Search tips
Search criteria

Results 1-25 (635773)

Clipboard (0)

Related Articles

1.  The A and B isoforms of the human progesterone receptor operate through distinct signaling pathways within target cells. 
Molecular and Cellular Biology  1994;14(12):8356-8364.
The biological response to progesterone is mediated by two distinct forms of the human progesterone receptor (hPR-A and hPR-B). In most cell contexts, hPR-B functions as a transcriptional activator of progesterone-responsive genes, whereas hPR-A functions as a transcriptional inhibitor of all steroid hormone receptors. We have created mutations within the carboxyl terminus of hPR which differentially effect the transcriptional activity of hPR-B in a cell- and promoter-specific manner. Analogous mutations, when introduced into hPR-A, have no effect on its ability to inhibit the transcriptional activity of other steroid hormone receptors. The observed differences in the structural requirements for hPR-B and hPR-A function suggest that transcriptional activation and repression by PR are mediated by two separate pathways within the cell. In support of this hypothesis, we have shown that hPR-A mediated repression of human estrogen receptor (hER) transcriptional activity is not dependent on hER expression level but depends largely on the absolute expression level of hPR-A. Thus, it appears that hPR-A inhibits hER transcriptional activity as a consequence of a noncompetitive interaction of hPR-A with either distinct cellular targets or different contact sites on the same target. We propose that hPR-A expression facilitates a ligand-dependent cross-talk among sex steroid receptor signaling pathways within the cell. It is likely, therefore, that alterations in the expression level of hPR-A or its cellular target can have profound effects on the physiological or pharmacological responses to sex steroid hormone receptor ligands.
PMCID: PMC359374  PMID: 7969170
2.  Modulation of the insulin-like growth factor-I system by N-(4-hydroxyphenyl)-retinamide in human breast cancer cell lines. 
British Journal of Cancer  1998;77(12):2138-2147.
The potent mitogenic activity of insulin-like growth factor I (IGF-I) on breast epithelium is inhibited by retinoic acid in oestrogen receptor-positive (ER+) breast cancer cell lines. We studied and compared the effects of N-(4-hydroxyphenyl)-retinamide (4-HPR) in terms of growth inhibition and modulation of the IGF-I system in ER+ (MCF-7) and oestrogen receptor-negative (ER-) (MDA-MB231) breast cancer cell lines. Treatment with 1-10 microM 4-HPR for up to 96 h induced a dose- and time-dependent inhibition of proliferation in both breast cancer cell lines. Induction of apoptosis was much more evident in MCF-7 than in MDA-MB231 cells (30-40% compared with 0-5% respectively at 5 microM for 48 h). Exogenous human recombinant IGF-I (hr-IGF-I)-stimulated cell proliferation was abolished by 1 microM 4-HPR in MCF-7 cells. Immunoreactive IGF-I-like protein concentration in conditioned medium was reduced by 38% in MCF-7 and by 90% in MDA-MB231 cell lines following treatment for 48 h with 5 microM 4-HPR. Western ligand blot analysis showed a reduction of IGF-binding protein 4 (BP4) and BP5 by 67% and 87%, respectively, in MCF-7, whereas IGF-BP4 and -BP1 were reduced by approximately 20% in MDA-MB231 cells. Exposure to 5 microM 4-HPR for 48 h inhibited [125I]IGF-I binding and Scatchard analysis revealed a decrease of more than 50% in maximum binding capacity (Bmax) and a reduced receptor number/cell in both cancer cell lines. Steady-state type I IGF-receptor mRNA levels were reduced by approximately 30% in both tumour cell lines. We conclude that 4-HPR induces a significant down-regulation of the IGF-I system in both ER+ (MCF-7) and ER- (MDA-MB231) breast cancer cell lines. These findings suggest that, in our model, interference with the ER signalling pathway is not the only mechanism of breast cancer growth inhibition by 4-HPR.
PMCID: PMC2150424  PMID: 9649125
3.  Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells 
A full-term pregnancy has been associated with reduced risk for developing breast cancer. In rodent models, the protective effect of pregnancy can be mimicked with a defined regimen of estrogen and progesterone combination (E/P). However, the effects of pregnancy levels of E/P in humans and their underlying mechanisms are not fully understood. In this report, we investigated the growth inhibitory effects of pregnancy levels of E/P and both natural and synthetic retinoids in an immortalized human mammary epithelial cell line, 76N TERT cell line.
