertal thalassaemic children. The study aimed to investigate some potential genetic and biochemical bone markers as possible early predictors of BMD variations in children with β-thalassaemia major (TM) before puberty.
Material and methods
Thirt-one prepubertal children with β-TM, and 43 matched controls were subjected to BMD assessment by dual energy X-ray absorptiometry (DEXA). Vitamin D receptor (VDR) gene polymorphisms (Bsm1, Fok1) and the biochemical bone markers serum osteocalcin and propeptide I procollagen (CPIP) and urinary deoxypyridinoline (DPD) excretion were assessed.
Results
Bone mineral density was reduced in 25% of thalassaemics at the spine and 15.4% at the hip region. Significantly higher levels of urinary DPD and lower serum osteocalcin and CPIP levels were found in the studied thalassaemic children compared to controls (p < 0.001). A significant negative correlation was present between BMD in spine and hip and the patients’ age (r = −0.6367, p = 0.0002 and r = −0.616, p = 0.00079, respectively). There was a significant reduction in BMD in males compared to females. Reduced BMD was more frequent in male patients with genotypes bb and Ff but not in females. Bone mineral density was not related to the studied biochemical bone markers, mean pre-transfusion haemoglobin or serum ferritin.
Conclusions
Routine BMD screening with DEXA is proposed to be a sensitive predictor for early bone changes, particularly at the lumbar spine. DR gene polymorphisms of Bsm1 and Fok1 polymorphisms may be determinants of BMD in Egyptian prepubertal male thalassemics
doi:10.5114/aoms.2010.14472
PMCID: PMC3284075  PMID: 22371804
β-thalassaemia; bone mineral density; gene polymorphism vitamin D receptor
6.  Utilization of DXA Bone Mineral Densitometry in Ontario 
Executive Summary
Issue
Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario.
Background
Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment
Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario.
Clinical Need
 
Burden of Disease
The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased mortality, and decreased functional capacity and quality of life. A Canadian study showed that at 1 year after a hip fracture, the mortality rate was 20%. Another 20% required institutional care, 40% were unable to walk independently, and there was lower health-related quality of life due to attributes such as pain, decreased mobility and decreased ability to self-care. The cost of osteoporosis and osteoporotic fractures in Canada was estimated to be $1.3 billion in 1993.
Guidelines for Bone Mineral Density Testing
With 2 exceptions, almost all guidelines address only women. None of the guidelines recommend blanket population-based BMD testing. Instead, all guidelines recommend BMD testing in people at risk of osteoporosis, predominantly women aged 65 years or older. For women under 65 years of age, BMD testing is recommended only if one major or two minor risk factors for osteoporosis exist. Osteoporosis Canada did not restrict its recommendations to women, and thus their guidelines apply to both sexes. Major risk factors are age greater than or equal to 65 years, a history of previous fractures, family history (especially parental history) of fracture, and medication or disease conditions that affect bone metabolism (such as long-term glucocorticoid therapy). Minor risk factors include low body mass index, low calcium intake, alcohol consumption, and smoking.
Current Funding for Bone Mineral Density Testing
The Ontario Health Insurance Program (OHIP) Schedule presently reimburses DXA BMD at the hip and spine. Measurements at both sites are required if feasible. Patients at low risk of accelerated bone loss are limited to one BMD test within any 24-month period, but there are no restrictions on people at high risk. The total fee including the professional and technical components for a test involving 2 or more sites is $106.00 (Cdn).
Method of Review
This review consisted of 2 parts. The first part was an analysis of Ontario administrative data relating to DXA BMD, wrist and hip fractures, and use of antiresorptive drugs in people aged 65 years and older. The Institute for Clinical Evaluative Sciences extracted data from the OHIP claims database, the Canadian Institute for Health Information hospital discharge abstract database, the National Ambulatory Care Reporting System, and the Ontario Drug Benefit database using OHIP and ICD-10 codes. The data was analyzed to examine the trends in DXA BMD use from 1992 to 2005, and to identify areas requiring improvement.
The second part included systematic reviews and analyses of evidence relating to issues identified in the analyses of utilization data. Altogether, 8 reviews and qualitative syntheses were performed, consisting of 28 published systematic reviews and/or meta-analyses, 34 randomized controlled trials, and 63 observational studies.
Findings of Utilization Analysis
Analysis of administrative data showed a 10-fold increase in the number of BMD tests in Ontario between 1993 and 2005.
OHIP claims for BMD tests are presently increasing at a rate of 6 to 7% per year. Approximately 500,000 tests were performed in 2005/06 with an age-adjusted rate of 8,600 tests per 100,000 population.
Women accounted for 90 % of all BMD tests performed in the province.
In 2005/06, there was a 2-fold variation in the rate of DXA BMD tests across local integrated health networks, but a 10-fold variation between the county with the highest rate (Toronto) and that with the lowest rate (Kenora). The analysis also showed that:
With the increased use of BMD, there was a concomitant increase in the use of antiresorptive drugs (as shown in people 65 years and older) and a decrease in the rate of hip fractures in people age 50 years and older.
Repeat BMD made up approximately 41% of all tests. Most of the people (>90%) who had annual BMD tests in a 2-year or 3-year period were coded as being at high risk for osteoporosis.
18% (20,865) of the people who had a repeat BMD within a 24-month period and 34% (98,058) of the people who had one BMD test in a 3-year period were under 65 years, had no fracture in the year, and coded as low-risk.
Only 19% of people age greater than 65 years underwent BMD testing and 41% received osteoporosis treatment during the year following a fracture.
Men accounted for 24% of all hip fractures and 21 % of all wrist fractures, but only 10% of BMD tests. The rates of BMD tests and treatment in men after a fracture were only half of those in women.
In both men and women, the rate of hip and wrist fractures mainly increased after age 65 with the sharpest increase occurring after age 80 years.
