PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1011366)

Clipboard (0)
None

Related Articles

1.  Estimates of Pandemic Influenza Vaccine Effectiveness in Europe, 2009–2010: Results of Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) Multicentre Case-Control Study 
PLoS Medicine  2011;8(1):e1000388.
Results from a European multicentre case-control study reported by Marta Valenciano and colleagues suggest good protection by the pandemic monovalent H1N1 vaccine against pH1N1 and no effect of the 2009–2010 seasonal influenza vaccine on H1N1.
Background
A multicentre case-control study based on sentinel practitioner surveillance networks from seven European countries was undertaken to estimate the effectiveness of 2009–2010 pandemic and seasonal influenza vaccines against medically attended influenza-like illness (ILI) laboratory-confirmed as pandemic influenza A (H1N1) (pH1N1).
Methods and Findings
Sentinel practitioners swabbed ILI patients using systematic sampling. We included in the study patients meeting the European ILI case definition with onset of symptoms >14 days after the start of national pandemic vaccination campaigns. We compared pH1N1 cases to influenza laboratory-negative controls. A valid vaccination corresponded to >14 days between receiving a dose of vaccine and symptom onset. We estimated pooled vaccine effectiveness (VE) as 1 minus the odds ratio with the study site as a fixed effect. Using logistic regression, we adjusted VE for potential confounding factors (age group, sex, month of onset, chronic diseases and related hospitalizations, smoking history, seasonal influenza vaccinations, practitioner visits in previous year). We conducted a complete case analysis excluding individuals with missing values and a multiple multivariate imputation to estimate missing values. The multivariate imputation (n = 2902) adjusted pandemic VE (PIVE) estimates were 71.9% (95% confidence interval [CI] 45.6–85.5) overall; 78.4% (95% CI 54.4–89.8) in patients <65 years; and 72.9% (95% CI 39.8–87.8) in individuals without chronic disease. The complete case (n = 1,502) adjusted PIVE were 66.0% (95% CI 23.9–84.8), 71.3% (95% CI 29.1–88.4), and 70.2% (95% CI 19.4–89.0), respectively. The adjusted PIVE was 66.0% (95% CI −69.9 to 93.2) if vaccinated 8–14 days before ILI onset. The adjusted 2009–2010 seasonal influenza VE was 9.9% (95% CI −65.2 to 50.9).
Conclusions
Our results suggest good protection of the pandemic monovalent vaccine against medically attended pH1N1 and no effect of the 2009–2010 seasonal influenza vaccine. However, the late availability of the pandemic vaccine and subsequent limited coverage with this vaccine hampered our ability to study vaccine benefits during the outbreak period. Future studies should include estimation of the effectiveness of the new trivalent vaccine in the upcoming 2010–2011 season, when vaccination will occur before the influenza season starts.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Following the World Health Organization's declaration of pandemic phase six in June 2009, manufacturers developed vaccines against pandemic influenza A 2009 (pH1N1). On the basis of the scientific opinion of the European Medicines Agency, the European Commission initially granted marketing authorization to three pandemic vaccines for use in European countries. During the autumn of 2009, most European countries included the 2009–2010 seasonal influenza vaccine and the pandemic vaccine in their influenza vaccination programs.
The Influenza Monitoring Vaccine Effectiveness in Europe network (established to monitor seasonal and pandemic influenza vaccine effectiveness) conducted seven case-control and three cohort studies in seven European countries in 2009–2010 to estimate the effectiveness of the pandemic and seasonal vaccines. Data from the seven pilot case-control studies were pooled to provide overall adjusted estimates of vaccine effectiveness.
Why Was This Study Done?
After seasonal and pandemic vaccines are made available to populations, it is necessary to estimate the effectiveness of the vaccines at the population level during every influenza season. Therefore, this study was conducted in European countries to estimate the pandemic influenza vaccine effectiveness and seasonal influenza vaccine effectiveness against people presenting to their doctor with influenza-like illness who were confirmed (by laboratory tests) to be infected with pH1N1.
What Did the Researchers Do and Find?
The researchers conducted a multicenter case-control study on the basis of practitioner surveillance networks from seven countries—France, Hungary, Ireland, Italy, Romania, Portugal, and Spain. Patients consulting a participating practitioner for influenza-like illness had a nasal or throat swab taken within 8 days of symptom onset. Cases were swabbed patients who tested positive for pH1N1. Patients presenting with influenza-like illness whose swab tested negative for any influenza virus were controls.
Individuals were considered vaccinated if they had received a dose of the vaccine more than 14 days before the date of onset of influenza-like illness and unvaccinated if they were not vaccinated at all, or if the vaccine was given less than 15 days before the onset of symptoms. The researchers analyzed pandemic influenza vaccination effectiveness in those vaccinated less than 8 days, those vaccinated between and including 8 and 14 days, and those vaccinated more than 14 days before onset of symptoms compared to those who had never been vaccinated.
The researchers used modeling (taking account of all potential confounding factors) to estimate adjusted vaccine effectiveness and stratified the adjusted pandemic influenza vaccine effectiveness and the adjusted seasonal influenza vaccine effectiveness in three age groups (<15, 15–64, and ≥65 years of age).
The adjusted results suggest that the 2009–2010 seasonal influenza vaccine did not protect against pH1N1 illness. However, one dose of the pandemic vaccines used in the participating countries conferred good protection (65.5%–100% according to various stratifications performed) against pH1N1 in people who attended their practitioner with influenza-like illness, especially in people aged <65 years and in those without any chronic disease. Furthermore, good pandemic influenza vaccine effectiveness was observed as early as 8 days after vaccination.
What Do These Findings Mean?
The results of this study provide early estimates of the pandemic influenza vaccine effectiveness suggesting that the monovalent pandemic vaccines have been effective. The findings also give an indication of the vaccine effectiveness for the Influenza A (H1N1) 2009 strain included in the 2010–2011 seasonal vaccines, although specific vaccine effectiveness studies will have to be conducted to verify if similar good effectiveness are observed with 2010–2011 trivalent vaccines. However, the results of this study should be interpreted with caution because of limitations in the pandemic context (late timing of the studies, low incidence, low vaccine coverage leading to imprecise estimates) and potential biases due the study design, confounding factors, and missing values. The researchers recommend that in future season studies, the sample size per country should be enlarged in order to allow for precise pooled and stratified analyses.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000388.
The World Health Organization has information on H1N1 vaccination
The US Centers for Disease Control and Prevention provides a fact sheet on the 2009 H1N1 influenza virus
The US Department of Health and Human services has a comprehensive website on flu
The European Centre for Disease Prevention and Control provides information on 2009 H1N1 pandemic
The European Centre for Disease Prevention and Control presents a summary of the 2009 H1N1 pandemic in Europe and elsewhere
doi:10.1371/journal.pmed.1000388
PMCID: PMC3019108  PMID: 21379316
2.  Association between the 2008–09 Seasonal Influenza Vaccine and Pandemic H1N1 Illness during Spring–Summer 2009: Four Observational Studies from Canada 
PLoS Medicine  2010;7(4):e1000258.
In three case-control studies and a household transmission cohort, Danuta Skowronski and colleagues find an association between prior seasonal flu vaccination and increased risk of 2009 pandemic H1N1 flu.
Background
In late spring 2009, concern was raised in Canada that prior vaccination with the 2008–09 trivalent inactivated influenza vaccine (TIV) was associated with increased risk of pandemic influenza A (H1N1) (pH1N1) illness. Several epidemiologic investigations were conducted through the summer to assess this putative association.
Methods and Findings
Studies included: (1) test-negative case-control design based on Canada's sentinel vaccine effectiveness monitoring system in British Columbia, Alberta, Ontario, and Quebec; (2) conventional case-control design using population controls in Quebec; (3) test-negative case-control design in Ontario; and (4) prospective household transmission (cohort) study in Quebec. Logistic regression was used to estimate odds ratios for TIV effect on community- or hospital-based laboratory-confirmed seasonal or pH1N1 influenza cases compared to controls with restriction, stratification, and adjustment for covariates including combinations of age, sex, comorbidity, timeliness of medical visit, prior physician visits, and/or health care worker (HCW) status. For the prospective study risk ratios were computed. Based on the sentinel study of 672 cases and 857 controls, 2008–09 TIV was associated with statistically significant protection against seasonal influenza (odds ratio 0.44, 95% CI 0.33–0.59). In contrast, estimates from the sentinel and three other observational studies, involving a total of 1,226 laboratory-confirmed pH1N1 cases and 1,505 controls, indicated that prior receipt of 2008–09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring–summer 2009, with estimated risk or odds ratios ranging from 1.4 to 2.5. Risk of pH1N1 hospitalization was not further increased among vaccinated people when comparing hospitalized to community cases.
Conclusions
Prior receipt of 2008–09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring–summer 2009 in Canada. The occurrence of bias (selection, information) or confounding cannot be ruled out. Further experimental and epidemiological assessment is warranted. Possible biological mechanisms and immunoepidemiologic implications are considered.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every winter, millions of people catch influenza—a viral infection of the airways—and hundreds of thousands of people die as a result. These seasonal epidemics occur because small but frequent changes in the influenza virus mean that an immune response produced one year through infection or vaccination provides only partial protection against influenza the next year. Annual vaccination with killed influenza viruses of the major circulating strains can greatly reduce a person's risk of catching influenza. Consequently, many countries run seasonal influenza vaccination programs. In most of Canada, vaccination with a mixture of three inactivated viruses (a trivalent inactivated vaccine or TIV) is provided free to children aged 6–23 months, to elderly people, to people with long-term conditions that increase their risk of influenza-related complications, and those who provide care for them; in Ontario, free vaccination is offered to everyone older than 6 months.
In addition, influenza viruses occasionally emerge that are very different and to which human populations have virtually no immunity. These viruses can start global epidemics (pandemics) that can kill millions of people. Experts have been warning for some time that an influenza pandemic is long overdue and, in March 2009, the first cases of influenza caused by a new virus called pandemic A/H1N1 2009 (pH1N1; swine flu) occurred in Mexico. The virus spread rapidly and on 11 June 2009, the World Health Organization declared that a global pandemic of pH1N1 influenza was underway. By the end of February 2010, more than 16,000 people around the world had died from pH1N1.
Why Was This Study Done?
During an investigation of a school outbreak of pH1N1 in the late spring 2009 in Canada, investigators noted that people with illness characterized by fever and coughing had been vaccinated against seasonal influenza more often than individuals without such illness. To assess whether this association between prior vaccination with seasonal 2008–09 TIV and subsequent pH1N1 illness was evident in other settings, researchers in Canada therefore conducted additional studies using different methods. In this paper, the researchers report the results of four additional studies conducted in Canada during the summer of 2009 to assess this possible association.
What Did the Researchers Do and Find?
The researchers conducted four epidemiologic studies. Epidemiology is the study of the causes, distribution, and control of diseases in populations.
Three of the four studies were case-control studies in which the researchers assessed the frequency of prior vaccination with the 2008–09 TIV in people with pH1N1 influenza compared to the frequency among healthy members of the general population or among individuals who had an influenza-like illness but no sign of infection with an influenza virus. The researchers also did a household transmission study in which they collected information about vaccination with TIV among the additional cases of influenza that were identified in 47 households in which a case of laboratory-confirmed pH1N1 influenza had occurred. The first of the case-control studies, which was based on Canada's vaccine effectiveness monitoring system, showed that, as expected, the 2008–09 TIV provided protection against seasonal influenza. However, estimates from all four studies (which included about 1,200 laboratory-confirmed pH1N1 cases and 1,500 controls) showed that prior recipients of the 2008–09 TIV had approximately 1.4–2.5 times increased chances of developing pH1N1 illness that needed medical attention during the spring–summer of 2009 compared to people who had not received the TIV. Prior seasonal vaccination was not associated with an increase in the severity of pH1N1 illness, however. That is, it did not increase the risk of being hospitalized among those with pH1N1 illness.
What Do These Findings Mean?
Because all the investigations in this study are “observational,” the people who had been vaccinated might share another unknown characteristic that is actually responsible for increasing their risk of developing pH1N1 illness (“confounding”). Furthermore, the results reported in this study might have arisen by chance, although the consistency of results across the studies makes this unlikely. Thus, the finding of an association between prior receipt of 2008–09 TIV and an increased risk of pH1N1 illness is not conclusive and needs to be investigated further, particularly since some other observational studies conducted in other countries have reported that seasonal vaccination had no influence or may have been associated with reduced chances of pH1N1 illness. If the findings in the current study are real, however, they raise important questions about the biological interactions between seasonal and pandemic influenza strains and vaccines, and about the best way to prevent and control both types of influenza in future.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/ 10.1371/journal.pmed.1000258.