We observed that cell growth was modestly inhibited by E/P, 9-cis-retinoic acid (9-cis RA) or all-trans-retinoic acid (ATRA), and strongly inhibited by N-(4-hydroxyphenyl) retinamide (HPR). The growth inhibitory effects of retinoids were further increased in the presence of E/P, suggesting their effects are additive. In addition, our results showed that both E/P and retinoid treatments resulted in increased RARE and p53 gene activity. We further demonstrated that p53 and p21 protein expression were induced following the E/P and retinoid treatments. Furthermore, we demonstrated that while the telomerase activity was moderately inhibited by E/P, 9-cis RA and ATRA, it was almost completely abolished by HPR treatment. These inhibitions on telomerase activity by retinoids were potentiated by co-treatment with E/P, and correlated well with their observed growth inhibitory effects. Finally, this study provides the first evidence that estrogen receptor beta is up-regulated in response to E/P and retinoid treatments.
Taken together, our studies show that part of the anti-growth effects of E/P and retinoids is p53 dependent, and involve activation of p53 and subsequent induction of p21 expression. Inhibition of telomerase activity and up-regulation of estrogen receptor beta are also associated with the E/P- and retinoid-mediated growth inhibition. Our studies also demonstrate that the potency of retinoids on cell growth inhibition may be increased through combination of estrogen and progesterone treatment.
PMCID: PMC555559  PMID: 15755327
4.  Decrease in drug accumulation and in tumour aggressiveness marker expression in a fenretinide-induced resistant ovarianumour cell line 
British Journal of Cancer  2001;84(11):1528-1534.
We investigated whether the efficacy of fenretinide (HPR) against ovarian tumours may be limited by induction of resistance. The human ovarian carcinoma cell line A2780, which is sensitive to a pharmacologically achievable HPR concentration (IC 50= 1 μM), became 10-fold more resistant after exposure to increasing HPR concentrations. The cells (A2780/HPR) did not show cross-resistance to the synthetic retinoid 6-[3-adamantyl-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and were not sensitive, similarly to the parent line, to all- trans -retinoic acid, 13- cis -retinoic acid or N-(4-methoxyphenyl)retinamide. A2780/HPR cells showed, compared to parental cells, a 3-fold reduction in colony-forming ability in agar. The development of HPR resistance was associated with a marked increase in retinoic acid receptor β (RARβ) mRNA and protein levels, which decreased, together with drug resistance, after drug removal. The expression of cell surface molecules associated with tumour progression including HER-2, laminin receptor and β1 integrin was markedly reduced. The increase in the levels of reactive oxygen species is not involved in HPR-resistance because it was similar in parental and resistant cells. Conversely differences in pharmacokinetics may account for resistance because, in A2780/HPR cells, intracellular peak drug levels were 2 times lower than in A2780 cells and an as yet unidentified polar metabolite was present. These data suggest that acquired resistance to HPR is associated with changes in marker expression, suggestive of a more differentiated status and may be explained, at least in part, by reduced drug accumulation and increased metabolism. © 2001 Cancer Research Campaign
PMCID: PMC2363672  PMID: 11384104
retinoids; ovarian tumour; fenretinide-resistance; drug uptake; differentiation; RARβ
5.  4-oxo-N-(4-hydroxyphenyl)retinamide: Two Independent Ways to Kill Cancer Cells 
PLoS ONE  2010;5(10):e13362.
The retinoid 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR) is a polar metabolite of fenretinide (4-HPR) very effective in killing cancer cells of different histotypes, able to inhibit 4-HPR-resistant cell growth and to act synergistically in combination with the parent drug. Unlike 4-HPR and other retinoids, 4-oxo-4-HPR inhibits tubulin polymerization, leading to multipolar spindle formation and mitotic arrest. Here we investigated whether 4-oxo-4-HPR, like 4-HPR, triggered cell death also via reactive oxygen species (ROS) generation and whether its antimicrotubule activity was related to a ROS-dependent mechanism in ovarian (A2780), breast (T47D), cervical (HeLa) and neuroblastoma (SK-N-BE) cancer cell lines.