Findings of Systematic Review and Analysis
Serial Bone Mineral Density Testing for People Not Receiving Osteoporosis Treatment
A systematic review showed that the mean rate of bone loss in people not receiving osteoporosis treatment (including postmenopausal women) is generally less than 1% per year. Higher rates of bone loss were reported for people with disease conditions or on medications that affect bone metabolism. In order to be considered a genuine biological change, the change in BMD between serial measurements must exceed the least significant change (variability) of the testing, ranging from 2.77% to 8% for precisions ranging from 1% to 3% respectively. Progression in BMD was analyzed, using different rates of baseline BMD values, rates of bone loss, precision, and BMD value for initiating treatment. The analyses showed that serial BMD measurements every 24 months (as per OHIP policy for low-risk individuals) is not necessary for people with no major risk factors for osteoporosis, provided that the baseline BMD is normal (T-score ≥ –1), and the rate of bone loss is less than or equal to 1% per year. The analyses showed that for someone with a normal baseline BMD and a rate of bone loss of less than 1% per year, the change in BMD is not likely to exceed least significant change (even for a 1% precision) in less than 3 years after the baseline test, and is not likely to drop to a BMD level that requires initiation of treatment in less than 16 years after the baseline test.
Serial Bone Mineral Density Testing in People Receiving Osteoporosis Therapy
Seven published meta-analysis of randomized controlled trials (RCTs) and 2 recent RCTs on BMD monitoring during osteoporosis therapy showed that although higher increases in BMD were generally associated with reduced risk of fracture, the change in BMD only explained a small percentage of the fracture risk reduction.
Studies showed that some people with small or no increase in BMD during treatment experienced significant fracture risk reduction, indicating that other factors such as improved bone microarchitecture might have contributed to fracture risk reduction.
There is conflicting evidence relating to the role of BMD testing in improving patient compliance with osteoporosis therapy.
Even though BMD may not be a perfect surrogate for reduction in fracture risk when monitoring responses to osteoporosis therapy, experts advised that it is still the only reliable test available for this purpose.
A systematic review conducted by the Medical Advisory Secretariat showed that the magnitude of increases in BMD during osteoporosis drug therapy varied among medications. Although most of the studies yielded mean percentage increases in BMD from baseline that did not exceed the least significant change for a 2% precision after 1 year of treatment, there were some exceptions.
Bone Mineral Density Testing and Treatment After a Fragility Fracture
A review of 3 published pooled analyses of observational studies and 12 prospective population-based observational studies showed that the presence of any prevalent fracture increases the relative risk for future fractures by approximately 2-fold or more. A review of 10 systematic reviews of RCTs and 3 additional RCTs showed that therapy with antiresorptive drugs significantly reduced the risk of vertebral fractures by 40 to 50% in postmenopausal osteoporotic women and osteoporotic men, and 2 antiresorptive drugs also reduced the risk of nonvertebral fractures by 30 to 50%. Evidence from observational studies in Canada and other jurisdictions suggests that patients who had undergone BMD measurements, particularly if a diagnosis of osteoporosis is made, were more likely to be given pharmacologic bone-sparing therapy. Despite these findings, the rate of BMD investigation and osteoporosis treatment after a fracture remained low (<20%) in Ontario as well as in other jurisdictions.
Bone Mineral Density Testing in Men
There are presently no specific Canadian guidelines for BMD screening in men. A review of the literature suggests that risk factors for fracture and the rate of vertebral deformity are similar for men and women, but the mortality rate after a hip fracture is higher in men compared with women. Two bisphosphonates had been shown to reduce the risk of vertebral and hip fractures in men. However, BMD testing and osteoporosis treatment were proportionately low in Ontario men in general, and particularly after a fracture, even though men accounted for 25% of the hip and wrist fractures. The Ontario data also showed that the rates of wrist fracture and hip fracture in men rose sharply in the 75- to 80-year age group.
Ontario-Based Economic Analysis
The economic analysis focused on analyzing the economic impact of decreasing future hip fractures by increasing the rate of BMD testing in men and women age greater than or equal to 65 years following a hip or wrist fracture. A decision analysis showed the above strategy, especially when enhanced by improved reporting of BMD tests, to be cost-effective, resulting in a cost-effectiveness ratio ranging from $2,285 (Cdn) per fracture avoided (worst-case scenario) to $1,981 (Cdn) per fracture avoided (best-case scenario). A budget impact analysis estimated that shifting utilization of BMD testing from the low risk population to high risk populations within Ontario would result in a saving of $0.85 million to $1.5 million (Cdn) to the health system. The potential net saving was estimated at $1.2 million to $5 million (Cdn) when the downstream cost-avoidance due to prevention of future hip fractures was factored into the analysis.
Other Factors for Consideration
There is a lack of standardization for BMD testing in Ontario. Two different standards are presently being used and experts suggest that variability in results from different facilities may lead to unnecessary testing. There is also no requirement for standardized equipment, procedure or reporting format. The current reimbursement policy for BMD testing encourages serial testing in people at low risk of accelerated bone loss. This review showed that biannual testing is not necessary for all cases. The lack of a database to collect clinical data on BMD testing makes it difficult to evaluate the clinical profiles of patients tested and outcomes of the BMD tests. There are ministry initiatives in progress under the Osteoporosis Program to address the development of a mandatory standardized requisition form for BMD tests to facilitate data collection and clinical decision-making. Work is also underway for developing guidelines for BMD testing in men and in perimenopausal women.
Conclusion
Increased use of BMD in Ontario since 1996 appears to be associated with increased use of antiresorptive medication and a decrease in hip and wrist fractures.
Data suggest that as many as 20% (98,000) of the DXA BMD tests in Ontario in 2005/06 were performed in people aged less than 65 years, with no fracture in the current year, and coded as being at low risk for accelerated bone loss; this is not consistent with current guidelines. Even though some of these people might have been incorrectly coded as low-risk, the number of tests in people truly at low risk could still be substantial.
Approximately 4% (21,000) of the DXA BMD tests in 2005/06 were repeat BMDs in low-risk individuals within a 24-month period. Even though this is in compliance with current OHIP reimbursement policies, evidence showed that biannual serial BMD testing is not necessary in individuals without major risk factors for fractures, provided that the baseline BMD is normal (T-score < –1). In this population, BMD measurements may be repeated in 3 to 5 years after the baseline test to establish the rate of bone loss, and further serial BMD tests may not be necessary for another 7 to 10 years if the rate of bone loss is no more than 1% per year. Precision of the test needs to be considered when interpreting serial BMD results.