This article is further discussed in a PLoS Medicine Perspective by Cécile Viboud and Lone Simonsen
FightFlu.ca, a Canadian government Web site, provides access to information on pH1N1 influenza
The US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including specific information on H1N1 influenza
Flu.gov, a US government website, provides access to information on H1N1, avian and pandemic influenza
The World Health Organization provides information on seasonal influenza and has detailed information on pH1N1 influenza (in several languages)
The UK Health Protection Agency provides information on pandemic influenza and on pH1N1 influenza
doi:10.1371/journal.pmed.1000258
PMCID: PMC2850386  PMID: 20386731
3.  A Comparative Analysis of Influenza Vaccination Programs 
PLoS Medicine  2006;3(10):e387.
Background
The threat of avian influenza and the 2004–2005 influenza vaccine supply shortage in the United States have sparked a debate about optimal vaccination strategies to reduce the burden of morbidity and mortality caused by the influenza virus.
Methods and Findings
We present a comparative analysis of two classes of suggested vaccination strategies: mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations. Applying the methods of contact network epidemiology to a model of disease transmission in a large urban population, we assume that vaccine supplies are limited and then evaluate the efficacy of these strategies across a wide range of viral transmission rates and for two different age-specific mortality distributions.
We find that the optimal strategy depends critically on the viral transmission level (reproductive rate) of the virus: morbidity-based strategies outperform mortality-based strategies for moderately transmissible strains, while the reverse is true for highly transmissible strains. These results hold for a range of mortality rates reported for prior influenza epidemics and pandemics. Furthermore, we show that vaccination delays and multiple introductions of disease into the community have a more detrimental impact on morbidity-based strategies than mortality-based strategies.
Conclusions
If public health officials have reasonable estimates of the viral transmission rate and the frequency of new introductions into the community prior to an outbreak, then these methods can guide the design of optimal vaccination priorities. When such information is unreliable or not available, as is often the case, this study recommends mortality-based vaccination priorities.
A comparative analysis of two classes of suggested vaccination strategies, mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations.
Editors' Summary
Background.
Influenza—a viral infection of the nose, throat, and airways that is transmitted in airborne droplets released by coughing or sneezing—is a serious public health threat. Most people recover quickly from influenza, but some individuals, especially infants, old people, and individuals with chronic health problems, can develop pneumonia and die. In the US, seasonal outbreaks (epidemics) of flu cause an estimated 36,000 excess deaths annually. And now there are fears that avian influenza might start a human pandemic—a global epidemic that could kill millions. Seasonal outbreaks of influenza occur because flu viruses continually change the viral proteins (antigens) to which the immune system responds. “Antigenic drift”—small changes in these proteins—means that an immune system response that combats flu one year may not provide complete protection the next winter. “Antigenic shift”—large antigen changes—can cause pandemics because communities have no immunity to the changed virus. Annual vaccination with vaccines based on the currently circulating viruses controls seasonal flu epidemics; to control a pandemic, vaccines based on the antigenically altered virus would have to be quickly developed.
Why Was This Study Done?
Most countries target vaccination efforts towards the people most at risk of dying from influenza, and to health-care workers who are likely come into contact with flu patients. But is this the best way to reduce the burden of illness (morbidity) and death (mortality) caused by influenza, particularly at the start of a pandemic, when vaccine would be limited? Old people and infants are much less likely to catch and spread influenza than school children, students, and employed adults, so could vaccination of these sections of the population—instead of those most at risk of death—be the best way to contain influenza outbreaks? In this study, the researchers used an analytical method called “contact network epidemiology” to compare two types of vaccination strategies: the currently favored mortality-based strategy, which targets high-risk individuals, and a morbidity-based strategy, which targets those segments of the community in which most influenza cases occur.
What Did the Researchers Do and Find?
Most models of disease transmission assume that each member of a community is equally likely to infect every other member. But a baby is unlikely to transmit flu to, for example, an unrelated, housebound elderly person. Contact network epidemiology takes the likely relationships between people into account when modeling disease transmission. Using information from Vancouver, British Columbia, Canada, on household size, age distribution, and occupations, and other factors such as school sizes, the researchers built a model population of a quarter of a million interconnected people. They then investigated how different vaccination strategies controlled the spread of influenza in this population. The optimal strategy depended on the level of viral transmissibility—the likelihood that an infectious person transmits influenza to a susceptible individual with whom he or she has contact. For moderately transmissible flu viruses, a morbidity-based vaccination strategy, in which the people most likely to catch the flu are vaccinated, was more effective at containing seasonal and pandemic outbreaks than a mortality-based strategy, in which the people most likely to die if they caught the flu are vaccinated. For highly transmissible strains, this situation was reversed. The level of transmissibility at which this reversal occurred depended on several factors, including whether vaccination was delayed and how many times influenza was introduced into the community.
What Do These Findings Mean?
The researchers tested their models by checking that they could replicate real influenza epidemics and pandemics, but, as with all mathematical models, they included many assumptions about influenza in their calculations, which may affect their results. Also, because the contact network used data from Vancouver, their results might not be applicable to other cities, or to nonurban areas. Nevertheless, their findings have important public health implications. When there are reasonable estimates of the viral transmission rate, and it is known how often influenza is being introduced into a community, contact network models could help public health officials choose between morbidity- and mortality-based vaccination strategies. When the viral transmission rate is unreliable or unavailable (for example, at the start of a pandemic), the best policy would be the currently preferred strategy of mortality-based vaccination. More generally, the use of contact network models should improve estimates of how infectious diseases spread through populations and indicate the best ways to control human epidemics and pandemics.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030387.
US Centers for Disease Control and Prevention information about influenza for patients and professionals, including key facts on vaccination
US National Institute of Allergy and Infectious Diseases feature on seasonal, avian, and pandemic influenza
World Health Organization fact sheet on influenza, with links to information on vaccination
UK Health Protection Agency information on seasonal, avian, and pandemic influenza
MedlinePlus entry on influenza
doi:10.1371/journal.pmed.0030387
PMCID: PMC1584413  PMID: 17020406
4.  Optimizing the Dose of Pre-Pandemic Influenza Vaccines to Reduce the Infection Attack Rate 
PLoS Medicine  2007;4(6):e218.
Background
The recent spread of avian influenza in wild birds and poultry may be a precursor to the emergence of a 1918-like human pandemic. Therefore, stockpiles of human pre-pandemic vaccine (targeted at avian strains) are being considered. For many countries, the principal constraint for these vaccine stockpiles will be the total mass of antigen maintained. We tested the hypothesis that lower individual doses (i.e., less than the recommended dose for maximum protection) may provide substantial extra community-level benefits because they would permit wider vaccine coverage for a given total size of antigen stockpile.
Methods and Findings
We used a mathematical model to predict infection attack rates under different policies. The model incorporated both an individual's response to vaccination at different doses and the process of person-to-person transmission of pandemic influenza. We found that substantial reductions in the attack rate are likely if vaccines are given to more people at lower doses. These results are applicable to all three vaccine candidates for which data are available. As a guide to the magnitude of the effect, we simulated epidemics based on historical studies of immunogenicity. For example, for one of the vaccines for which data are available, the attack rate would drop from 67.6% to 58.7% if 160 out of the total US population of 300 million were given an optimal dose rather than 20 out of 300 million given the maximally protective dose (as promulgated in the US National Pandemic Preparedness Plan). Our results are conservative with respect to a number of alternative assumptions about the precise nature of vaccine protection. We also considered a model variant that includes a single high-risk subgroup representing children. For smaller stockpile sizes that allow vaccine to be offered only to the high-risk group at the optimal dose, the predicted benefits of using the homogenous model formed a lower bound in the presence of a risk group, even when the high-risk group was twice as infective and twice as susceptible.
Conclusions
In addition to individual-level protection (i.e., vaccine efficacy), the population-level implications of pre-pandemic vaccine programs should be considered when deciding on stockpile size and dose. Our results suggest that a lower vaccine dose may be justified in order to increase population coverage, thereby reducing the infection attack rate overall.
Steven Riley and colleagues examine the potential benefits of "stretching" a limited supply of vaccine and suggest that substantial reductions in the attack rate are possible if vaccines are given to more people at lower doses.
Editors' Summary
Background.
Every winter, millions of people catch influenza, a viral infection of the nose, throat, and airways. Most recover quickly, but the disease can be deadly. In the US, seasonal influenza outbreaks (epidemics) cause 36,000 excess deaths annually. And now there are fears that an avian (bird) influenza virus might trigger a human influenza pandemic—a global epidemic that could kill millions. Seasonal epidemics occur because flu viruses continually make small changes to their hemagglutinin and neuraminidase molecules, the viral proteins (antigens) that the immune system recognizes. Because of this “antigenic drift,” an immune system response (which can be induced by catching flu or by vaccination with disabled circulating influenza strains) that combats flu one year may provide only partial protection the next year. “Antigenic shift” (large changes in flu antigens) can cause pandemics because communities have no immunity to the changed virus.
Why Was This Study Done?
Although avian influenza virus, which contains a hemagglutinin type that differs from currently circulating human flu viruses, has caused a few cases of human influenza, it has not started a human pandemic yet because it cannot move easily between people. If it acquires this property, which will probably involve further small antigenic changes, it could kill millions of people before scientists can develop an effective vaccine against it. To provide some interim protection, many countries are preparing stockpiles of “pre-pandemic” vaccines targeted against the avian virus. The US, for example, plans to store enough pre-pandemic vaccine to provide maximum protection to 20 million people (including key health workers) out of its population of 300 million. But, given a limited stockpile of pre-pandemic vaccine, might giving more people a lower dose of vaccine, which might reduce the number of people susceptible to infection and induce herd immunity by preventing efficient transmission of the flu virus, be a better way to limit the spread of pandemic influenza? In this study, the researchers have used mathematical modeling to investigate this question.
What Did the Researchers Do and Find?
To predict the infection rates associated with different vaccination policies, the researchers developed a mathematical model that incorporates data on human immune responses induced with three experimental vaccines against the avian virus and historical data on the person–person transmission of previous pandemic influenza viruses. For all the vaccines, the model predicts that giving more people a low dose of the vaccine would limit the spread of influenza better than giving fewer people the high dose needed for full individual protection. For example, the researchers estimate that dividing the planned US stockpile of one experimental vaccine equally between 160 million people instead of giving it at the fully protective dose to 20 million people might avert about 27 million influenza cases in less than year. However, giving the maximally protective dose to the 9 million US health-care workers and using the remaining vaccine at a lower dose to optimize protection within the general population might avert only 14 million infections.
What Do These Findings Mean?
These findings suggest that, given a limited stockpile of pre-pandemic vaccine, increasing the population coverage of vaccination by using low doses of vaccine might reduce the overall influenza infection rate more effectively than vaccinating fewer people with fully protective doses of vaccine. However, because the researchers' model includes many assumptions, it can only give an indication of how different strategies might perform, not firm numbers for how many influenza cases each strategy is likely to avert. Before public-health officials use this or a similar model to help them decide the best way to use pre-pandemic vaccines to control a human influenza pandemic, they will need more information about the efficacy of these vaccines and about transmission rates of currently circulating viruses. They will also need to know whether pre-pandemic vaccines actually provide good protection against the pandemic virus, as assumed in this study, before they can recommend mass immunization with low doses of pre-pandemic vaccine, selective vaccination with high doses, or a mixed strategy.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040218.
US Centers for Disease Control and Prevention provide information on influenza and influenza vaccination for patients and health professionals (in English, Spanish, Filipino, Chinese, and Vietnamese)
The World Health Organization has a fact sheet on influenza and on the global response to avian influenza (in English, Spanish, French, Russian, Arabic, and Chinese)
The MedlinePlus online encyclopedia devotes a page to flu (in English and Spanish)
The UK Health Protection Agency information on avian, pandemic, and seasonal influenza
The US National Institute of Allergy and Infectious Diseases has a comprehensive feature called “focus on the flu”
doi:10.1371/journal.pmed.0040218
PMCID: PMC1892041  PMID: 17579511
5.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
6.  Barriers to pandemic influenza vaccination and uptake of seasonal influenza vaccine in the post-pandemic season in Germany 
BMC Public Health  2012;12:938.