Methodology/Principal Findings
We provided evidence that 4-oxo-4-HPR, besides acting as an antimicrotubule agent, induced apoptosis through a signaling cascade starting from ROS generation and involving endoplasmic reticulum (ER) stress response, Jun N-terminal Kinase (JNK) activation, and upregulation of the proapoptotic PLAcental Bone morphogenetic protein (PLAB). Through time-course analysis and inhibition of the ROS-related signaling pathway (upstream by vitamin C and downstream by PLAB silencing), we demonstrated that the antimitotic activity of 4-oxo-4-HPR was independent from the oxidative stress induced by the retinoid. In fact, ROS generation occurred earlier than mitotic arrest (within 30 minutes and 2 hours, respectively) and abrogation of the ROS-related signaling pathway did not prevent the 4-oxo-4-HPR-induced mitotic arrest.
These data indicate that 4-oxo-4-HPR anticancer activity is due to at least two independent mechanisms and provide an explanation of the ability of 4-oxo-4-HPR to be more potent than the parent drug and to be effective also in 4-HPR-resistant cell lines. In addition, the double mechanism of action could allow 4-oxo-4-HPR to efficiently target tumour and to eventually counteract the development of drug resistance.
PMCID: PMC2954786  PMID: 20976277
6.  Infectious salmon anaemia virus (ISAV) in Chilean Atlantic salmon (Salmo salar) aquaculture: emergence of low pathogenic ISAV-HPR0 and re-emergence of virulent ISAV-HPR∆: HPR3 and HPR14 
Virology Journal  2013;10:344.
Infectious salmon anaemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), which belongs to the genus Isavirus, family Orthomyxoviridae. ISA is caused by virulent ISAV strains with deletions in a highly polymorphic region (HPR) of the hemagglutinin-esterase (HE) protein (designated virulent ISAV-HPR∆). This study shows the historic dynamics of ISAV-HPR∆ and ISAV-HPR0 in Chile, the genetic relationship among ISAV-HPR0 reported worldwide and between ISAV-HPR0 and ISAV-HPR∆ in Chile, and reports the 2013 ISA outbreak in Chile. The first ISA outbreak in Chile occurred from mid-June 2007 to 2010 and involved the virulent ISAV-HPR7b, which was then replaced by a low pathogenic ISAV-HPR0 variant. We analyzed this variant in 66 laboratory-confirmed ISAV-HPR0 cases in Chile in comparison to virulent ISAV-HPR∆ that caused two new ISA outbreaks in April 2013. Multiple alignment and phylogenetic analysis of HE sequences from all ISAV-HPR0 viruses allowed us to identify three genomic clusters, which correlated with three residue patterns of ISAV-HPR0 (360PST362, 360PAN362 and 360PAT362) in HPR. The virus responsible for the 2013 ISAV-HPR∆ cases in Chile belonged to ISAV-HPR3 and ISAV-HPR14, and in phylogenetic analyses, both clustered with the ISAV-HPR0 found in Chile. The ISAV-HPR14 had the ISAV-HPR0 residue pattern 360PAT362, which is the only type of ISAV-HPR0 variant found in Chile. This suggested to us that the 2013 ISAV-HPR∆ re-emerged from ISAV-HPR0 that is enzootic in Chilean salmon aquaculture and were not new introductions of virulent ISAV-HPR∆ to Chile. The clinical presentations and diagnostic evidence of the 2013 ISA cases indicated a mixed infection of ISAV with the ectoparasite Caligus rogercresseyi and the bacterium Piscirickettsia salmonis, which underscores the need for active ISAV surveillance in areas where ISAV-HPR0 is enzootic, to ensure early detection and control of new ISA outbreaks, as it is considered a risk factor. This is the first report of ISA linked directly to the presence of ISAV-HPR0, and provides strong evidence supporting the contention that ISAV-HPR0 shows a strong relationship to virulent ISAV-HPR∆ viruses and the possibility that it could mutate to virulent ISAV-HPR∆.