Although changes in BMD may not be the perfect surrogate for reduction in fracture risk as a measure of response to osteoporosis treatment, experts advised that it is presently the only reliable test for monitoring response to treatment and to help motivate patients to continue treatment. Patients should not discontinue treatment if there is no increase in BMD after the first year of treatment. Lack of response or bone loss during treatment should prompt the physician to examine whether the patient is taking the medication appropriately.
Men and women who have had a fragility fracture at the hip, spine, wrist or shoulder are at increased risk of having a future fracture, but this population is presently under investigated and under treated. Additional efforts have to be made to communicate to physicians (particularly orthopaedic surgeons and family physicians) and the public about the need for a BMD test after fracture, and for initiating treatment if low BMD is found.
Men had a disproportionately low rate of BMD tests and osteoporosis treatment, especially after a fracture. Evidence and fracture data showed that the risk of hip and wrist fractures in men rises sharply at age 70 years.
Some counties had BMD utilization rates that were only 10% of that of the county with the highest utilization. The reasons for low utilization need to be explored and addressed.
Initiatives such as aligning reimbursement policy with current guidelines, developing specific guidelines for BMD testing in men and perimenopausal women, improving BMD reports to assist in clinical decision making, developing a registry to track BMD tests, improving access to BMD tests in remote/rural counties, establishing mechanisms to alert family physicians of fractures, and educating physicians and the public, will improve the appropriate utilization of BMD tests, and further decrease the rate of fractures in Ontario. Some of these initiatives such as developing guidelines for perimenopausal women and men, and developing a standardized requisition form for BMD testing, are currently in progress under the Ontario Osteoporosis Strategy.
PMCID: PMC3379167  PMID: 23074491
7.  Bone mineral density, bone turnover markers, lean mass, and fat mass in Egyptian children with congenital adrenal hyperplasia 
Introduction
Aim of this paper is to assess bone mineral density (BMD) and body composition, by dual energy X-ray absorptiometry (DXA), and various markers of bone growth, in a group of children with congenital adrenal hyperplasia (CAH) on long-term glucocorticoid therapy.
Material and methods
A case-control study included thirty patients with CAH with different states of metabolic control. Their mean age was 7.5 ±4.2 years. All patients are subjected to BMD using DXA at the neck of the femur and lumbar spine. A blood sample was taken for assessment of osteocalcin, osteoprotegerin, and procollagen type 1, as markers of bone formation, as well as RANKL and urinary deoxypyridinoline (DPD), as markers of bone resorption.
Results
We found no difference in BMD in patients and control subjects; however, patients showed significantly lower serum osteocalcin (p = 0.008) and osteoprotegerin (p = 0.0001) and significantly higher serum RANKL levels (p = 0.0001). Our results show that patients had significantly lower lean body mass (p = 0.005) and fat/lean ratio (p = 0.008) compared to matched controls. The duration of treatment showed a significant negative correlation with procollagen type 1 (r = –0.49, p = 0.02) and lean mass % (r = –0.43, p = 0.04); however, it showed a significant positive correlation with total fat mass % (r = 0.6, p = 0.0006), and fat/lean ratio (r = 0.43, p = 0.04). Dose of steroid had a significant positive correlation with BMI SDS (r = 0.4, p = 0.02).
Conclusions
Bone mineral density is normal but bone turnover is low in patients with CAH. There is an increase in fat/lean mass in patients with CAH.
doi:10.5114/aoms.2010.13516
PMCID: PMC3278952  PMID: 22371729
dual energy X-ray absorptiometry; bone mineral density; osteocalcin; osteoprotegerin; procollagen type 1
8.  Bone Mineral Density, Bone Turnover Markers and Fractures in Patients with Systemic Sclerosis: A Case Control Study 
PLoS ONE  2013;8(6):e66991.
Objective
The aim of our study was to elucidate the pathophysiology of systemic sclerosis-related osteoporosis and the prevalence of vertebral fragility fracture in postmenopausal women with systemic sclerosis (SSc).
Methodology
Fifty-four postmenopausal women with scleroderma and 54 postmenopausal controls matched for age, BMI, and smoking habits were studied. BMD was measured by dual energy-x-ray absorptiometry at spine and femur, and by ultrasonography at calcaneus The markers of bone turnover included serum osteocalcin and urinary deoxypyridinoline. All subjects had a spine X-ray to ascertain the presence of vertebral fractures.
Results
bone mineral density at lumbar spine (BMD 0.78±0.08 vs 0.88±0.07; p<0,001), femoral neck (BMD: 0.56±0.04 vs 0.72±0.07; p<0,001) and total femur (BMD: 0.57±0.04 vs 0.71±0.06; p<0,001) and ultrasound parameter at calcaneus (SI: 80.10±5.10 vs 94.80±6.10 p<0,001) were significantly lower in scleroderma compared with controls; bone turnover markers and parathyroid hormone level were significantly higher in scleroderma compared with controls, while serum of 25(OH)D3 was significantly lower. In scleroderma group the serum levels of 25(OH)D3 significantly correlated with PTH levels, BMD, stiffness index and bone turnover markers. One or more moderate or severe vertebral fractures were found in 13 patients with scleroderma, wherease in control group only one patient had a mild vertebral fracture.
Conclusion
Our data shows, for the first time, that vertebral fractures are frequent in subjects with scleroderma, and suggest that lower levels of 25(OH)D3 may play a role in the risk of osteoporosis and vertebral fractures.
doi:10.1371/journal.pone.0066991
PMCID: PMC3688576  PMID: 23818972
9.  Bone and Cartilage Turnover Markers, Bone Mineral Density, and Radiographic Damage in Men with Ankylosing Spondylitis 
Yonsei Medical Journal  2008;49(2):288-294.
Purpose
To determine the levels of bone and cartilage turnover markers in men with ankylosing spondylitis (AS) and to investigate their associations with disease activity, bone mineral density, and radiographic damage of the spine.