Background
In Germany, annual vaccination against seasonal influenza is recommended for certain target groups (e.g. persons aged ≥60 years, chronically ill persons, healthcare workers (HCW)). In season 2009/10, vaccination against pandemic influenza A(H1N1)pdm09, which was controversially discussed in the public, was recommended for the whole population. The objectives of this study were to assess vaccination coverage for seasonal (seasons 2008/09-2010/11) and pandemic influenza (season 2009/10), to identify predictors of and barriers to pandemic vaccine uptake and whether the controversial discussions on pandemic vaccination has had a negative impact on seasonal influenza vaccine uptake in Germany.
Methods
We analysed data from the ‘German Health Update’ (GEDA10) telephone survey (n=22,050) and a smaller GEDA10-follow-up survey (n=2,493), which were both representative of the general population aged ≥18 years living in Germany.
Results
Overall only 8.8% of the adult population in Germany received a vaccination against pandemic influenza. High socioeconomic status, having received a seasonal influenza shot in the previous season, and belonging to a target group for seasonal influenza vaccination were independently associated with the uptake of pandemic vaccines. The main reasons for not receiving a pandemic vaccination were ‘fear of side effects’ and the opinion that ‘vaccination was not necessary’. Seasonal influenza vaccine uptake in the pre-pandemic season 2008/09 was 52.8% among persons aged ≥60 years; 30.5% among HCW, and 43.3% among chronically ill persons. A decrease in vaccination coverage was observed across all target groups in the first post-pandemic season 2010/11 (50.6%, 25.8%, and 41.0% vaccination coverage, respectively).
Conclusions
Seasonal influenza vaccination coverage in Germany remains in all target groups below 75%, which is a declared goal of the European Union. Our results suggest that controversial public discussions about safety and the benefits of pandemic influenza vaccination may have contributed to both a very low uptake of pandemic vaccines and a decreased uptake of seasonal influenza vaccines in the first post-pandemic season. In the upcoming years, the uptake of seasonal influenza vaccines should be carefully monitored in all target groups to identify if this trend continues and to guide public health authorities in developing more effective vaccination and communication strategies for seasonal influenza vaccination.
doi:10.1186/1471-2458-12-938
PMCID: PMC3527143  PMID: 23113995
Vaccination; Influenza; Coverage; Pandemic; Germany
7.  Global Mortality Estimates for the 2009 Influenza Pandemic from the GLaMOR Project: A Modeling Study 
PLoS Medicine  2013;10(11):e1001558.
Lone Simonsen and colleagues use a two-stage statistical modeling approach to estimate the global mortality burden of the 2009 influenza pandemic from mortality data obtained from multiple countries.
Please see later in the article for the Editors' Summary
Background
Assessing the mortality impact of the 2009 influenza A H1N1 virus (H1N1pdm09) is essential for optimizing public health responses to future pandemics. The World Health Organization reported 18,631 laboratory-confirmed pandemic deaths, but the total pandemic mortality burden was substantially higher. We estimated the 2009 pandemic mortality burden through statistical modeling of mortality data from multiple countries.
Methods and Findings
We obtained weekly virology and underlying cause-of-death mortality time series for 2005–2009 for 20 countries covering ∼35% of the world population. We applied a multivariate linear regression model to estimate pandemic respiratory mortality in each collaborating country. We then used these results plus ten country indicators in a multiple imputation model to project the mortality burden in all world countries. Between 123,000 and 203,000 pandemic respiratory deaths were estimated globally for the last 9 mo of 2009. The majority (62%–85%) were attributed to persons under 65 y of age. We observed a striking regional heterogeneity, with almost 20-fold higher mortality in some countries in the Americas than in Europe. The model attributed 148,000–249,000 respiratory deaths to influenza in an average pre-pandemic season, with only 19% in persons <65 y. Limitations include lack of representation of low-income countries among single-country estimates and an inability to study subsequent pandemic waves (2010–2012).
Conclusions
We estimate that 2009 global pandemic respiratory mortality was ∼10-fold higher than the World Health Organization's laboratory-confirmed mortality count. Although the pandemic mortality estimate was similar in magnitude to that of seasonal influenza, a marked shift toward mortality among persons <65 y of age occurred, so that many more life-years were lost. The burden varied greatly among countries, corroborating early reports of far greater pandemic severity in the Americas than in Australia, New Zealand, and Europe. A collaborative network to collect and analyze mortality and hospitalization surveillance data is needed to rapidly establish the severity of future pandemics.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every winter, millions of people catch influenza—a viral infection of the airways—and hundreds of thousands of people (mainly elderly individuals) die as a result. These seasonal epidemics occur because small but frequent changes in the influenza virus mean that the immune response produced by infection with one year's virus provides only partial protection against the next year's virus. Influenza viruses also occasionally emerge that are very different. Human populations have virtually no immunity to these new viruses, which can start global epidemics (pandemics) that kill millions of people. The most recent influenza pandemic, which was first recognized in Mexico in March 2009, was caused by the 2009 influenza A H1N1 pandemic (H1N1pdm09) virus. This virus spread rapidly, and on 11 June 2009, the World Health Organization (WHO) declared that an influenza pandemic was underway. H1N1pdm09 caused a mild disease in most people it infected, but by the time WHO announced that the pandemic was over (10 August 2010), there had been 18,632 laboratory-confirmed deaths from H1N1pdm09.
Why Was This Study Done?
The modest number of laboratory-confirmed H1N1pdm09 deaths has caused commentators to wonder whether the public health response to H1N1pdm09 was excessive. However, as is the case with all influenza epidemics, the true mortality (death) burden from H1N1pdm09 is substantially higher than these figures indicate because only a minority of influenza-related deaths are definitively diagnosed by being confirmed in laboratory. Many influenza-related deaths result from secondary bacterial infections or from exacerbation of preexisting chronic conditions, and are not recorded as related to influenza infection. A more complete assessment of the impact of H1N1pdm09 on mortality is essential for the optimization of public health responses to future pandemics. In this modeling study (the Global Pandemic Mortality [GLaMOR] project), researchers use a two-stage statistical modeling approach to estimate the global mortality burden of the 2009 influenza pandemic from mortality data obtained from multiple countries.
What Did the Researchers Do and Find?
The researchers obtained weekly virology data from the World Health Organization FluNet database and national influenza centers to identify influenza active periods, and obtained weekly national underlying cause-of-death time series for 2005–2009 from collaborators in more than 20 countries (35% of the world's population). They used a multivariate linear regression model to measure the numbers and rates of pandemic influenza respiratory deaths in each of these countries. Then, in the second stage of their analysis, they used a multiple imputation model that took into account country-specific geographical, economic, and health indicators to project the single-country estimates to all world countries. The researchers estimated that between 123,000 and 203,000 pandemic influenza respiratory deaths occurred globally from 1 April through 31 December 2009. Most of these deaths (62%–85%) occurred in people younger than 65 years old. There was a striking regional heterogeneity in deaths, with up to 20-fold higher mortality in Central and South American countries than in European countries. Finally, the model attributed 148,000–249,000 respiratory deaths to influenza in an average pre-pandemic season. Notably, only 19% of these deaths occurred in people younger than 65 years old.
What Do These Findings Mean?
These findings suggest that respiratory mortality from the 2009 influenza pandemic was about 10-fold higher than laboratory-confirmed mortality. The true total mortality burden is likely to be even higher because deaths that occurred late in the winter of 2009–2010 and in later pandemic waves were missed in this analysis, and only pandemic influenza deaths that were recorded as respiratory deaths were included. The lack of single-country estimates from low-income countries may also limit the accuracy of these findings. Importantly, although the researchers' estimates of mortality from H1N1pdm09 and from seasonal influenza were of similar magnitude, the shift towards mortality among younger people means that more life-years were lost during the 2009 influenza pandemic than during an average pre-pandemic influenza season. Although the methods developed by the GLaMOR project can be used to make robust and comparable mortality estimates in future influenza pandemics, the lack of timeliness of such estimates needs to be remedied. One potential remedy, suggest the researchers, would be to establish a collaborative network that analyzes timely hospitalization and/or mortality data provided by sentinel countries. Such a network should be able to provide the rapid and reliable data about the severity of pandemic threats that is needed to guide public health policy decisions.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001558.
The US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including archived information on H1N1pdm09
Flu.gov, a US government website, provides access to information on seasonal and pandemic influenza H1N1pdm09
The World Health Organization provides information on influenza and on the global response to H1N1pdm09, including a publication on the evolution of H1N1pdm09 (some information in several languages). Information on FluNet, a global tool for influenza surveillance, is also available
Public Health England provides information on pandemic influenza and archived information on H1N1pdm09
More information for patients about H1N1pdm09 is available through Choices, an information resource provided by the UK National Health Service
More information about the GLaMOR project is available
doi:10.1371/journal.pmed.1001558
PMCID: PMC3841239  PMID: 24302890
8.  Assessing Optimal Target Populations for Influenza Vaccination Programmes: An Evidence Synthesis and Modelling Study 
PLoS Medicine  2013;10(10):e1001527.
Marc Baguelin and colleagues use virological, clinical, epidemiological, and behavioral data to estimate how policies for influenza vaccination programs may be optimized in England and Wales.
Please see later in the article for the Editors' Summary
Background
Influenza vaccine policies that maximise health benefit through efficient use of limited resources are needed. Generally, influenza vaccination programmes have targeted individuals 65 y and over and those at risk, according to World Health Organization recommendations. We developed methods to synthesise the multiplicity of surveillance datasets in order to evaluate how changing target populations in the seasonal vaccination programme would affect infection rate and mortality.
Methods and Findings
Using a contemporary evidence-synthesis approach, we use virological, clinical, epidemiological, and behavioural data to develop an age- and risk-stratified transmission model that reproduces the strain-specific behaviour of influenza over 14 seasons in England and Wales, having accounted for the vaccination uptake over this period. We estimate the reduction in infections and deaths achieved by the historical programme compared with no vaccination, and the reduction had different policies been in place over the period. We find that the current programme has averted 0.39 (95% credible interval 0.34–0.45) infections per dose of vaccine and 1.74 (1.16–3.02) deaths per 1,000 doses. Targeting transmitters by extending the current programme to 5–16-y-old children would increase the efficiency of the total programme, resulting in an overall reduction of 0.70 (0.52–0.81) infections per dose and 1.95 (1.28–3.39) deaths per 1,000 doses. In comparison, choosing the next group most at risk (50–64-y-olds) would prevent only 0.43 (0.35–0.52) infections per dose and 1.77 (1.15–3.14) deaths per 1,000 doses.
Conclusions
This study proposes a framework to integrate influenza surveillance data into transmission models. Application to data from England and Wales confirms the role of children as key infection spreaders. The most efficient use of vaccine to reduce overall influenza morbidity and mortality is thus to target children in addition to older adults.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every winter, millions of people catch influenza, a viral infection of the airways. Most infected individuals recover quickly, but seasonal influenza outbreaks (epidemics) kill about half a million people annually. In countries with advanced health systems, these deaths occur mainly among elderly people and among individuals with long-term illnesses such as asthma and heart disease that increase the risk of complications occurring after influenza virus infection. Epidemics of influenza occur because small but frequent changes in the influenza virus mean that an immune response produced one year through infection provides only partial protection against influenza the following year. Annual immunization with a vaccine that contains killed influenza viruses of the major circulating strains can greatly reduce a person's risk of catching influenza by preparing the immune system to respond quickly when challenged by a live influenza virus. Consequently, many countries run seasonal influenza vaccination programs that, in line with World Health Organization recommendations, target individuals 65 years old and older and people in high-risk groups.
Why Was This Study Done?
Is this approach the best use of available resources? Might, for example, vaccination of children—the main transmitters of influenza—provide more benefit to the whole population than vaccination of elderly people? Vaccination of children would not directly prevent as many influenza-related deaths as vaccination of elderly people, but it might indirectly prevent deaths in elderly adults by inducing herd immunity—vaccination of a large part of a population can protect unvaccinated members of the population by reducing the chances of an infection spreading. Policy makers need to know whether a change to an influenza vaccination program is likely to provide additional population benefits before altering the program. In this evidence synthesis and modeling study, the researchers combine (synthesize) longitudinal influenza surveillance datasets (data collected over time) from England and Wales, develop a mathematical model for influenza transmission based on these data using a Bayesian statistical approach, and use the model to evaluate the impact on influenza infections and deaths of changes to the seasonal influenza vaccination program in England and Wales.
What Did the Researchers Do and Find?