PMCID: PMC4222741  PMID: 24268071
Low pathogenic infectious salmon anaemia virus; ISAV-HPR0; Virulent ISAV; ISAV-HPR∆; Virulence; Salmo salar
7.  In vitro activities of novel 4-HPR derivatives on a panel of rhabdoid and other tumor cell lines 
Rhabdoid tumors (RTs) are aggressive pediatric malignancies with poor prognosis. N-(4-hydroxy phenyl) retinamide (4-HPR or fenretinide) is a potential chemotherapeutic for RTs with activity correlated to its ability to down-modulate Cyclin D1. Previously, we synthesized novel halogen-substituted and peptidomimetic-derivatives of 4-HPR that retained activity in MON RT cells. Here we analyzed the effect of 4-HPR in inhibiting the growth of several RT, glioma, and breast cancer cell lines and tested their effect on cell cycle, apoptosis and Cyclin D1 expression.
Effect of compounds on RT cell cycle profiles, and cell death were assessed by MTS cell survival assays and FACS analysis. The effects of treatment on Cyclin D1 expression were determined by immunoblotting. The efficacy of these compounds on glioma and breast cancer cell lines was also determined using MTS assays.
Low micromolar concentrations of 4-HPR derivatives inhibited cell survival of all RT cells tested. The 4-HPR derivatives altered RT cell cycle profiles and induced high levels of cell death that was correlated with their potency. ATRA exhibited high IC50 values in all cell lines tested and did not cause cell death. In MON RT cells, the iodo-substituted compounds were more active than 4-HPR in inducing cell cycle arrest and apoptosis. Additionally, the activity of the compounds correlated with their ability to down-modulate Cyclin D1: while active compounds reduced Cyclin D1 levels, inactive ATRA did not. In glioma and breast cancer cell lines, 4-HPR and 4-HPR derivatives showed variable efficacy.
Here we demonstrate, for the first time, that the inhibitory activities of novel halogen-substituted and peptidomimetic derivatives of 4-HPR are correlated to their ability to induce cell death and down-modulate Cyclin D1. These 4-HPR derivatives showed varied potencies in breast cancer and glioma cell lines. These data indicate that further studies are warranted on these derivatives of 4-HPR due to their low IC50s in RT cells. These derivatives are of general interest, as conjugation of halogen radioisotopes such as 18F, 124I, or 131I to 4-HPR will allow us to combine chemotherapy and radiotherapy with a single drug, and to perform PET/SPECT imaging studies in the future.
PMCID: PMC3204277  PMID: 21951911
8.  Effects of retinoic acid and fenretinide on the c-erbB-2 expression, growth and cisplatin sensitivity of breast cancer cells. 
British Journal of Cancer  1998;78(1):79-87.
We investigated the effects of all-trans retinoic acid (ATRA) and fenretinide (4-HPR) on c-erbB-2 expression in SK-BR-3, BT-474 and MCF-7 breast cancer cells and on the growth, differentiation, apoptosis and cisplatin (CDDP) sensitivity of SK-BR-3 cells. It has been reported that oestrogen inhibits c-erbB-2 in oestrogen receptor-positive breast cancer cells. Using ELISA, Western and Northern analysis we have demonstrated that ATRA and 4-HPR exert similar effects down-regulating c-erbB-2 protein and mRNA in c-erbB-2-overexpressing SK-BR-3 and BT-474 and in normally expressing MCF-7 cells. Both retinoids inhibit SK-BR-3 cell growth. ATRA induces cellular enlargement and flattening, suggesting epithelial differentiation. 4-HPR causes nuclear and cytoplasmic condensation, DNA fragmentation and externalization of phosphatidylserine, indicating apoptosis. c-erbB-2 expression/activity has been linked to sensitivity against CDDP. Therefore, combinations of ATRA or 4-HPR with CDDP were tested for their anti-proliferative activity. Retinoid-conditioned cells were either exposed to retinoid and CDDP (schedule I, 'continuous retinoid treatment') or to CDDP alone (schedule II, 'retinoid pretreatment'). This retinoid-conditioning followed by CDDP +/- retinoid yields stronger growth inhibition compared with unconditioned cells, which were exposed to CDDP +/- retinoid (schedule III, 'no retinoid pretreatment'). The inefficacy of schedule III indicates that retinoid-conditioning is essential for the improvement of the antiproliferative effect. The interactions in schedules I and II are synergistic for ATRA and CDDP, but slightly antagonistic for 4-HPR and CDDR However, 4-HPR + CDDP is more effective in growth inhibition than each drug alone.