Patients and Methods
This cross-sectional study enrolled 35 men with newly diagnosed AS. The bone mineral densities (BMD) of their lumbar spines and proximal femurs, Bath AS Disease Activity Index (BASDAI), and Bath AS Radiographic Index (BASRI) were evaluated. Urinary C-terminal telopeptide fragments of type I collagen (CTX-I) and type II collagen (CTX-II) levels were determined by enzyme-linked immunosorbent assay, and serum levels of bone-specific alkaline phosphatase (BALP) and osteocalcin were determined by an enzyme immunoassay. Levels of biochemical markers were compared with those of 70 age-matched healthy men.
Results
Patients with AS had significantly higher mean urinary CTX-I and CTX-II levels than control subjects (p < 0.05). Elevated urinary CTX-I levels correlated well with BASDAI, femoral BMD, and femoral T score (p < 0.05), and elevated urinary CTX-II levels correlated well with spinal BASRI (p < 0.05) in patients with AS. Mean serum BALP and osteocalcin levels did not differ between patients and controls and did not show any significant correlations with BMD, BASDAI, or BASRI in men with AS.
Conclusions
Elevated CTX-I reflects disease activity and loss of femoral BMD while elevated CTX-II levels correlate well with radiographic damage of the spine, suggesting the usefulness of these markers for monitoring disease activity, loss of BMD, and radiographic damage in men with AS.
doi:10.3349/ymj.2008.49.2.288
PMCID: PMC2615310  PMID: 18452267
Ankylosing spondylitis; bone mineral density; C-terminal telopeptide fragments of type I collagen; C-terminal telopeptide fragments of type II collagen; radiographic damage
10.  Early Changes in Bone Specific Turnover Markers During the Healing Process After Vertebral Fracture 
Background:
The present study measured longitudinal changes in bone turnover markers in elderly patients with vertebral fracture and investigated the relationship among bone turnover markers, duration of bed rest and bone mineral density (BMD).
Methods:
Criteria for patient selection were 50 years in age and older, and presence of VF. Serum bone-specific alkaline phosphatase (BAP) was measured as a marker of bone formation. Urinary crosslinked N-terminal telopeptides of type I collagen (NTX) was measured as a marker of bone resorption. In principle, samples were collected just after injury, within 24 h, and 1, 2, 3, 5 and 8 weeks after. We also measured duration of bed rest and BMD.
Results:
The study population consisted of 42 cases. The average BMD of the lumbar vertebrae was 0.670 ± 0.174 g/cm2. Bed rest period was 17.9 ± 8.8 days. BAP showed significantly higher values at 2 and 3 weeks compared with the baseline value. Thereafter, BAP progressively decreased until 8 weeks. Urinary NTX was increased soon after the onset of pain with the same patterns in BAP. Urinary NTX values reached a peak at 3 weeks, and then they kept significantly higher values until 8 weeks. The peak value of serum BAP was affected by the duration of bed rest, although that of the urinary NTX was not. The peak values of serum BAP and urinary NTX showed negative correlations with the initial BMD values.
Conclusions:
Bone turnover markers remained higher at 8 weeks, even patients symptom was healed after VF. Bone turnover markers were affected on physical activity and BMD.
doi:10.2174/1874325001105010032
PMCID: PMC3087216  PMID: 21552459
Vertebral fracture; bone turnover marker; osteoporosis.
11.  Biochemical Bone Turnover Markers and Osteoporosis in Older Men: Where Are We? 
Journal of Osteoporosis  2011;2011:704015.
In men aged less than 60, the association of serum and urinary levels of biochemical bone turnover markers (BTMs) and bone mineral density (BMD) is weak or not significant. After this age, higher BTM levels are correlated weakly, but significantly, with lower BMD and faster bone loss. Limited data from the cohort studies suggest that BTM measurement does not improve the prediction of fragility fractures in older men in comparison with age, BMD, history of falls and fragility fractures. Testosterone replacement therapy (TRT) decreases bone resorption. During TRT, bone formation markers slightly increase (direct effect on osteoblasts), then decrease (slowdown of bone turnover). Bisphosphonates (alendronate, risedronate, ibandronate, zoledronate) induce a rapid decrease in bone resorption followed by a milder decrease in bone formation. In men receiving antiresorptive therapy for prostate cancer, zoledronate, denosumab and toremifene decrease significantly levels of bone resorption and bone formation markers. Teriparatide induced a rapid increase in serum concentrations of bone formation markers followed by an increase in bone resorption. We need more studies on the utility of BTM measurement for the improvement of the persistence and adherence to the anti-osteoporotic treatment in men.
doi:10.4061/2011/704015
PMCID: PMC3246740  PMID: 22220284
12.  Bone mineral density and bone turnover in spinal osteoarthrosis. 
Annals of the Rheumatic Diseases  1995;54(11):867-871.
OBJECTIVES--To determine whether there was a generalised increase in bone mineral density (BMD) in spinal osteoarthrosis (OA), and to determine the mechanism of this possible protection against osteoporosis as assessed by biochemical markers of bone turnover. METHODS--We studied 375 women (ages 50 to 85) from a population based group. Spinal OA was defined from radiographs as the presence of degenerative changes affecting intervertebral or facet joints. BMD of the lumbar spine (LS), femoral neck (FN) and total body (TB) was measured by dual energy x ray absorptiometry (Lunar DPX). Bone turnover rates were estimated from measurement of biochemical markers of bone formation and resorption (urine deoxypyridinoline (Dpyr) and serum bone specific alkaline phosphatase (BAP)). RESULTS--BMD at each site was greater in the women with spinal OA (mean increase in LS-BMD 7.9%, 95% confidence interval (CI) 1.0 to 15.1; TB-BMD 8.4%, 95% CI 1.9 to 9.7; FN-BMD 6.4%, 95% CI 0.3 to 12.6). Twenty four hour urinary excretion of Dpyr, corrected for TB bone mineral content, and serum BAP were 19% lower in the women with spinal OA (95% CI for Dpyr 4.3 to 31.9%; for BAP 6.3 to 32.0%). CONCLUSIONS--Spinal OA is associated with a generalised increase in BMD and a decreased rate of bone turnover. This suggests that the protective effect of spinal OA against osteoporosis may be mediated by decreased bone turnover.