The researchers developed an influenza transmission model using clinical data on influenza-like illness consultations collected in a primary care surveillance scheme for each week of 14 influenza seasons in England and Wales, virological information on respiratory viruses detected in a subset of patients presenting with clinically suspected influenza, and data on vaccination coverage in the whole population (epidemiological data). They also incorporated data on social contacts (behavioral data) and on immunity to influenza viruses in the population (seroepidemiological data) into their model. To estimate the impact of potential changes to the current vaccination strategy in England and Wales, the researchers used their model, which replicated the patterns of disease observed in the surveillance data, to run simulated epidemics for each influenza season and for three strains of influenza virus under various vaccination scenarios. Compared to no vaccination, the current program (vaccination of people 65 years old and older and people in high-risk groups) averted 0.39 infections per dose of vaccine and 1.74 deaths per 1,000 doses. Notably, the model predicted that extension of the program to target 5–16-year-old children would increase the efficiency of the program and would avert 0.70 infections per dose and 1.95 deaths per 1,000 doses.
What Do These Findings Mean?
The finding that the transmission model developed by the researchers closely fit the available surveillance data suggests that the model should be able to predict what would have happened in England and Wales over the study period if an alternative vaccination regimen had been in place. The accuracy of such predictions may be limited, however, because the vaccination model is based on a series of simplifying assumptions. Importantly, given that influenza vaccination for children is being rolled out in England and Wales from September 2013, the model confirms that children are key spreaders of influenza and suggests that a vaccination program targeting children will reduce influenza infections and potentially influenza deaths in the whole population. More generally, the findings of this study support wider adoption of national vaccination strategies designed to block influenza transmission and to target those individuals most at risk from the complications of influenza infection.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371.journal.pmed.1001527.
The UK National Health Service Choices website provides information for patients about seasonal influenza and about vaccination; Public Health England (formerly the Health Protection Agency) provides information on influenza surveillance in the UK, including information about the primary care surveillance database used in this study
The World Health Organization provides information on seasonal influenza (in several languages)
The European Influenzanet is a system to monitor the activity of influenza-like illness with the aid of volunteers via the Internet
The US Centers for Disease Control and Prevention also provides information for patients and health professionals on all aspects of seasonal influenza, including information about vaccination and about the US influenza surveillance system; its website contains a short video about personal experiences of influenza
Flu.gov, a US government website, provides access to information on seasonal influenza and vaccination
MedlinePlus has links to further information about influenza and about immunization (in English and Spanish)
doi:10.1371/journal.pmed.1001527
PMCID: PMC3793005  PMID: 24115913
9.  Risk Factors for Severe Outcomes following 2009 Influenza A (H1N1) Infection: A Global Pooled Analysis 
PLoS Medicine  2011;8(7):e1001053.
This study analyzes data from 19 countries (from April 2009 to Jan 2010), comprising some 70,000 hospitalized patients with severe H1N1 infection, to reveal risk factors for severe pandemic influenza, which include chronic illness, cardiac disease, chronic respiratory disease, and diabetes.
Background
Since the start of the 2009 influenza A pandemic (H1N1pdm), the World Health Organization and its member states have gathered information to characterize the clinical severity of H1N1pdm infection and to assist policy makers to determine risk groups for targeted control measures.
Methods and Findings
Data were collected on approximately 70,000 laboratory-confirmed hospitalized H1N1pdm patients, 9,700 patients admitted to intensive care units (ICUs), and 2,500 deaths reported between 1 April 2009 and 1 January 2010 from 19 countries or administrative regions—Argentina, Australia, Canada, Chile, China, France, Germany, Hong Kong SAR, Japan, Madagascar, Mexico, the Netherlands, New Zealand, Singapore, South Africa, Spain, Thailand, the United States, and the United Kingdom—to characterize and compare the distribution of risk factors among H1N1pdm patients at three levels of severity: hospitalizations, ICU admissions, and deaths. The median age of patients increased with severity of disease. The highest per capita risk of hospitalization was among patients <5 y and 5–14 y (relative risk [RR] = 3.3 and 3.2, respectively, compared to the general population), whereas the highest risk of death per capita was in the age groups 50–64 y and ≥65 y (RR = 1.5 and 1.6, respectively, compared to the general population). Similarly, the ratio of H1N1pdm deaths to hospitalizations increased with age and was the highest in the ≥65-y-old age group, indicating that while infection rates have been observed to be very low in the oldest age group, risk of death in those over the age of 64 y who became infected was higher than in younger groups. The proportion of H1N1pdm patients with one or more reported chronic conditions increased with severity (median = 31.1%, 52.3%, and 61.8% of hospitalized, ICU-admitted, and fatal H1N1pdm cases, respectively). With the exception of the risk factors asthma, pregnancy, and obesity, the proportion of patients with each risk factor increased with severity level. For all levels of severity, pregnant women in their third trimester consistently accounted for the majority of the total of pregnant women. Our findings suggest that morbid obesity might be a risk factor for ICU admission and fatal outcome (RR = 36.3).
Conclusions
Our results demonstrate that risk factors for severe H1N1pdm infection are similar to those for seasonal influenza, with some notable differences, such as younger age groups and obesity, and reinforce the need to identify and protect groups at highest risk of severe outcomes.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In April 2009, a new strain of influenza A H1N1 was first identified in Mexico and the United States and subsequently spread around the world. In June 2009, the World Health Organization (WHO) declared a pandemic alert phase 6, which continued until August 2010. Throughout the pandemic, WHO and member states gathered information to characterize the patterns of risk associated with the new influenza A H1N1 virus infection and to assess the clinical picture. Although risk factors for severe disease following seasonal influenza infection have been well documented in many countries (for example, pregnancy; chronic medical conditions such as pulmonary, cardiovascular, renal, hepatic, neuromuscular, hematologic, and metabolic disorders; some cognitive conditions; and immunodeficiency), risk factors for severe disease following infection early in the 2009 H1N1 pandemic were largely unknown.
Why Was This Study Done?
Many countries have recently reported data on the association between severe H1N1 influenza and a variety of underlying risk factors, but because these data are presented in different formats, making direct comparisons across countries is difficult, with no clear consensus for some conditions. Therefore, to assess the frequency and distribution of known and new potential risk factors for severe H1N1 infection, this study was conducted to collect data (from 1 April 2009 to 1 January 2010) from surveillance programs of the Ministries of Health or National Public Health Institutes in 19 countries―Argentina, Australia, Canada, Chile, China, France, Germany, Hong Kong (special administrative region), Japan, Madagascar, Mexico, the Netherlands, New Zealand, Singapore, South Africa, Spain, Thailand, the United States, and the United Kingdom.
What Did the Researchers Do and Find?
As part of routine surveillance, countries were asked to provide risk factor data on laboratory-confirmed H1N1 in patients who were admitted to hospital, admitted to the intensive care unit (ICU), or had died because of their infection, using a standardized format. The researchers grouped potential risk conditions into four categories: age, chronic medical illnesses, pregnancy (by trimester), and other conditions that were not previously considered as risk conditions for severe influenza outcomes, such as obesity. For each risk factor (except pregnancy), the researchers calculated the percentage of each group of patients using the total number of cases reported in each severity category (hospitalization, admission to ICU, and death). To evaluate the risk associated with pregnancy, the researchers used the ratio of pregnant women to all women of childbearing age (age 15–49 years) at each level of severity to describe the differences between levels.
The researchers were able to collect data on approximately 70,000 patients requiring hospitalization, 9,700 patients admitted to the ICU, and 2,500 patients who died from H1N1 infection. The proportion of patients with H1N1 with one or more reported chronic conditions increased with severity—the median was 31.1% of hospitalized patients, 52.3% of patients admitted to the ICU, and 61.8% of patients who died. For all levels of severity, pregnant women in their third trimester consistently accounted for the majority of the total of pregnant women. The proportion of patients with obesity increased with increasing disease severity—median of 6% of hospitalized patients, 11.3% of patients admitted to the ICU, and 12.0% of all deaths from H1N1.
What Do These Findings Mean?
These findings show that risk factors for severe H1N1 infection are similar to those for seasonal influenza, with some notable differences: a substantial proportion of people with severe and fatal cases of H1N1 had pre-existing chronic illness, which indicates that the presence of chronic illness increases the likelihood of death. Cardiac disease, chronic respiratory disease, and diabetes are important risk factors for severe disease that will be especially relevant for countries with high rates of these illnesses. Approximately 2/3 of hospitalized people and 40% of people who died from H1N1 infection did not have any identified pre-existing chronic illness, but this study was not able to comprehensively assess how many of these cases had other risk factors, such as pregnancy, obesity, smoking, and alcohol misuse. Because of large differences between countries, the role of risk factors such as obesity and pregnancy need further study—although there is sufficient evidence to support vaccination and early intervention for pregnant women. Overall, the findings of this study reinforce the need to identify and target high-risk groups for interventions such as immunization, early medical advice, and use of antiviral medications.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001053.
WHO provides a Global Alert and Response (GAR) with updates on a number of influenza-related topics
The US Centers for Disease Control and Prevention provides information on risk factors and H1N1
doi:10.1371/journal.pmed.1001053
PMCID: PMC3130021  PMID: 21750667
10.  The Effects of Influenza Vaccination of Health Care Workers in Nursing Homes: Insights from a Mathematical Model 
PLoS Medicine  2008;5(10):e200.
Background
Annual influenza vaccination of institutional health care workers (HCWs) is advised in most Western countries, but adherence to this recommendation is generally low. Although protective effects of this intervention for nursing home patients have been demonstrated in some clinical trials, the exact relationship between increased vaccine uptake among HCWs and protection of patients remains unknown owing to variations between study designs, settings, intensity of influenza seasons, and failure to control all effect modifiers. Therefore, we use a mathematical model to estimate the effects of HCW vaccination in different scenarios and to identify a herd immunity threshold in a nursing home department.
Methods and Findings
We use a stochastic individual-based model with discrete time intervals to simulate influenza virus transmission in a 30-bed long-term care nursing home department. We simulate different levels of HCW vaccine uptake and study the effect on influenza virus attack rates among patients for different institutional and seasonal scenarios. Our model reveals a robust linear relationship between the number of HCWs vaccinated and the expected number of influenza virus infections among patients. In a realistic scenario, approximately 60% of influenza virus infections among patients can be prevented when the HCW vaccination rate increases from 0 to 1. A threshold for herd immunity is not detected. Due to stochastic variations, the differences in patient attack rates between departments are high and large outbreaks can occur for every level of HCW vaccine uptake.
Conclusions
The absence of herd immunity in nursing homes implies that vaccination of every additional HCW protects an additional fraction of patients. Because of large stochastic variations, results of small-sized clinical trials on the effects of HCW vaccination should be interpreted with great care. Moreover, the large variations in attack rates should be taken into account when designing future studies.
Using a mathematical model to simulate influenza transmission in nursing homes, Carline van den Dool and colleagues find that each additional staff member vaccinated further reduces the risk to patients.
Editors' Summary
Background.
Every winter, millions of people catch influenza, a contagious viral disease of the nose, throat, and airways. Most people recover completely from influenza within a week or two but some develop life-threatening complications such as bacterial pneumonia. As a result, influenza outbreaks kill about half a million people—mainly infants, elderly people, and chronically ill individuals—each year. To minimize influenza-related deaths, the World Health Organization recommends that vulnerable people be vaccinated against influenza every autumn. Annual vaccination is necessary because flu viruses continually make small changes to the viral proteins (antigens) that the immune system recognizes. This means that an immune response produced one year provides only partial protection against influenza the next year. To provide maximum protection against influenza, each year's vaccine contains disabled versions of the major circulating strains of influenza viruses.
Why Was This Study Done?
Most Western countries also recommend annual flu vaccination for health care workers (HCWs) in hospitals and other institutions to reduce the transmission of influenza to vulnerable patients. However, many HCWs don't get a regular flu shot, so should efforts be made to increase their rate of vaccine uptake? To answer this question, public-health experts need to know more about the relationship between vaccine uptake among HCWs and patient protection. In particular, they need to know whether a high rate of vaccine uptake by HCWs will provide “herd immunity.” Herd immunity occurs because, when a sufficient fraction of a population is immune to a disease that passes from person to person, infected people rarely come into contact with susceptible people, which means that both vaccinated and unvaccinated people are protected from the disease. In this study, the researchers develop a mathematical model to investigate the relationship between vaccine uptake among HCWs and patient protection in a nursing home department.
What Did the Researchers Do and Find?