PMCID: PMC2062943  PMID: 9662255
9.  Polymorphic repeat in AIB1 does not alter breast cancer risk 
Breast Cancer Research : BCR  2000;2(5):378-385.
We assessed the association between a glutamine repeat polymorphism in AIB1 and breast cancer risk in a case-control study (464 cases, 624 controls) nested within the Nurses' Health Study cohort. We observed no association between AIB1 genotype and breast cancer incidence, or specific tumor characteristics. These findings suggest that AIB1 repeat genotype does not influence postmenopausal breast cancer risk among Caucasian women in the general population.
A causal association between endogenous and exogenous estrogens and breast cancer has been established. Steroid hormones regulate the expression of proteins that are involved in breast cell proliferation and development after binding to their respective steroid hormone receptors. Coactivator and corepressor proteins have recently been identified that interact with steroid hormone receptors and modulate transcriptional activation [1]. AIB1 (amplified in breast 1) is a member of the steroid receptor coactivator (SRC) family that interacts with estrogen receptor (ER)α in a ligand-dependent manner, and increases estrogen-dependent transcription [2]. Amplification and overexpression of AIB1 has been observed in breast and ovarian cancer cell lines and in breast tumors [2,3]. A polymorphic stretch of glutamine amino acids, with unknown biologic function, has recently been described in the carboxyl-terminal region of AIB1 [4]. Among women with germline BRCA1 mutations, significant positive associations were observed between AIB1 alleles with 26 or fewer glutamine repeats and breast cancer risk [5]
To establish whether AIB1 repeat alleles are associated with breast cancer risk and specific tumor characteristics among Caucasian women.
Patients and methods:
We evaluated associations prospectively between AIB1 alleles and breast cancer risk in the Nurses' Health Study using a nested case-control design. The Nurses' Health Study was initiated in 1976, when 121 700 US-registered nurses between the ages of 30 and 55 years returned an initial questionnaire reporting medical histories and baseline health-related exposures. Between 1989 and 1990 blood samples were collected from 32 826 women. Eligible cases in this study consisted of women with pathologically confirmed incident breast cancer from the subcohort who gave a blood specimen. Cases with a diagnosis anytime after blood collection up to June 1, 1994, with no previously diagnosed cancer except for nonmelanoma skin cancer were included. Controls were randomly selected participants who gave a blood sample and were free of diagnosed cancer (except nonmelanoma skin cancer) up to and including the interval in which the cases were diagnosed, and were matched to cases on year of birth, menopausal status, postmenopausal hormone use, and time of day, month and fasting status at blood sampling. The nested case-control study consisted of 464 incident breast cancer cases and 624 matched controls. The protocol was approved by the Committee on Human Subjects, Brigham and Womens' Hospital, Boston, Massachusetts USA. Information regarding breast cancer risk factors was obtained from the 1976 baseline questionnaire, subsequent biennial questionnaires, and a questionnaire that was completed at the time of blood sampling. Histopathologic characteristics, such as stage, tumor size and ER and progesterone receptor (PR) status, were ascertained from medical records when available and used in case subgroup analyses.
AIB1 repeat alleles were determined by automated fluorescence-based fragment detection from polymerase chain reaction (PCR)-amplified DNA extracted from peripheral blood lymphocytes. Fluorescent 5' -labeled primers were utilized for PCR amplification, and glutamine repeat number discrimination was performed using the ABI Prism 377 DNA Sequencer (Perkin-Elmer, Foster City, CA, USA). Genotyping was performed by laboratory personnel who were blinded to case-control status, and blinded quality control samples were inserted to validate genotyping identification procedures (n = 110); concordance for the blinded samples was 100%. Methods regarding plasma hormone assays have previously been reported [6]. Conditional and unconditional logistic regression models, including terms for the matching variables and other potential confounders, were used to assess the association of AIB1 alleles and breast cancer characterized by histologic subtype, stage of disease, and ER and PR status. We also evaluated whether breast cancer risk associated with AIB1 genotype differed within strata of established breast cancer risk factors, and whether repeat length in AIB1 indirectly influenced plasma hormone levels.