PMCID: PMC1010035  PMID: 7492234
13.  Bone mineral status in Egyptian children with classic congenital adrenal hyperplasia. A single-center study from Upper Egypt 
Aim of the Study:
To evaluate bone mineral density (BMD) and levels of bone turnover markers in Egyptian children with classic congenital adrenal hyperplasia (CAH) caused by 21-hydroxylase deficiency and its relationship with disease-related variables.
Patients and Methods:
The study population consisted of 28 children from Upper Egypt with classic CAH, their mean age 8.3 ± 2.4 years and 28 age and sex matched healthy control. They were subjected to measurement of BMD of lumbar spines (L1-L4) and femoral neck using dual-energy-X-ray absorptiometry (DXA) and laboratory evaluation of bone turnover markers including Osteocalcin and serum receptor activator of nuclear factor κB-ligand (RANKL).
Result:
Children with CAH had significantly lower bone-mineral density (BMD) for both, vertebrae and femoral neck than controls. This difference is more obvious in children with poor control and in those receiving prednisone therapy. There was a significantly lower serum osteocalcin, and significantly higher serum RANKL levels in patients with CAH than the healthy controls. This differences is more obvious in children with poor control and in those receiving prednisone therapy. Total bone mineral content (BMC [gm]) have significant negative correlations to age (r = −0.81, P < 0.001), disease duration (r = −0.881, P < 0.001), 17 OH Progesterone level (r = −0.543, P < 0.05), RANKL level (r = −0.635, P < 0.05), and significant positive correlation with osteocalcin (r = 0.576, P < 0.001).
Conclusions:
Children from Upper Egypt with classic CAH may have reduced BMD and increase bone turnover compared with controls. This difference is more obvious in children with poor control and in those receiving prednisone therapy.
Recommendations:
Active monitoring of BMD in CAH children using Dual-energy X-ray absorptiometry (DEXA) scanning. Furthermore, effort should be done to bring hydrocortisone to Upper Egypt to replace prednisone in children with classic congenital adrenal hyperplasia.
doi:10.4103/2230-8210.139236
PMCID: PMC4171895  PMID: 25285289
Bone mineral density; congenital adrenal hyperplasia; hydrocortisone; osteocalcin; receptor activator of nuclear factor κB-ligand
14.  Vasomotor symptoms in infertile premenopausal women: a hitherto unappreciated risk for low bone mineral density 
Fertility and sterility  2008;90(5):1626-1634.
Objective
To identify the prevalence of vasomotor symptoms (VMS) in a population of premenopausal infertile women and to determine if VMS associate with enhanced bone turnover and low bone mineral density (BMD).
Design
Cross-sectional study.
Setting
Academic infertility practice.
Patients
82 premenopausal infertile but otherwise healthy women attending for routine infertility care.
Intervention
BMD testing, general health and profile of mood state (POMS) questionnaires, serum samples (cycle days 1–3).
Main Outcome Measures
VMS, specifically hot flashes-HF and night sweats-NS; BMD-Z score, BMD categorized as “Low” (Z ≤ −1.0 ) or “Normal” (Z > −1.0); ovarian reserve assessment (biochemical and ovarian dimensions on transvaginal ultrasound); serum markers of bone turnover (NTX, TRAP, BSAP) and ovarian reserve (FSH, Estradiol and Inhibin B). Multivariable regression analyses determined the associations between VMS, BMD and bone turnover (individual markers and composite turnover score).
Results
The prevalence of VMS was 12% in this relatively young population (mean age 34.53 ± SD 4.32). Symptomatic women were significantly more likely to report sleep disturbances (p<0.01), exhibit evidence of low BMD (p<0.01), enhanced bone turnover and poorer ovarian reserve parameters. Multivariable logistic regression analyses confirmed HF (p<0.01) and NS (p<0.01) as independent correlates to low BMD after adjusting for age, BMI, smoking status, menstrual regularity and ovarian reserve status. Multivariable linear regression analyses demonstrated that NS, but not HF, predicted higher bone turnover (p= 0.02) after adjusting for age, smoking, menstrual regularity and ovarian reserve.
Conclusions
We demonstrate, in a premenopausal population of infertile women, evidence of morbid accompaniments to VMS, including sleep disturbances and evidence of low BMD. Our data further suggest a state of enhanced bone turnover in association with VMS, specifically in those experiencing NS. Declining ovarian reserve may be the common pathophysiological mechanism underlying VMS and low BMD in the symptomatic population and merits further investigation.
doi:10.1016/j.fertnstert.2007.08.020
PMCID: PMC2676867  PMID: 18068159
15.  Bone metabolism and mineral density following renal transplantation 
Archives of Disease in Childhood  2000;83(2):146-151.
AIM—To study bone turnover following renal transplantation using a panel of biochemical markers and to correlate the results with both areal and volumetric bone mineral density (BMD).
PATIENTS—A total of 31 patients aged 18.1 years were transplanted 5.4 years before this study. Control patients (n = 31) were age and gender matched.
METHODS—In addition to measurement of biochemical markers, BMD was measured by single photon absorptiometry and peripheral quantitative computed tomography on the non-dominant radius.
RESULTS—Patients had reduced glomerular filtration rate, raised concentrations of serum phosphate, serum procollagene type I carboxy terminal propeptide, osteocalcin, and serum procollagene type I cross linked carboxy terminal telopeptide. The differences were still significant if only patients with normal intact parathyroid hormone were considered. BMD single photon absorptiometry Z score for age was significantly decreased. Following standardisation for height the differences were no longer present. With volumetric techniques patients had normal trabecular but decreased cortical and total BMD compared to age matched controls, but there was no difference from height matched controls.
CONCLUSION—Markers of bone turnover are increased following renal transplantation. However, the biochemical analysis did not allow conclusions to be drawn on the bone mineral content. BMD single photon absorptiometry Z score corrected for height and BMD measured by quantitative computed tomography compared to height matched controls were normal in paediatric renal transplantation patients. Height matched controls should be used in both areal and volumetric BMD measurements in states of growth failure.


doi:10.1136/adc.83.2.146
PMCID: PMC1718413  PMID: 10906024
16.  Effects of short-term testosterone replacement on areal bone mineral density and bone turnover in young hypogonadal males 
Context:
Effect of parenteral testosterone esters administration on bone-mineral density (BMD) and bone turnover in young age onset male hypogonadism is not studied in Indian subjects.