To predict influenza virus attack rates (the number of patient infections divided by the number of patients in a nursing home department during an influenza season) at different levels of HCW vaccine uptake, the researchers develop a stochastic transmission model to simulate epidemics on a computer. This model predicts that as the HCW vaccination rate increases from 0 (no HCWs vaccinated) to 1 (all the HCWs vaccinated), the expected average influenza virus attack rate decreases at a constant rate. In the researchers' baseline scenario—a nursing home department with 30 beds where patients come into contact with other patients, HCWs, and visitors—the model predicts that about 60% of the patients who would have been infected if no HCWs had been vaccinated are protected when all the HCWs are vaccinated, and that seven HCWs would have to be vaccinated to protect one patient. This last figure does not change with increasing vaccine uptake, which indicates that there is no level of HCW vaccination that completely stops the spread of influenza among the patients; that is, there is no herd immunity. Finally, the researchers show that large influenza outbreaks can happen by chance at every level of HCW vaccine uptake.
What Do These Findings Mean?
As with all mathematical models, the accuracy of these predictions may depend on the specific assumptions built into the model. Therefore the researchers verified that their findings hold for a wide range of plausible assumptions. These findings have two important practical implications. First, the direct relationship between HCW vaccination and patient protection and the lack of any herd immunity suggest that any increase in HCW vaccine uptake will be beneficial to patients in nursing homes. That is, increasing the HCW vaccination rate from 80% to 90% is likely to be as important as increasing it from 10% to 20%. Second, even 100% HCW vaccination cannot guarantee that influenza outbreaks will not occasionally occur in nursing homes. Because of the large variation in attack rates, the results of small clinical trials on the effects of HCW vaccination may be inaccurate and future studies will need to be very large if they are to provide reliable estimates of the amount of protection that HCW vaccination provides to vulnerable patients.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050200.
Read the related PLoSMedicine Perspective by Cécile Viboud and Mark Miller
A related PLoSMedicine Research Article by Jeffrey Kwong and colleagues is also available
The World Health Organization provides information on influenza and on influenza vaccines (in several languages)
The US Centers for Disease Control and Prevention provide information for patients and professionals on all aspects of influenza (in English and Spanish)
The UK Health Protection Agency also provides information on influenza
MedlinePlus provides a list of links to other information about influenza (in English and Spanish)
The UK National Health Service provides information about herd immunity, including a simple explanatory animation
The European Centre for Disease Prevention and Control provides an overview on the types of influenza
doi:10.1371/journal.pmed.0050200
PMCID: PMC2573905  PMID: 18959470
11.  Determinants of Non-Vaccination against Pandemic 2009 H1N1 Influenza in Pregnant Women: A Prospective Cohort Study 
PLoS ONE  2011;6(6):e20900.
Background
In October 2009, the French government organized a national-wide, free of charge vaccination campaign against pandemic H1N1 influenza virus, especially targeting pregnant women, a high risk group for severe illness. The study objective was to evaluate pandemic flu vaccine uptake and factors associated with non-vaccination in a population of pregnant women.
Methodology/Principal Findings
In a prospective cohort conducted in 3 maternity hospitals in Paris, 882 pregnant women were randomly included between October 12, 2009 and February 3, 2010, with the aim to study characteristics of pandemic influenza during pregnancy. At inclusion, socio-demographic, medical, obstetrical factors and those associated with a higher risk of flu exposition and disease-spreading were systematically collected. Pandemic flu vaccine uptake was checked until delivery. 555 (62.9%) women did not get vaccinated. Determinants associated with non-vaccination in a multivariate logistic regression were: geographic origin (Sub-Saharan African origin, adjusted Odd Ratio aOR = 5.4[2.3–12.7], North African origin, aOR = 2.5[1.3–4.7] and Asian origin, aOR = 2.1[1.7–2.6] compared to French and European origin) and socio-professional categories (farmers, craftsmen and tradesmen, aOR = 2.3[2.0–2.6], intermediate professionals, aOR = 1.3[1.0–1.6], employees and manual workers, aOR = 2.5[1.4–4.4] compared to managers and intellectual professionals). The probability of not receiving pandemic flu vaccine was lower among women vaccinated against seasonal flu in the previous 5 years (aOR = 0.6[0.4–0.8]) and among those who stopped smoking before or early during pregnancy (aOR = 0.6[0.4–0.8]). Number of children less than 18 years old living at home, work in contact with children or in healthcare area, or professional contact with the public, were not associated with a higher vaccine uptake.
Conclusions/Significance
In this cohort of pregnant women, vaccine coverage against pandemic 2009 A/H1N1 flu was low, particularly in immigrant women and those having a low socio-economic status. To improve its effectiveness, future vaccination campaign for pregnant women should be more specifically tailored for these populations.
doi:10.1371/journal.pone.0020900
PMCID: PMC3114856  PMID: 21695074
12.  Influenza Vaccination Guidelines and Vaccine Sales in Southeast Asia: 2008–2011 
PLoS ONE  2012;7(12):e52842.
Background
Southeast Asia is a region with great potential for the emergence of a pandemic influenza virus. Global efforts to improve influenza surveillance in this region have documented the burden and seasonality of influenza viruses and have informed influenza prevention strategies, but little information exists about influenza vaccination guidelines and vaccine sales.
Methods
To ascertain the existence of influenza vaccine guidelines and define the scope of vaccine sales, we sent a standard three-page questionnaire to the ten member nations of the Association of Southeast Asian Nations. We also surveyed three multinational manufacturers who supply influenza vaccines in the region.
Results
Vaccine sales in the private sector were <1000 per 100,000 population in the 10 countries. Five countries reported purchasing vaccine for use in the public sector. In 2011, Thailand had the highest combined reported rate of vaccine sales (10,333 per 100,000). In the 10 countries combined, the rate of private sector sales during 2010–2011 (after the A(H1N1)2009pdm pandemic) exceeded 2008 pre-pandemic levels. Five countries (Indonesia, Malaysia, Singapore, Thailand and Vietnam) had guidelines for influenza vaccination but only two were consistent with global guidelines. Four recommended vaccination for health care workers, four for elderly persons, three for young children, three for persons with underlying disease, and two for pregnant women.
Conclusions
The rate of vaccine sales in Southeast Asia remains low, but there was a positive impact in sales after the A(H1N1)2009pdm pandemic. Low adherence to global vaccine guidelines suggests that more work is needed in the policy arena.
doi:10.1371/journal.pone.0052842
PMCID: PMC3528727  PMID: 23285200
13.  Rates of immunization against pandemic and seasonal influenza in persons at high risk of severe influenza illness: a cross-sectional study among patients of the French Sentinelles general practitioners 
BMC Public Health  2013;13:246.
Background
Three main categories of persons are targeted by the French influenza vaccination strategy: all persons aged 65 years or over, those aged less than 65 years with certain underlying medical conditions and health care workers. The main objective of this study was to estimate rates of influenza immunization in these target groups attending a medical consultation for two consecutive influenza seasons: 2009–2010 (seasonal and pandemic vaccines) and 2010–2011 (seasonal vaccine).
Methods
A standardized questionnaire was mailed to 1323 general practitioners (GPs) of the Sentinelles Network, collecting data on all patients seen on a randomly assigned day. For every patient, following information was collected: age, gender, BMI, presence of any medical condition that increases risk of severe influenza illness, and vaccination status for the three vaccines mentioned.
Results
Two hundred and three GPs agreed to participate and included 4248 patients. Overall, in persons with high risk of severe influenza, the estimated vaccine coverages (VC) were 60%, (95% CI = 57%; 62%) for the seasonal vaccine in 2010–2011, 61% (59%; 63%) for the seasonal vaccine in 2009–2010 and 23% (21%; 25%), for the pandemic vaccine in 2009–2010. Among people aged 65 years and over (N=1259, 30%) VC was estimated for seasonal vaccines at 72% (70%; 75%) in 2010–2011 and 73% (71%; 76%) in 2009–2010, and 24% (22%; 26%) for the pandemic vaccine. The lowest seasonal VC were observed in younger persons (<65 years) with underlying medical conditions, in particular pregnant women (<10%) and overweight persons (<30%).
Conclusions
Our study shows that influenza vaccination coverage among patients of the French Sentinelles general practitioners remains largely below the target of 75% defined by the 2004 French Public Health Law, and underscores the need for the implementation of public health interventions likely to increase vaccination uptake.
doi:10.1186/1471-2458-13-246
PMCID: PMC3621692  PMID: 23514534
Vaccination; Influenza; General practitioners; Sentinelles network; Pregnancy; Obesity
14.  Short and Long-Term Safety of the 2009 AS03-Adjuvanted Pandemic Vaccine 
PLoS ONE  2012;7(7):e38563.
Background
This study assessed the short and the long term safety of the 2009 AS03 adjuvanted monovalent pandemic vaccine through an active web-based electronic surveillance. We compared its safety profile to that of the seasonal trivalent inactivated influenza vaccine (TIV) for 2010–2011.
Methodology/Principal Findings
Health care workers (HCW) vaccinated in 2009 with the pandemic vaccine (Arepanrix ® from GSK) or HCW vaccinated in 2010 with the 2010–2011 TIV were invited to participate in a web-based active surveillance of vaccine safety. They completed two surveys the day-8 survey covered the first 7 days post-vaccination and the day-29 survey covered events occurring 8 to 28 days after vaccination. Those who reported a problem were called by a nurse to obtain details. The main outcome was the occurrence of a new health problem or the worsening of an existing health condition that resulted in a medical consultation or work absenteeism. For the pandemic vaccine, a six-month follow-up for the occurrence of serious adverse events (SAE) was conducted. Among the 6242 HCW who received the pandemic vaccine, 440 (7%) reported 468 events compared to 328 of the 7645 HCW (4.3%) who reported 339 events after the seasonal vaccine. The 2009 pandemic vaccine was associated with significantly more local reactions than the 2010–2011 seasonal vaccine (1% vs. 0.03%, p<0.001). Paresthesia was reported by 7 HCW (0.1%) after the pandemic vaccine but by none after the seasonal vaccine. For the pandemic vaccine, no clustering of SAE was found in the 6 month follow-up.
Conclusion
The 2009 pandemic vaccine seems to have a good safety profile, similar to the 2010–2011 TIV, with the exception of local reactions. This surveillance was adequately powered to identify AE associated with an excess risk ≥1 per 1000 vaccinations but is insufficient to detect rare AE.
Trial Registration
ClinicalTrials.gov NCT01289418, NCT01318876
doi:10.1371/journal.pone.0038563
PMCID: PMC3389012  PMID: 22802929
15.  The Effect of Universal Influenza Immunization on Mortality and Health Care Use 
PLoS Medicine  2008;5(10):e211.
Background
In 2000, Ontario, Canada, initiated a universal influenza immunization program (UIIP) to provide free influenza vaccines for the entire population aged 6 mo or older. Influenza immunization increased more rapidly in younger age groups in Ontario compared to other Canadian provinces, which all maintained targeted immunization programs. We evaluated the effect of Ontario's UIIP on influenza-associated mortality, hospitalizations, emergency department (ED) use, and visits to doctors' offices.
Methods and Findings
Mortality and hospitalization data from 1997 to 2004 for all ten Canadian provinces were obtained from national datasets. Physician billing claims for visits to EDs and doctors' offices were obtained from provincial administrative datasets for four provinces with comprehensive data. Since outcomes coded as influenza are known to underestimate the true burden of influenza, we studied more broadly defined conditions. Hospitalizations, ED use, doctors' office visits for pneumonia and influenza, and all-cause mortality from 1997 to 2004 were modelled using Poisson regression, controlling for age, sex, province, influenza surveillance data, and temporal trends, and used to estimate the expected baseline outcome rates in the absence of influenza activity. The primary outcome was then defined as influenza-associated events, or the difference between the observed events and the expected baseline events. Changes in influenza-associated outcome rates before and after UIIP introduction in Ontario were compared to the corresponding changes in other provinces. After UIIP introduction, influenza-associated mortality decreased more in Ontario (relative rate [RR] = 0.26) than in other provinces (RR = 0.43) (ratio of RRs = 0.61, p = 0.002). Similar differences between Ontario and other provinces were observed for influenza-associated hospitalizations (RR = 0.25 versus 0.44, ratio of RRs = 0.58, p < 0.001), ED use (RR = 0.31 versus 0.69, ratio of RRs = 0.45, p < 0.001), and doctors' office visits (RR = 0.21 versus 0.52, ratio of RRs = 0.41, p < 0.001). Sensitivity analyses were carried out to assess consistency, specificity, and the presence of a dose-response relationship. Limitations of this study include the ecological study design, the nonspecific outcomes, difficulty in modeling baseline events, data quality and availability, and the inability to control for potentially important confounders.