The case-control comparisons of established breast cancer risk factors among these women have previously been reported [7], and are generally consistent with expectation. The mean age of the women was 58.3 (standard deviation [SD] 7.1) years, ranging from 43 to 69 years at blood sampling. There were 188 premenopausal and 810 postmenopausal women, with mean ages of 48.1 (SD 2.8) years and 61.4 (SD 5.0) years, respectively, at blood sampling. Women in this study were primarily white; Asians, African-Americans and Hispanics comprised less than 1% of cases or controls.
The distribution of AIB1 glutamine repeat alleles and AIB1 genotypes for cases and controls are presented in Table 1. Women with AIB1 alleles of 26 glutamine repeats or fewer were not at increased risk for breast cancer (odds ratio [OR] 1.01, 95% confidence interval [CI] 0.75-1.36; Table 2). Results were also similar by menopausal status and in analyses additionally adjusting for established breast cancer risk factors. Among premenopausal women, the OR for women with at least one allele with 26 glutamine repeats or fewer was 0.82 (95% Cl 0.37-1.81), and among postmenopausal women the OR was 1.09 (95% Cl 0.78-1.52; Table 2). We did not observe evidence of a positive association between shorter repeat length and advanced breast cancer, defined as women with breast cancer having one or more involved nodes (OR 1.07, 95% Cl 0.64-1.78), or with cancers with a hormone-dependent phenotype (ER-positive: OR 1.16, 95% Cl 0.81-1.65; Table 3). No associations were observed among women who had one or more alleles with 26 glutamine repeats or fewer, with or without a family history of breast cancer (family history: OR 1.09; 95% Cl 0.46-2.58; no family history: OR 0.94; 95% Cl 0.68-1.31; test for interaction P = 0.65). We also did not observe associations with breast cancer risk to be modified by other established breast cancer risk factors. Among postmenopausal controls not using postmenopausal hormones, geometric least-squared mean plasma levels of estrone sulfate and estrone were similar among carriers and noncarriers of AIB1 alleles with 26 glutamine repeats or fewer (both differences: ≤ +3.5%; P >0.50). Mean levels of estradiol were slightly, but nonsignificantly elevated among carriers of alleles with 26 glutamine repeats or fewer (+11.6%; P = 0.08).
In this population-based nested case-control study, women with at most 26 repeating glutamine codons (CAG/CAA) within the carboxyl terminus of AIB1 were not at increased risk for breast cancer. We did not observe shorter repeat alleles to be positively associated with breast cancer grouped by histologic subtype, stage of disease, or by ER and PR status. These data suggest that AIB1 repeat length is not a strong independent risk factor for postmenopausal breast cancer, and does not modify the clinical presentation of the tumor among Caucasian women in the general population.
PMCID: PMC13920  PMID: 11056690
AIB1 polymorphism; breast cancer; genetic susceptibility; molecular epidemiology
10.  Inhibition of aromatase activity and expression in MCF-7 cells by the chemopreventive retinoid N -(4-hydroxy-phenyl)-retinamide 
British Journal of Cancer  2000;83(3):333-337.
The effect of the chemopreventive synthetic retinoid N -(4-hydroxyphenyl)-retinamide (4-HPR) on aromatase activity and expression was examined. 4-HPR caused a dose-dependent inhibition of aromatase activity in microsomes isolated from JEG-3 human placental carcinoma cells. The kinetics of inhibition were analysed by double-reciprocal plot. The K m of the substrate increased and the V max of the reaction decreased in the presence of 4-HPR, indicating that enzyme inhibition involved both competition for the substrate-binding site and non-competitive mechanisms. To determine whether 4-HPR would also inhibit aromatase activity in intact cells, MCF-7 human breast cancer cells were incubated with or without cAMP in the presence of 4-HPR. 4-HPR inhibited both basal and cAMP-induced aromatase activity in intact MCF-7 cells. The induction of aromatase mRNA expression in MCF-7 cells by cAMP was inhibited in cells treated with 4-HPR. These results indicate that 4-HPR inhibits both the enzymatic activity and expression of aromatase. These activities may play an important role in the known chemopreventive effect of 4-HPR towards breast cancer. © 2000 Cancer Research Campaign
PMCID: PMC2374555  PMID: 10917548
aromatase; 4-HPR; MCF-7; cAMP
11.  Premenopausal endogenous steroid hormones and breast cancer risk: results from the Nurses' Health Study II 
Prior research supports an association between endogenous sex steroids and breast cancer among postmenopausal women; the association is less clear among premenopausal women.