Aims:
To prospectively study the effect of short-term (6 months) replacement therapy with parenteral testosterone enanthate-propionate combination on BMD and bone turnover markers in hypogonadal adult patients.
Settings and Design:
Prospective, tertiary care academic center.
Materials and Methods:
Thirteen young, otherwise healthy hypogonadal males (age 25.5 ± 4.9 yrs, serum testosterone 2.56 ± 4.29 nmol/l) were subjected to BMD measurements (DXA) and estimation of urinary Crosslaps™ and serum osteocalcin at baseline. Twelve healthy age and BMI-matched males served as controls for BMD measurements. The hypogonadal patients were administered parenteral testosterone esters (as mixed enanthate and propionate) 250 mg i.m. every 2-3 weeks, and prospectively followed for 6 months. BMD and bone markers were studied at the end of 6 months.
Statistical Analysis Used:
Mann-Whitney nonparametric test, paired t-test and Pearson's test of two-tail significance.
Results:
At baseline, BMD was significantly lower in hypogonadal males as compared to that in controls. With testosterone replacement, there was significant improvement in BMD, both at trabecular and cortical sites, There was a decline in bone turnover with treatment (Ur Crosslaps™:creatinine ratio: pretreatment 72.8 ± 40.4, post-treatment 35.5 ± 23.8 μg/mmol, P = 0.098; serum osteocalcin: pre-treatment 41.0 ± 16.8, post-treatment 31.7 ± 2.1 ng/ml, P = 0.393).
Conclusions:
Short-term parenteral testosterone replacement significantly improves BMD at the hip, lumbar spine and forearm in hypogonadal young males.
doi:10.4103/2230-8210.102997
PMCID: PMC3510965  PMID: 23226640
C-terminal telopeptide; collagen-Crosslaps™; osteocalcin
17.  Premenopausal women with idiopathic low-trauma fractures and/or low bone mineral density 
Introduction
In men, idiopathic osteoporosis (IOP) is often associated with low serum insulin-like growth factor (IGF-1) and reduced bone formation. The characteristics of premenopausal women with IOP are not well defined. We aimed to define the clinical, reproductive, and biochemical characteristics of premenopausal women with unexplained osteoporosis.
Methods
This is a cross-sectional study of 64 women with unexplained osteoporosis, 45 with fragility fractures, 19 with low bone mineral density (BMD; Z-score less than or equal to −2.0) and 40 normal controls. The following are the main outcome measures: clinical and anthropometric characteristics, reproductive history, BMD, gonadal and calciotropic hormones, IGF-1, and bone turnover markers (BTMs).
Results
Subjects had lower BMI and BMD than controls, but serum and urinary calcium, serum estradiol, vitamin D metabolites, IGF-1, and most BTMs were similar. Serum parathyroid hormone (PTH) and the resorption marker, tartrate-resistant acid phosphatase (TRAP5b), were significantly higher in both groups of subjects than controls and directly associated in all groups. Serum IGF-1 and all BTMs were directly associated in controls, but the association was not significant after controlling for age. There was no relationship between serum IGF-1 and BTMs in subjects. There were few differences between women with fractures and low BMD.
Conclusions
Higher serum TRAP5b and PTH suggest that increased bone turnover, possibly related to subclinical secondary hyperparathyroidism could contribute to the pathogenesis of IOP. The absence of differences between women with fractures and those with very low BMD indicates that this distinction may not be clinically useful to categorize young women with osteoporosis.
doi:10.1007/s00198-011-1560-y
PMCID: PMC3206165  PMID: 21365462
Bone turnover markers; IGF-1; Premenopausal osteoporosis
18.  Baseline bone mineral density and bone turnover in pre-operative hip and knee arthroplasty patients 
Bone & Joint Research  2014;3(1):14-19.
Aims
Osteoporosis and abnormal bone metabolism may prove to be significant factors influencing the outcome of arthroplasty surgery, predisposing to complications of aseptic loosening and peri-prosthetic fracture. We aimed to investigate baseline bone mineral density (BMD) and bone turnover in patients about to undergo arthroplasty of the hip and knee.
Methods
We prospectively measured bone mineral density of the hip and lumbar spine using dual-energy X-ray absorptiometry (DEXA) scans in a cohort of 194 patients awaiting hip or knee arthroplasty. We also assessed bone turnover using urinary deoxypyridinoline (DPD), a type I collagen crosslink, normalised to creatinine.
Results
The prevalence of DEXA proven hip osteoporosis (T-score ≤ -2.5) among hip and knee arthroplasty patients was found to be low at 2.8% (4 of 143). Spinal osteoporosis prevalence was higher at 6.9% (12 of 175). Sixty patients (42% (60 of 143)) had osteopenia or osteoporosis of either the hip or spine. The mean T-score for the hip was -0.34 (sd 1.23), which is within normal limits, and the mean hip Z-score was positive at 0.87 (sd 1.17), signifying higher-than-average BMD for age. The median urinary DPD/creatinine was raised in both female patients at 8.1 (interquartile range (IQR) 6.6 to 9.9) and male patients at 6.2 (IQR 4.8 to 7.5).
Conclusions
Our results indicate hip and knee arthroplasty patients have higher BMD of the hip and spine compared with an age-matched general population, and a lower prevalence of osteoporosis. However, untreated osteoporotic patients are undergoing arthroplasty, which may negatively impact their outcome. Raised DPD levels suggest abnormal bone turnover, requiring further investigation.
Cite this article: Bone Joint Res 2014;3:14–19.
doi:10.1302/2046-3758.31.2000218
PMCID: PMC3904490  PMID: 24443424
Arthroplasty; Hip; Knee; Bone mineral density; BMD
19.  The effect of long-term glucocorticoids on bone metabolism in systemic lupus erythematosus patients: the prevalence of its anti-inflammatory action upon bone resorption. 