Conclusions
Compared to targeted programs in other provinces, introduction of universal vaccination in Ontario in 2000 was associated with relative reductions in influenza-associated mortality and health care use. The results of this large-scale natural experiment suggest that universal vaccination may be an effective public health measure for reducing the annual burden of influenza.
Comparing influenza-related mortality and health care use between Ontario and other Canadian provinces, Jeffrey Kwong and colleagues find evidence that Ontario's universal vaccination program has reduced the burden of influenza.
Editors' Summary
Background.
Seasonal outbreaks (epidemics) of influenza—a viral disease of the nose, throat, and airways—affect millions of people and kill about 500,000 individuals every year. These epidemics occur because of “antigenic drift”: small but frequent changes in the viral proteins to which the human immune system responds mean that an immune response produced one year by exposure to an influenza virus provides only partial protection against influenza the next year. Immunization can boost this natural immunity and reduce a person's chances of catching influenza. That is, an injection of killed influenza viruses can be used to prime the immune system so that it responds quickly and efficiently when exposed to live virus. However, because of antigenic drift, for influenza immunization to be effective, it has to be repeated annually with a vaccine that contains the major circulating strains of the influenza virus.
Why Was This Study Done?
Public-health organizations recommend targeted vaccination programs, so that elderly people, infants, and chronically ill individuals—the people most likely to die from pneumonia and other complications of influenza—receive annual influenza vaccination. Some experts argue, however, that universal vaccination might provide populations with better protection from influenza, both directly by increasing the number of vaccinated people and indirectly through “herd immunity,” which occurs when a high proportion of the population is immune to an infectious disease, so that even unvaccinated people are unlikely to become infected (because infected people rarely come into contact with susceptible people). In this study, the researchers compare the effects of the world's first free universal influenza immunization program (UIIP), which started in 2000 in the Canadian province of Ontario, on influenza-associated deaths and health care use with the effects of targeted vaccine programs on the same outcomes elsewhere in Canada.
What Did the Researchers Do and Find?
Using national records, the researchers collected data on influenza vaccination, on all deaths, and on hospitalizations for pneumonia and influenza in all Canadian provinces between 1997 and 2004. They also collected data on emergency department and doctors' office visits for pneumonia and influenza for Ontario, Quebec, Alberta, and Manitoba. They then used a mathematical model to estimate the baseline rates for these outcomes in the absence of influenza activity, and from these calculated weekly rates for deaths and health care use specifically resulting from influenza. In 1996–1997, 18% of the population was vaccinated against influenza in Ontario whereas in the other provinces combined the vaccination rate was 13%. On average, since 2000—the year in which UIIP was introduced in Ontario—vaccination rates have risen to 38% and 24% in Ontario and the other provinces, respectively. Since the introduction of UIIP, the researchers report, influenza-associated deaths have decreased by 74% in Ontario but by only 57% in the other provinces combined. Influenza-associated use of health care facilities has also decreased more in Ontario than in the other provinces over the same period.
What Do These Findings Mean?
These findings are limited by some aspects of the study design. For example, they depend on the accuracy of the assumptions made when calculating events due specifically to influenza, and on the availability and accuracy of vaccination and clinical outcome data. In addition, it is possible that influenza-associated deaths and health care use may have decreased more in Ontario than in the other Canadian provinces because of some unrecognized health care changes specific to Ontario but unrelated to the introduction of universal influenza vaccination. Nevertheless, these findings indicate that, compared to the targeted vaccination programs in the other Canadian provinces, the Ontarian UIIP is associated with reductions in influenza-associated deaths and health care use, particularly in people younger than 65 years old. This effect is seen at a level of vaccination unlikely to produce herd immunity so might be more marked if the uptake of vaccination could be further increased. Thus, although it is possible that Canada is a special case, these findings suggest that universal influenza vaccination might be an effective way to reduce the global burden of influenza.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050211.
Read the related PLoSMedicine Perspective by Cécile Viboud and Mark Miller
A related PLoSMedicine Research Article by Carline van den Dool and colleagues is also available
The Ontario Ministry of Health provides information on its universal influenza immunization program (in English and French)
The World Health Organization provides information on influenza and on influenza vaccines (in several languages)
The US Centers for Disease Control and Prevention provide information for patients and professionals on all aspects of influenza (in English and Spanish)
MedlinePlus provides a list of links to other information about influenza (in English and Spanish)
The UK National Health Service provides information about the science of immunization, including a simple explanatory animation of immunity
doi:10.1371/journal.pmed.0050211
PMCID: PMC2573914  PMID: 18959473
16.  Characterizing the Epidemiology of the 2009 Influenza A/H1N1 Pandemic in Mexico 
PLoS Medicine  2011;8(5):e1000436.
Gerardo Chowell and colleagues address whether school closures and other social distancing strategies were successful in reducing pandemic flu transmission in Mexico by analyzing the age- and state-specific incidence of influenza morbidity and mortality in 32 Mexican states.
Background
Mexico's local and national authorities initiated an intense public health response during the early stages of the 2009 A/H1N1 pandemic. In this study we analyzed the epidemiological patterns of the pandemic during April–December 2009 in Mexico and evaluated the impact of nonmedical interventions, school cycles, and demographic factors on influenza transmission.
Methods and Findings
We used influenza surveillance data compiled by the Mexican Institute for Social Security, representing 40% of the population, to study patterns in influenza-like illness (ILIs) hospitalizations, deaths, and case-fatality rate by pandemic wave and geographical region. We also estimated the reproduction number (R) on the basis of the growth rate of daily cases, and used a transmission model to evaluate the effectiveness of mitigation strategies initiated during the spring pandemic wave. A total of 117,626 ILI cases were identified during April–December 2009, of which 30.6% were tested for influenza, and 23.3% were positive for the influenza A/H1N1 pandemic virus. A three-wave pandemic profile was identified, with an initial wave in April–May (Mexico City area), a second wave in June–July (southeastern states), and a geographically widespread third wave in August–December. The median age of laboratory confirmed ILI cases was ∼18 years overall and increased to ∼31 years during autumn (p<0.0001). The case-fatality ratio among ILI cases was 1.2% overall, and highest (5.5%) among people over 60 years. The regional R estimates were 1.8–2.1, 1.6–1.9, and 1.2–1.3 for the spring, summer, and fall waves, respectively. We estimate that the 18-day period of mandatory school closures and other social distancing measures implemented in the greater Mexico City area was associated with a 29%–37% reduction in influenza transmission in spring 2009. In addition, an increase in R was observed in late May and early June in the southeast states, after mandatory school suspension resumed and before summer vacation started. State-specific fall pandemic waves began 2–5 weeks after school reopened for the fall term, coinciding with an age shift in influenza cases.
Conclusions
We documented three spatially heterogeneous waves of the 2009 A/H1N1 pandemic virus in Mexico, which were characterized by a relatively young age distribution of cases. Our study highlights the importance of school cycles on the transmission dynamics of this pandemic influenza strain and suggests that school closure and other mitigation measures could be useful to mitigate future influenza pandemics.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
From June 2009 to August 2010, the world was officially (according to specific World Health Organization [WHO] criteria—WHO phase 6 pandemic alert) in the grip of an Influenza A pandemic with a new strain of the H1N1 virus. The epidemic in Mexico, which had the second confirmed global case of H1N1 virus was first noted in early April 2009, when reports of respiratory hospitalizations and deaths among 62 young adults in Mexico alerted local health officials to the occurrence of atypical rates of respiratory illness. In line with its inter-institutional National Pandemic Influenza Preparedness and Response Plan, the Ministry of Health cancelled school attendance in the greater Mexico City area on April 24 and expanded these measures to the rest the country three days later. The Ministry of Health then implemented in Mexico City other “social distancing” strategies such as closing cinemas and restaurants and cancelling large public gatherings.
Why Was This Study Done?
School closures and other intense social distancing strategies can be very disruptive to the population, but as yet it is uncertain whether these measures were successful in reducing disease transmission. In addition, there have been no studies concentrating on recurrent pandemic waves in Mexico. So in this study the authors addressed these issues by analyzing the age- and state-specific incidence of influenza morbidity and mortality in 32 Mexican States and quantified the association between local influenza transmission rates, school cycles, and demographic factors.
What Did the Researchers Do and Find?
The researchers used the epidemiological surveillance system of the Mexican Institute for Social Security—a Mexican health system that covers private sector workers and their families, a group representative of the general population, that comprises roughly 40% of the Mexican population (107 million individuals), with a network of 1,099 primary health care units and 259 hospitals nationwide. Then the researchers compiled state- and age-specific time series of incident influenza-like illness and H1N1 influenza cases by day of symptom onset to analyze the geographic dissemination patterns of the pandemic across Mexico and defined three temporally distinct pandemic waves in 2009: spring (April 1–May 20), summer (May 21–August 1), and fall (August 2–December 31). The researchers then applied a mathematical model of influenza transmission to daily case data to assess the effectiveness of mandatory school closures and other social distancing measures implemented during April 24–May 11, in reducing influenza transmission rates.
The Mexican Institute for Social Security reported a total of 117,626 people with influenza-like illness from April 1 to December 31, 2009, of which 36,044 were laboratory tested (30.6%) and 27,440 (23.3%) were confirmed with H1N1 influenza. During this period, 1,370 people with influenza-like illness died of which 585 (1.5 per 100,000) were confirmed to have H1N1 influenza. The median age of people with laboratory confirmed influenza like illness (H1N1) was 18 years overall but increased to 31 years during the autumn wave. The overall case-fatality ratio among people with influenza like illness was 1.2%, but highest (5.5%) among people over 60 years. The researchers found that the 18-day period of mandatory school closures and other social distancing measures implemented in the greater Mexico City area was associated with a substantial (29%–37%) reduction in influenza transmission in spring 2009 but increased in late May and early June in the southeast states, after mandatory school suspension resumed and before summer vacation started. State-specific pandemic waves began 2–5 weeks after school reopened for the fall term, coinciding with an age shift in influenza cases.
What Do These Findings Mean?
These findings show that the age distribution of pandemic influenza morbidity was greater in younger age groups, while the risk of severe disease was skewed towards older age groups, and that there were substantial geographical variation in pandemic patterns across Mexico, in part related to population size. But most importantly, these findings support the effectiveness of early mitigation efforts including mandatory school closures and cancellation of large public gatherings, reinforcing the importance of school cycles in the transmission of pandemic influenza. This analysis increases understanding of the age and transmission patterns of the Mexican 2009 influenza pandemic at various geographic scales, which is crucial for designing more efficient public health interventions against future influenza pandemics.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000436.
The World Health Organization provides information about the global response to the 2009 H1N1 pandemic
doi:10.1371/journal.pmed.1000436
PMCID: PMC3101203  PMID: 21629683
17.  Reducing the Impact of the Next Influenza Pandemic Using Household-Based Public Health Interventions 
PLoS Medicine  2006;3(9):e361.
Background
The outbreak of highly pathogenic H5N1 influenza in domestic poultry and wild birds has caused global concern over the possible evolution of a novel human strain [1]. If such a strain emerges, and is not controlled at source [2,3], a pandemic is likely to result. Health policy in most countries will then be focused on reducing morbidity and mortality.
Methods and Findings
We estimate the expected reduction in primary attack rates for different household-based interventions using a mathematical model of influenza transmission within and between households. We show that, for lower transmissibility strains [2,4], the combination of household-based quarantine, isolation of cases outside the household, and targeted prophylactic use of anti-virals will be highly effective and likely feasible across a range of plausible transmission scenarios. For example, for a basic reproductive number (the average number of people infected by a typically infectious individual in an otherwise susceptible population) of 1.8, assuming only 50% compliance, this combination could reduce the infection (symptomatic) attack rate from 74% (49%) to 40% (27%), requiring peak quarantine and isolation levels of 6.2% and 0.8% of the population, respectively, and an overall anti-viral stockpile of 3.9 doses per member of the population. Although contact tracing may be additionally effective, the resources required make it impractical in most scenarios.
Conclusions
National influenza pandemic preparedness plans currently focus on reducing the impact associated with a constant attack rate, rather than on reducing transmission. Our findings suggest that the additional benefits and resource requirements of household-based interventions in reducing average levels of transmission should also be considered, even when expected levels of compliance are only moderate.