We evaluated the associations between estrogens, androgens, progesterone and sex hormone binding globulin (SHBG) and breast cancer in a nested case-control study in the Nurses' Health Study II. Between 1996 and 1999, 29,611 participants provided blood samples; 18,521 provided samples timed in early follicular and mid-luteal phases of the menstrual cycle. A total of 634 women, premenopausal at blood collection, developed breast cancer between 1999 and 2009 and were matched to 1,264 controls (514 cases and 1,030 controls with timed samples). We used conditional logistic regression controlling for breast cancer risk factors for overall analyses; unconditional logistic regression additionally controlling for matching factors was used for subgroup analyses.
In analyses of premenopausal estrogens including breast cancers diagnosed both before and after menopause, there was no association between follicular estradiol, estrone and free estradiol and risk of either total or invasive breast cancer. Luteal estradiol was positively associated with estrogen receptor positive (ER+)/progesterone receptor positive (PR+) cancers (5th vs. 1st quintile odds ratio (OR): 1.7 (95% confidence interval (CI): 1.0 to 2.9), Ptrend = 0.02). Luteal estrone, free estradiol and progesterone were not associated with risk. Androgens were suggestively or significantly associated with risk when the sample was restricted to invasive tumors (for example, testosterone: OR: 1.4 (1.0 to 2.0), Ptrend = 0.23) and ER+/PR+ disease (testosterone: OR: 1.7 (1.1 to 2.6) Ptrend = 0.10; dehydroepiandrosterone sulfate (DHEAS) OR: 1.3 (0.8 to 2.0) Ptrend = 0.05). SHBG was not associated with breast cancer risk. The results varied by menopausal status at diagnosis, with follicular estradiol suggestively positively associated with breast cancers in women premenopausal at diagnosis (OR: 1.1 (0.9 to 1.3) and significantly inversely associated with postmenopausal disease (OR: 0.6 (0.4 to 0.9); Pheterogeneity < 0.01).
Androgens were associated with modestly increased risk of breast cancer in this population, with stronger associations for invasive and ER+/PR+ disease. Luteal phase estradiol levels were suggestively associated with ER+/PR+ tumors but no other strong associations were observed with estrogens. Associations with follicular phase estrogens may vary by menopausal status at diagnosis, but case numbers were limited. Additional studies to confirm the role of premenopausal hormones in the etiology of both premenopausal and postmenopausal breast cancer are needed.
PMCID: PMC3672790  PMID: 23497468
12.  Fenretinide metabolism in humans and mice: utilizing pharmacological modulation of its metabolic pathway to increase systemic exposure 
British Journal of Pharmacology  2011;163(6):1263-1275.
High plasma levels of fenretinide [N-(4-hydroxyphenyl)retinamide (4-HPR)] were associated with improved outcome in a phase II clinical trial. Low bioavailability of 4-HPR has been limiting its therapeutic applications. This study characterized metabolism of 4-HPR in humans and mice, and to explore the effects of ketoconazole, an inhibitor of CYP3A4, as a modulator to increase 4-HPR plasma levels in mice and to increase the low bioavailability of 4-HPR.
4-HPR metabolites were identified by mass spectrometric analysis and levels of 4-HPR and its metabolites [N-(4-methoxyphenyl)retinamide (4-MPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR)] were quantified by high-performance liquid chromatography (HPLC). Kinetic analysis of enzyme activities and the effects of enzyme inhibitors were performed in pooled human and pooled mouse liver microsomes, and in human cytochrome P450 (CYP) 3A4 isoenzyme microsomes. In vivo metabolism of 4-HPR was inhibited in mice.