The study was made to evaluate bone turnover in systemic lupus erythematosus (SLE) patients undergoing long-term glucocorticoid therapy. Thirty-eight female patients with established SLE were compared with a control group consisting from 160 age-matched healthy women. Serum concentrations of proinflammatory cytokines: interleukin-1alpha, interleukin-6, tumor necrosis factor-alpha, granulocyte-macrophage colony stimulating factor (GM-CSF) and some biochemical markers of osteoporosis (osteocalcin, total and bone alkaline phosphatase, procollagen type I carboxyterminal propeptide, carboxyterminal telopeptides of type I collagen--CTx) were measured. Additionally, morning urine excretions of deoxypyridinoline and calcium/creatinin ratios were determined. The forearm densitometry (DXA) was performed in all patients. Bone mineral content (BMC) and bone mineral density (BMD) in the SLE group was not significantly different from the controls, and no relationship was found between the glucocorticoid exposure and the BMC/BMD. However, biochemical markers of bone resorption--CTx and calcium/creatinin ratio--were significantly increased in the patient group. Our results suggest that BMD/BMC is preserved in glucocorticoid-treated SLE patients despite accelerated bone turnover.
PMCID: PMC2582697  PMID: 15369631
20.  Evaluation of bone metabolism and bone mass in patients with type-2 diabetes mellitus. 
The objectives of this study were to determine whether type-2 diabetes was associated with a higher bone mineral density (BMD) in men and women and to evaluate the differences in mineral metabolism between diabetic and normal subjects by using biochemical bone turnover markers. In this study, 52 patients (37 females/15 males) aged 41-64 with type-2 diabetes mellitus and 48 nondiabetic control subjects (34 females/14 males) were evaluated. In men, BMD was significantly higher in diabetics at the forearm (p <0.05), whereas in women tended to be higher at the hip (p=0.002). Serum osteocalcin (p<0.0001), bone alkaline phosphatase (BAP) (p<0.05) and carboxyterminal telopeptide (CTx) (p<0.05) were higher in the control group than in diabetics. In men, serum osteocalcin (p<0.05) and CTx (p<0.005) and, in women, serum osteocalcin (p<0.0001) and BAP (p<0.05) were lower in diabetic subjects. In conclusion, our findings suggest that although bone formation is decreased in type-2 diabetes, diabetic patients are not susceptible to bone resorption. This low bone turnover can slow the rate of bone loss and cause a higher bone density than expected for their age.
PMCID: PMC2569751  PMID: 17052049
21.  Age-related bone turnover markers and osteoporotic risk in native Chinese women 
Background
The rate of bone turnover is closely related to osteoporosis risk. We investigated the correlation between bone turnover markers and BMD at various skeletal sites in healthy native Chinese women, and to study the effect of changes in the levels of bone turnover markers on the risk of osteoporosis.
Methods
A cross-section study of 891 healthy Chinese women aged 20–80 years was conducted. The levels of serum osteocalcin (OC), bone-specific alkaline phosphatase (BAP), serum cross-linked N-terminal telopeptides of type I collagen (sNTX), cross-linked C-terminal telopeptides of type I collagen (sCTX), urinary NTX (uNTX), urinary CTX (uCTX) and total urinary deoxypyridinoline (uDPD) were determined. BMD at the posteroanterior spine and the hip was measured using DXA.
Results
Pearson’s correlation coefficient found significant negative correlation between bone turnover marker and BMD T-score at different skeletal sites (r = −0.08 to −0.52, all P = 0.038–0.000). After adjustments for age and body mass index, the partial correlation coefficients between the OC, BAP, sNTX, sCTX and uCTX, and the T-scores at various skeletal sites were still significant. After adjustment of height and weight, the correlation coefficients between most BTMs and PA lumbar spine BMD were also significant. Multiple linear regression analysis showed that bone turnover markers were negative determinants of T-scores. BAP and OC accounted for 33.1% and 7.8% of the variations in the T-scores of the PA spine, respectively. Serum OC, BAP, uDPD, and sNTX accounted for 0.4–21.9% of the variations in the femoral neck and total hip T-scores. The bone turnover marker levels were grouped as per quartile intervals, and the T-scores, osteoporosis prevalence and risk were found to markedly and increase with increase in bone turnover marker levels.
Conclusions
This study clarified the relationship between bone turnover markers and osteoporosis risk in native Chinese women. Bone turnover marker levels were found to be important determinants of BMD T-scores. Furthermore, osteoporotic risk significantly increased with increase in the levels of bone turnover markers.
doi:10.1186/1472-6823-14-8
PMCID: PMC3974151  PMID: 24447701
Bone turnover markers; BMD T-scores; Osteoporosis; Osteoporotic risk; Native Chinese women
22.  Bone Status in Patients with Epilepsy: Relationship to Markers of Bone Remodeling 
Patients with epilepsy and treated with antiepileptic drugs (AEDs) may develop metabolic bone disease; however, the exact pathogenesis of bone loss with AEDs is still unclear. Included were 75 adults with epilepsy (mean age: 31.90 ± 5.62 years; duration of treatment with AEDs: 10.57 ± 3.55 years) and 40 matched healthy controls. Bone mineral content (BMC) and bone mineral densities (BMD) of the femoral neck and lumbar spine were measured using dual-energy X-ray absorptiometry (DEXA). Blood samples were analyzed for calcium, magnesium, phosphate, alkaline phosphatase (ALP), 25-hydroxy vitamin D (25OHD), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), osteoprotegerin (OPG), and OPG/RANKL ratio (markers of bone remodeling). Compared to controls, patients had lower BMD, BMC, Z-score, and T-score at the femoral neck and lumbar spine (all p < 0.001). Seventy-two percent and 29.33% of patients had osteoporosis of the lumbar spine and femoral neck. Patients had significantly lower serum calcium, 25(OH)D, and OPG and higher ALP, sRANKL levels, and sRANKL/OPG (all p < 0.001). Fifty-two percent of patients had hypocalcemia, 93% had hypovitaminosis D, 31% had high levels of sRANKL, and 49% had low levels of OPG. No differences were identified between DEXA and laboratory results in relation to the type, dose, or serum levels of AEDs. BMD at the femoral neck and lumbar spine were found to be correlated with the duration of illness (p = 0.043; p = 0.010), duration of treatment with AEDs (p < 0.001; p = 0.012), and serum levels of 25(OH)D (p = 0.042; p = 0.010), sRANKLs (p = 0.005; p = 0.01), and OPG (p = 0.006; p = 0.01). In linear regression analysis and after adjusting for gender, age, weight, duration, and number of AEDs, we observed an association between BMD, 25(OH)D (p = 0.04) and sRANKL (p = 0.03) concentrations. We conclude that AEDs may compromise bone health through disturbance of mineral metabolism and acceleration of bone turnover mechanisms.