Voluntary household-based quarantine and external isolation are likely to be effective in limiting the morbidity and mortality of an influenza pandemic, even if such a pandemic cannot be entirely prevented, and even if compliance with these interventions is moderate.
Editors' Summary
Background.
Naturally occurring variation in the influenza virus can lead both to localized annual epidemics and to less frequent global pandemics of catastrophic proportions. The most destructive of the three influenza pandemics of the 20th century, the so-called Spanish flu of 1918–1919, is estimated to have caused 20 million deaths. As evidenced by ongoing tracking efforts and news media coverage of H5N1 avian influenza, contemporary approaches to monitoring and communications can be expected to alert health officials and the general public of the emergence of new, potentially pandemic strains before they spread globally.
Why Was This Study Done?
In order to act most effectively on advance notice of an approaching influenza pandemic, public health workers need to know which available interventions are likely to be most effective. This study was done to estimate the effectiveness of specific preventive measures that communities might implement to reduce the impact of pandemic flu. In particular, the study evaluates methods to reduce person-to-person transmission of influenza, in the likely scenario that complete control cannot be achieved by mass vaccination and anti-viral treatment alone.
What Did the Researchers Do and Find?
The researchers developed a mathematical model—essentially a computer simulation—to simulate the course of pandemic influenza in a hypothetical population at risk for infection at home, through external peer networks such as schools and workplaces, and through general community transmission. Parameters such as the distribution of household sizes, the rate at which individuals develop symptoms from nonpandemic viruses, and the risk of infection within households were derived from demographic and epidemiologic data from Hong Kong, as well as empirical studies of influenza transmission. A model based on these parameters was then used to calculate the effects of interventions including voluntary household quarantine, voluntary individual isolation in a facility outside the home, and contact tracing (that is, asking infectious individuals to identify people whom they may have infected and then warning those people) on the spread of pandemic influenza through the population. The model also took into account the anti-viral treatment of exposed, asymptomatic household members and of individuals in isolation, and assumed that all intervention strategies were put into place before the arrival of individuals infected with the pandemic virus.
  Using this model, the authors predicted that even if only half of the population were to comply with public health interventions, the proportion infected during the first year of an influenza pandemic could be substantially reduced by a combination of household-based quarantine, isolation of actively infected individuals in a location outside the household, and targeted prophylactic treatment of exposed individuals with anti-viral drugs. Based on an influenza-associated mortality rate of 0.5% (as has been estimated for New York City in the 1918–1919 pandemic), the magnitude of the predicted benefit of these interventions is a reduction from 49% to 27% in the proportion of the population who become ill in the first year of the pandemic, which would correspond to 16,000 fewer deaths in a city the size of Hong Kong (6.8 million people). In the model, anti-viral treatment appeared to be about as effective as isolation when each was used in combination with household quarantine, but would require stockpiling 3.9 doses of anti-viral for each member of the population. Contact tracing was predicted to provide a modest additional benefit over quarantine and isolation, but also to increase considerably the proportion of the population in quarantine.
What Do These Findings Mean?
This study predicts that voluntary household-based quarantine and external isolation can be effective in limiting the morbidity and mortality of an influenza pandemic, even if such a pandemic cannot be entirely prevented, and even if compliance with these interventions is far from uniform. These simulations can therefore inform preparedness plans in the absence of data from actual intervention trials, which would be impossible outside (and impractical within) the context of an actual pandemic. Like all mathematical models, however, the one presented in this study relies on a number of assumptions regarding the characteristics and circumstances of the situation that it is intended to represent. For example, the authors found that the efficacy of policies to reduce the rate of infection vary according to the ease with which a given virus spreads from person to person. Because this parameter (known as the basic reproductive ratio, R0) cannot be reliably predicted for a new viral strain based on past epidemics, the authors note that in an actual influenza pandemic rapid determinations of R0 in areas already involved would be necessary to finalize public health responses in threatened areas. Further, the implementation of the interventions that appear beneficial in this model would require devoting attention and resources to practical considerations, such as how to staff isolation centers and provide food and water to those in household quarantine. However accurate the scientific data and predictive models may be, their effectiveness can only be realized through well-coordinated local, as well as international, efforts.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030361.
• World Health Organization influenza pandemic preparedness page
• US Department of Health and Human Services avian and pandemic flu information site
• Pandemic influenza page from the Public Health Agency of Canada
• Emergency planning page on pandemic flu from the England Department of Health
• Wikipedia entry on pandemic influenza with links to individual country resources (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030361
PMCID: PMC1526768  PMID: 16881729
18.  Field Effectiveness of Pandemic and 2009-2010 Seasonal Vaccines against 2009-2010 A(H1N1) Influenza: Estimations from Surveillance Data in France 
PLoS ONE  2011;6(5):e19621.
Background
In this study, we assess how effective pandemic and trivalent 2009-2010 seasonal vaccines were in preventing influenza-like illness (ILI) during the 2009 A(H1N1) pandemic in France. We also compare vaccine effectiveness against ILI versus laboratory-confirmed pandemic A(H1N1) influenza, and assess the possible bias caused by using non-specific endpoints and observational data.
Methodology and Principal Findings
We estimated vaccine effectiveness by using the following formula: VE  =  (PPV-PCV)/(PPV(1-PCV)) × 100%, where PPV is the proportion vaccinated in the population and PCV the proportion of vaccinated influenza cases. People were considered vaccinated three weeks after receiving a dose of vaccine. ILI and pandemic A(H1N1) laboratory-confirmed cases were obtained from two surveillance networks of general practitioners. During the epidemic, 99.7% of influenza isolates were pandemic A(H1N1). Pandemic and seasonal vaccine uptakes in the population were obtained from the National Health Insurance database and by telephonic surveys, respectively. Effectiveness estimates were adjusted by age and week. The presence of residual biases was explored by calculating vaccine effectiveness after the influenza period. The effectiveness of pandemic vaccines in preventing ILI was 52% (95% confidence interval: 30–69) during the pandemic and 33% (4–55) after. It was 86% (56–98) against confirmed influenza. The effectiveness of seasonal vaccines against ILI was 61% (56–66) during the pandemic and 19% (−10–41) after. It was 60% (41–74) against confirmed influenza.
Conclusions
The effectiveness of pandemic vaccines in preventing confirmed pandemic A(H1N1) influenza on the field was high, consistently with published findings. It was significantly lower against ILI. This is unsurprising since not all ILI cases are caused by influenza. Trivalent 2009-2010 seasonal vaccines had a statistically significant effectiveness in preventing ILI and confirmed pandemic influenza, but were not better in preventing confirmed pandemic influenza than in preventing ILI. This lack of difference might be indicative of selection bias.
doi:10.1371/journal.pone.0019621
PMCID: PMC3091864  PMID: 21573005
19.  Annual public health and economic benefits of seasonal influenza vaccination: a European estimate 
BMC Public Health  2014;14(1):813.
Background
Vaccination is currently the most effective means of preventing influenza infection. Yet evidence of vaccine performance, and the impact and value of seasonal influenza vaccination across risk groups and between seasons, continue to generate much discussion. Moreover, vaccination coverage is below recommended levels.
Methods
A model was generated to assess the annual public health benefits and economic importance of influenza vaccination in 5 WHO recommended vaccination target groups (children 6 – 23 months of age; persons with underlying chronic health conditions; pregnant women; health care workers; and, the elderly, 65 years of age) in 27 countries of the European Union. Model estimations were based on standard calculation methods, conservative assumptions, age-based and country-specific data.
Results
Out of approximately 180 million Europeans for whom influenza vaccination is recommended, only about 80 million persons are vaccinated. Seasonal influenza vaccination currently prevents an annual average of between 1.6 million and 2.1 million cases of influenza, 45,300 to 65,600 hospitalizations, and 25,200 to 37,200 deaths. To reach the 75% vaccination coverage target set by the EU Council Recommendation in 2009, an additional 57.4 million person would need to be vaccinated in the elderly and other risk groups. By achieving the 75% target rate set in EU-27 countries, average annual influenza- related events averted would increase from current levels to an additional +1.6 to +1.7 million cases, +23,800 to +31,400 hospitalization, +9,800 to +14,300 deaths, +678,500 to +767,800 physician visits, and +883,800 to +1,015,100 lost days of work yearly. Influenza-related costs averted because of vaccination would increase by an additional + €190 to + €226 million yearly, in vaccination target groups.
Conclusions
Full implementation of current influenza vaccination recommendations of 75% vaccination coverage rate (VCR) in Europe by the 2014–2015 influenza season could immediately reduce an important public health and economic burden.
doi:10.1186/1471-2458-14-813
PMCID: PMC4141103  PMID: 25103091
Influenza; Public health policy; Vaccines and immunization; Modeling; Epidemiology
20.  Seasonal Influenza Vaccination Coverage Rate of Target Groups in Selected Cities and Provinces in China by Season (2009/10 to 2011/12) 
PLoS ONE  2013;8(9):e73724.
Background
The objectives of the survey were to identify the level of influenza vaccination coverage in China in three influenza seasons 2009/10 to 2011/12, and to find out potential predictors for seasonal influenza vaccination.
Methods
In September and October 2011, representative urban household telephone surveys were conducted in five provinces in China with a response rate of 6%. Four target groups were defined for analysis: 1) children ≤5 years old; 2) elderly persons aged ≥60 years old; 3) health care workers (persons working in the medical field) and 4) chronically ill persons.
Results
The overall mean vaccination rate was 9.0%. Among the four target groups, the rate of vaccination of children aged ≤5 years old (mean = 26%) was highest and the rate of elderly people aged ≥60 years old (mean = 7.4%) was the lowest, while the rates of persons who suffer from a chronic illness (mean = 9.4%) and health care workers (9.5%) were similar. A subsidy for influenza vaccination, age group, health care workers, suffering from a chronic illness and living in Eastern China were independent significant predictors for influenza vaccination.
Conclusions
The seasonal influenza vaccination coverage rates among urban populations in selected cities and provinces in China were far below previously reported rates in developed countries. Influenza vaccination coverage rates differed widely between different target groups and provinces in China. Subsidy policy might have a positive effect on influenza vaccination rate, but further cost-effectiveness studies, as well as the vaccination rate associated factors studies are still needed to inform strategies to increase coverage.
doi:10.1371/journal.pone.0073724
PMCID: PMC3767785  PMID: 24040041
21.  Prioritization strategies for pandemic influenza vaccine in 27 countries of the European Union and the Global Health Security Action Group: a review 
BMC Public Health  2007;7:236.
Background
Although there is rapid progress in vaccine research regarding influenza pandemic vaccines it is expected that pandemic influenza vaccine production can only start once the pandemic virus has been recognized. Therefore, pandemic vaccine capacity will be limited at least during the first phase of an influenza pandemic, requiring vaccine prioritization strategies. WHO recommends developing preliminary priorities for pandemic vaccine use. The goal of this review is to provide a thorough overview of pandemic vaccine prioritization concepts in the 27 European Union (EU) member states and the four non-EU countries of the Global Health Security Action Group.
Methods
Between September and December 2006 data was collected for each country through two data sources: (i) the national influenza pandemic plan; (ii) contacting key persons involved in pandemic planning by email and/or phone and/or fax
Results
Twenty-six (84%) countries had established at least one vaccine priority group. Most common reported vaccine priority groups were health care workers (HCW) (100%), essential service providers (ESP) (92%) and high risk individuals (HRI) (92%). Ranking of at least one vaccine priority group was done by 17 (65%) of 26 countries. Fifteen (88%) of these 17 countries including a ranking strategy, decided that HCW with close contact to influenza patients should be vaccinated first; in most countries followed and/or ranked equally by ESP and subsequently HRI. Rationales for prioritization were provided by 22 (85%) of 26 countries that established vaccine priority groups. There was large variation in the phrasing and level of detailed specification of rationales. Seven (32%) of 22 countries providing rationales clearly associated each vaccine priority group with the specific rationale. Ten (32% of the 31 countries studied) countries have consulted and involved ethical experts to guide decisions related to vaccine prioritization.
Conclusion
In the majority of the countries the establishment of vaccine priority groups, ranking and underlying rationales are in line with WHO recommendations. In most public plans the criteria by which prioritized groups are identified are not easily recognizable. Clarity however, may be necessary to assure public acceptability of the prioritization. Ethical experts, results of modelling exercises could play an increasing role in the future decision making process.
doi:10.1186/1471-2458-7-236
PMCID: PMC2048949  PMID: 17825095
22.  Intent to Receive Pandemic Influenza A (H1N1) Vaccine, Compliance with Social Distancing and Sources of Information in NC, 2009 
PLoS ONE  2010;5(6):e11226.