doi:10.3389/fneur.2014.00142
PMCID: PMC4120678  PMID: 25136330
antiepileptic drugs; bone mineral density; 25OHD; receptor activator of nuclear factor-kappa B ligand; osteoprotegerin
23.  Sex steroids, bone turnover and bone mineral density in pre-, peri-, and postmenopausal women 
To examine 1) the relationships between endogenous androgens and bone mineral density (BMD), 2) the relationships between sex-hormone binding globulin (SHBG) and BMD, and 3) the associations of endogenous androgens and SHBG with biochemical markers of bone turnover, a cross-sectional study was carried out in 88 healthy pre-, peri-, and postmenopausal women aged 35 to 74. Measurements of BMDs at the ultradistal radius and ulna, and the distal radius (using DEXA), estrogens, androgens, deoxypyridinoline (D-Pyr) and intact bone gla protein (I-BGP) were performed. In the multivariate regression models testosterone (T) was positively correlated with BMD at the ultradistal radius and ulna in perimenopausal women, and was positively correlated with BMD at the ultradistal radius and ulna, and the distal radius in postmenopausal women. T was positively associated with I-BGP in premenopausal women (r = 0.65, p < 0.01), and negatively associated with D-Pyr in pre- (r = -0.53, p < 0.05) and postmenopausal women (r = -0.49, p < 0.001). On the other hand, SHBG was negatively correlated with BMD at die ultradistal radius and ulna, and die distal radius in pre- and postmenopausal women in the models. SHBG was positively related to D-Pyr in pre(r = 0.57, p < 0.05) and postmenopausal women (r = 0.41, p < 0.01), and negatively related to I-BGP in postmenopausal women (r = -0.38, p < 0.01). These findings suggest that endogenous androgens may exert positive influences on BMD, and that SHBG may have negative effects on BMD.
doi:10.1007/BF02931702
PMCID: PMC2723360  PMID: 21432491
estrogens; androgens; sex-hormone binding globulin; biochemical marker of bone turnover; bone mineral density
24.  Can bone loss be reversed by antithyroid drug therapy in premenopausal women with Graves' disease? 
Context
Hyperthyroidism can lead to reduced bone mineral density (BMD) and increased fracture risk particularly in postmenopausal women, but the mechanism behind is still unclear.
Objective
Prospective examination of the influence of thyroid hormones and/or thyroid autoantibodies on BMD in premenopause.
Design
We have examined 32 premenopausal women with untreated active Graves' disease from time of diagnosis, during 18 months of antithyroid drug therapy (ATD) and additionally 18 months after discontinuing ATD. Variables of thyroid metabolism, calcium homeostasis and body composition were measured every 3 months. BMD of lumbar spine and femoral neck were measured at baseline, 18 ± 3 and 36 ± 3 months. Data were compared to base line, a sex- and age matched control group and a group of patients with Hashimoto's thyroiditis treated with non-suppressive doses of levothyroxine.
Results
The study showed significantly (p < 0.002) lower BMD in the thyrotoxic state compared to the control group with subsequent significant improvement during 18 ± 3 months of ATD compared to baseline (p < 0.001). However, during the following 18 months after stopping ATD femoral neck BMD decreased again unrelated to age (more than 0.4% per year, p < 0,002). The wellestablished effect of thyrotoxicosis on calcium homeostasis was confirmed. The positive predictor for best BMD was TSH receptor antibodies (TRAb) while free T4 correlated negatively in the thyrotoxic female Graves' patients (p < 0.02 and p < 0.003). In healthy controls and patients with treated Graves' disease both TSH and T4 correlated negatively to the bone mass (BMC) (p < 0.003).
Conclusion
The results indicated a clinically relevant impact of thyroid function on bone modulation also in premenopausal women with Graves' disease, and further indicated the possibility for a direct action of TRAb on bones.
doi:10.1186/1743-7075-7-72
PMCID: PMC2936437  PMID: 20807449
25.  Serum sclerostin in high-activity adult patients with juvenile idiopathic arthritis 
Introduction
Juvenile idiopathic arthritis (JIA) is a disease associated with loss of bone mass, deterioration in bone mass quality and an increased risk of fractures. The objective of this study was to evaluate factors that predict bone mineral density (BMD) alterations in young adult patients with active JIA before and during therapy with tumour necrosis factor α (TNFα) inhibitors.
Methods
Thirty-one patients (twelve males and nineteen females; mean age =25.1 ± 6.1 years) with active JIA (mean Disease Activity Score in 28 joints (DAS28) =6.36 ± 0.64; mean high-sensitivity C-reactive protein (hsCRP) =18.36 ± 16.95 mg/L) were investigated. The control group consisted of 84 healthy individuals matched by sex and age. BMD, bone turnover markers and serum concentrations of soluble receptor activator of nuclear factor κB ligand, osteoprotegerin, dickkopf Wnt signalling pathway inhibitor 1 (Dkk1) and sclerostin were evaluated.
Results
Baseline BMD values in the lumbar spine, proximal femur, femoral neck and distal radius were significantly lower in patients with JIA compared to healthy control participants. Baseline sclerostin serum concentrations were significantly higher in patients with JIA compared to control participants. After 2 years of treatment with TNFα inhibitors, BMD was significantly increased in the lumbar spine. This increase correlated with a drop in DAS28 score. A statistically significant correlation between hsCRP and Dkk1 was found at baseline, as well as during the 2-year follow-up period. A significant reduction in serum sclerostin after 1 year of therapy was predictive of a drop in DAS28 score observed with a 1-year delay after reduction of serum sclerostin.
Conclusion
A significant correlation between the sclerostin serum concentration and the number of tender and swollen joints, but not BMD, supports the hypothesis that chondrocytes and cells of the subchondral bone may contribute to circulating sclerostin in JIA.
doi:10.1186/s13075-014-0460-x
PMCID: PMC4236454  PMID: 25280749

Results 1-25 (1069525)