Background
Public adherence to influenza vaccination recommendations has been low, particularly among younger adults and children under 2, despite the availability of safe and effective seasonal vaccine. Intention to receive 2009 pandemic influenza A (H1N1) vaccine has been estimated to be 50% in select populations. This report measures knowledge of and intention to receive pandemic vaccine in a population-based setting, including target groups for seasonal and H1N1 influenza.
Methodology and Principal Findings
On August 28–29, 2009, we conducted a population-based survey in 2 counties in North Carolina. The survey used the 30×7 two-stage cluster sampling methodology to identify 210 target households. Prevalence ratios (PR) and 95% confidence intervals (CI) were estimated. Knowledge of pandemic influenza A (H1N1) vaccine was high, with 165 (80%) aware that a vaccine was being prepared. A total of 133 (64%) respondents intended to receive pandemic vaccine, 134 (64%) intended to receive seasonal vaccine, and 109 (53%) intended to receive both. Reporting great concern about H1N1 infection (PR 1.55; 95%CI: 1.30, 1.85), receiving seasonal influenza vaccine in 2008–09 (PR 1.47; 95%CI: 1.18, 1.82), and intending to receive seasonal influenza vaccine in 2009–10 (PR 1.27; 95%CI: 1.14, 1.42) were associated with intention to receive pandemic vaccine. Not associated were knowledge of vaccine, employment, having children under age 18, gender, race/ethnicity and age. Reasons cited for not intending to get vaccinated include not being at risk for infection, concerns about vaccine side effects and belief that illness caused by pandemic H1N1 would be mild. Forty-five percent of households with children under 18 and 65% of working adults reported ability to comply with self-isolation at home for 7–10 days if recommended by authorities.
Conclusions and Significance
This is the first report of a population based rapid assessment used to assess knowledge and intent to receive pandemic vaccine in a community sample. Intention to receive pandemic and seasonal vaccines was higher than previously published reports. To reach persons not intending to receive pandemic vaccine, public health communications should focus on the perceived risk of infection and concerns about vaccine safety.
doi:10.1371/journal.pone.0011226
PMCID: PMC2887902  PMID: 20585462
23.  Attitudes of the General Public and General Practitioners in Five Countries towards Pandemic and Seasonal Influenza Vaccines during Season 2009/2010 
PLoS ONE  2012;7(10):e45450.
Background
Vaccination coverage rates for seasonal influenza are not meeting national and international targets. Here, we investigated whether the 2009/2010 A/H1N1 pandemic influenza affected the uptake of influenza vaccines.
Methodology/Principal Findings
In December 2009/January 2010 and April 2010, 500 randomly selected members of the general public in Germany, France, the United States, China, and Mexico were surveyed by telephone about vaccination for seasonal and A/H1N1 pandemic influenza. Also, in April 2010, 100 randomly selected general practitioners were surveyed. Adult vaccine coverage in December 2009/January 2010 for A/H1N1 pandemic and seasonal influenza were, respectively, 12% and 29% in France, 11% and 25% in Germany, 41% and 46% in the US, 13% and 30% in Mexico, and 12% and 10% in China. Adult uptake rates in April 2010 were higher in Mexico but similar or slightly lower in the other countries. Coverage rates in children were higher than in adults in the US, Mexico, and China but mostly lower in Germany and France. Germans and French viewed the threat of A/H1N1 pandemic influenza as low to moderate, whereas Mexicans, Americans, and Chinese viewed it as moderate to serious, opinions generally mirrored by general practitioners. The recommendation of a general practitioner was a common reason for receiving the pandemic vaccine, while not feeling at risk and concerns with vaccine safety and efficacy were common reasons for not being vaccinated. Inclusion of the A/H1N1 pandemic strain increased willingness to be vaccinated for seasonal influenza in the United States, Mexico, and China but not in Germany or France.
Conclusions/Significance
The 2009/2010 A/H1N1 influenza pandemic increased vaccine uptake rates for seasonal influenza in Mexico but had little effect in other countries. Accurate communication of health information, especially by general practitioners, is needed to improve vaccine coverage rates.
doi:10.1371/journal.pone.0045450
PMCID: PMC3469560  PMID: 23071519
24.  Long-Term Immunogenicity of the Pandemic Influenza A/H1N1 2009 Vaccine among Health Care Workers: Influence of Prior Seasonal Influenza Vaccination 
Health care workers (HCWs) are at great risk of influenza infection and transmission. Vaccination for seasonal influenza is routinely recommended, but this strategy should be reconsidered in a pandemic situation. Between October 2009 and September 2010, a multicenter study was conducted to assess the long-term immunogenicity of the A/H1N1 2009 monovalent influenza vaccine among HCWs compared to non-health care workers (NHCWs). The influence of prior seasonal influenza vaccination was also assessed with respect to the immunogenicity of pandemic H1N1 influenza vaccine. Serum hemagglutinin inhibition titers were determined prevaccination and then at 1, 6, and 10 months after vaccination. Of the 360 enrolled HCW subjects, 289 participated in the study up to 10 months after H1N1 monovalent influenza vaccination, while 60 of 65 NHCW subjects were followed up. Seroprotection rates, seroconversion rates, and geometric mean titer (GMT) ratios fulfilled the European Union's licensure criteria for influenza A/California/7/2009 (H1N1) at 1 month after vaccination in both the HCWs and NHCWs, without any significant difference. At 6 months after vaccination, the seroprotection rate was more significantly lowered among the NHCWs than among the HCWs (P < 0.01). Overall, postvaccination (1, 6, and 10 months after vaccination) GMTs for A/California/7/2009 (H1N1) were significantly lower among the seasonal influenza vaccine recipients than among the nonrecipients (P < 0.05). In conclusion, HCWs should be encouraged to receive an annual influenza vaccination, considering the risk of repeated exposure. However, prior reception of seasonal influenza vaccine showed a negative influence on immunogenicity for the pandemic A/H1N1 2009 influenza vaccine.
doi:10.1128/CVI.00725-12
PMCID: PMC3623406  PMID: 23365206
25.  Estimating Infection Attack Rates and Severity in Real Time during an Influenza Pandemic: Analysis of Serial Cross-Sectional Serologic Surveillance Data 
PLoS Medicine  2011;8(10):e1001103.
This study reports that using serological data coupled with clinical surveillance data can provide real-time estimates of the infection attack rates and severity in an emerging influenza pandemic.
Background
In an emerging influenza pandemic, estimating severity (the probability of a severe outcome, such as hospitalization, if infected) is a public health priority. As many influenza infections are subclinical, sero-surveillance is needed to allow reliable real-time estimates of infection attack rate (IAR) and severity.
Methods and Findings
We tested 14,766 sera collected during the first wave of the 2009 pandemic in Hong Kong using viral microneutralization. We estimated IAR and infection-hospitalization probability (IHP) from the serial cross-sectional serologic data and hospitalization data. Had our serologic data been available weekly in real time, we would have obtained reliable IHP estimates 1 wk after, 1–2 wk before, and 3 wk after epidemic peak for individuals aged 5–14 y, 15–29 y, and 30–59 y. The ratio of IAR to pre-existing seroprevalence, which decreased with age, was a major determinant for the timeliness of reliable estimates. If we began sero-surveillance 3 wk after community transmission was confirmed, with 150, 350, and 500 specimens per week for individuals aged 5–14 y, 15–19 y, and 20–29 y, respectively, we would have obtained reliable IHP estimates for these age groups 4 wk before the peak. For 30–59 y olds, even 800 specimens per week would not have generated reliable estimates until the peak because the ratio of IAR to pre-existing seroprevalence for this age group was low. The performance of serial cross-sectional sero-surveillance substantially deteriorates if test specificity is not near 100% or pre-existing seroprevalence is not near zero. These potential limitations could be mitigated by choosing a higher titer cutoff for seropositivity. If the epidemic doubling time is longer than 6 d, then serial cross-sectional sero-surveillance with 300 specimens per week would yield reliable estimates when IAR reaches around 6%–10%.
Conclusions
Serial cross-sectional serologic data together with clinical surveillance data can allow reliable real-time estimates of IAR and severity in an emerging pandemic. Sero-surveillance for pandemics should be considered.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every winter, millions of people catch influenza—a viral infection of the airways—and about half a million die as a result. These seasonal epidemics occur because small but frequent changes in the influenza virus mean that the immune response produced by infection with one year's virus provides only partial protection against the next year's virus. Occasionally, however, a very different influenza virus emerges to which people have virtually no immunity. Such viruses can start global epidemics (pandemics) and kill millions of people. The most recent influenza pandemic began in March 2009 in Mexico, when the first case of influenza caused by a new virus called pandemic A/H1N1 2009 (pdmH1N1) occurred. The virus spread rapidly despite strenuous efforts by national and international public health agencies to contain it, and on 11 June 2009, the World Health Organization (WHO) declared that an influenza pandemic was underway. By the time WHO announced that the pandemic was over (10 August 2010), pdmH1N1 had killed more than 18,000 people.
Why Was This Study Done?
Early in the 2009 influenza pandemic, as in any emerging pandemic, reliable estimates of pdmH1N1's transmissibility (how easily it spreads between people) and severity (the proportion of infected people who needed hospital treatment) were urgently needed to help public health officials plan their response to the pandemic and advise the public about the threat to their health. Because infection with an influenza virus does not always make people ill, the only way to determine the true size and severity of an influenza outbreak is to monitor the occurrence of antibodies (proteins made by the immune system in response to infections) to the influenza virus in the population—so-called serologic surveillance. In this study, the researchers developed a method that uses serologic data to provide real-time estimates of the infection attack rate (IAR; the cumulative occurrence of new infections in a population) and the infection-hospitalization probability (IHP; the proportion of affected individuals that needs to be hospitalized) during an influenza pandemic.
What Did the Researchers Do and Find?
The researchers tested nearly 15,000 serum samples collected in Hong Kong during the first wave of the 2009 pandemic for antibodies to pdmH1N1 and then used a mathematical approach called convolution to estimate IAR and IHP from these serologic data and hospitalization data. They report that if the serological data had been available weekly in real time, they would have been able to obtain reliable estimates of IAR and IHP by one week after, one to two weeks before, and three weeks after the pandemic peak for 5–14 year olds, 15–29 year olds, and 30–59 year olds, respectively. If serologic surveillance had begun three weeks after confirmation of community transmission of pdmH1N1, sample sizes of 150, 350, and 500 specimens per week from 5–14 year olds, 15–19 year olds, and 20–29 year olds, respectively, would have been sufficient to obtain reliable IAR and IHP estimates four weeks before the pandemic peak. However, for 30–59 year olds, even 800 specimens per week would not have generated reliable estimates because of pre-existing antibodies to an H1N1 virus in this age group. Finally, computer simulations of future pandemics indicate that serologic surveillance with 300 serum specimens per week would yield reliable estimates of IAR and IHP as soon as the true IAR reached about 6%.
What Do These Findings Mean?
These findings suggest that serologic data together with clinical surveillance data could be used to provide reliable real-time estimates of IARs and severity in an emerging influenza pandemic. Although the number of samples needed to provide accurate estimates of IAR and IHP in real life may vary somewhat from those reported here because of limitations in the design of this study, these findings nevertheless suggest that the level of testing capacity needed to provide real-time estimates of IAR and IHP during an emerging influenza pandemic should be logistically feasible for most developed countries. Moreover, collection of serologic surveillance data from any major city affected early in an epidemic could potentially provide information of global relevance for public health. Thus, the researchers conclude, serologic monitoring should be included in future plans for influenza pandemic preparedness and response and in planning for other pandemics.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001103.
A recent PLoS Medicine Research Article by Riley et al. provides further information on patterns of infection with the pdmH1N1 virus
The Hong Kong Centre for Health Protection provides information on pandemic H1N1 influenza
The US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including specific information on H1N1 influenza
Flu.gov, a US government website, provides access to information on seasonal, pandemic, and H1N1 influenza
WHO provides information on seasonal influenza and has information on the global response to H1N1 influenza (in several languages)
The UK Health Protection Agency provides information on pandemic influenza and on H1N1 influenza
More information for patients about H1N1 influenza is available through Choices, an information resource provided by the UK National Health Service
doi:10.1371/journal.pmed.1001103
PMCID: PMC3186812  PMID: 21990967

Results 1-25 (1011366)