Six 4-HPR metabolites were identified in the plasma of patients and mice. 4-HPR was oxidized to 4-oxo-4-HPR, at least in part via human CYP3A4. The CYP3A4 inhibitor ketoconazole significantly reduced 4-oxo-4-HPR formation in both human and mouse liver microsomes. In two strains of mice, co-administration of ketoconazole with 4-HPR in vivo significantly increased 4-HPR plasma concentrations by > twofold over 4-HPR alone and also increased 4-oxo-4-HPR levels.
Mice may serve as an in vivo model of human 4-HPR pharmacokinetics. In vivo data suggest that the co-administration of ketoconazole at normal clinical doses with 4-HPR may increase systemic exposure to 4-HPR in humans.
PMCID: PMC3144539  PMID: 21391977
fenretinide; metabolism; ketoconazole; paediatric cancers
13.  Fenretinide metabolism in humans and mice: utilizing pharmacological modulation of its metabolic pathway to increase systemic exposure 
British Journal of Pharmacology  2011;163(6):1263-1275.
High plasma levels of fenretinide [N-(4-hydroxyphenyl)retinamide (4-HPR)] were associated with improved outcome in a phase II clinical trial. Low bioavailability of 4-HPR has been limiting its therapeutic applications. This study characterized metabolism of 4-HPR in humans and mice, and to explore the effects of ketoconazole, an inhibitor of CYP3A4, as a modulator to increase 4-HPR plasma levels in mice and to increase the low bioavailability of 4-HPR.
4-HPR metabolites were identified by mass spectrometric analysis and levels of 4-HPR and its metabolites [N-(4-methoxyphenyl)retinamide (4-MPR) and 4-oxo-N-(4-hydroxyphenyl)retinamide (4-oxo-4-HPR)] were quantified by high-performance liquid chromatography (HPLC). Kinetic analysis of enzyme activities and the effects of enzyme inhibitors were performed in pooled human and pooled mouse liver microsomes, and in human cytochrome P450 (CYP) 3A4 isoenzyme microsomes. In vivo metabolism of 4-HPR was inhibited in mice.
Six 4-HPR metabolites were identified in the plasma of patients and mice. 4-HPR was oxidized to 4-oxo-4-HPR, at least in part via human CYP3A4. The CYP3A4 inhibitor ketoconazole significantly reduced 4-oxo-4-HPR formation in both human and mouse liver microsomes. In two strains of mice, co-administration of ketoconazole with 4-HPR in vivo significantly increased 4-HPR plasma concentrations by > twofold over 4-HPR alone and also increased 4-oxo-4-HPR levels.
Mice may serve as an in vivo model of human 4-HPR pharmacokinetics. In vivo data suggest that the co-administration of ketoconazole at normal clinical doses with 4-HPR may increase systemic exposure to 4-HPR in humans.
PMCID: PMC3144539  PMID: 21391977
fenretinide; metabolism; ketoconazole; paediatric cancers
14.  Relationships of hHpr1/p84/Thoc1 Expression to Clinicopathologic Characteristics and Prognosis in Non-small Cell Lung Cancer 
Nuclear matrix proteins (NMPs) are important diagnostic and prognostic markers in various human cancers. The hHpr1/p84/Thoc1 protein, a key NMP, resides in the nuclear matrix and is involved in the human TREX complex, which is required for regulation of transcription elongation, pre-RNA splicing, and mRNA export of a subset of human genes. Depletion of hHpr1/p84/Thoc1 decreases growth rates in multiple cancer cell lines, and the expression levels of hHpr1/p84/Thoc1 are strongly associated with tumor size and aggressiveness of several human cancers. Little is known about the expression of this protein in human non-small cell lung cancer (NSCLC) and its association with patients’ clinicopathologic characteristics and prognosis. We evaluated hHpr1/p84/Thoc1 expression in 133 NSCLC patients by immunohistochemistry of tissue microarrays using paraffin-embedded tumor tissue and we confirmed the tissue staining by Western blot analysis. The prognostic significance of hHpr1/p84/Thoc1 expression in tumor tissue was assessed by the Cox proportional hazards regression model. Expression of hHpr1/p84/Thoc1 was found in 51% of patients, and was more prevalent in males than females (59% vs 43%, p = 0.07) and in blacks than whites (91% vs 48%, p = 0.009). In survival analysis, hHpr1/p84/Thoc1 expression appeared to be weakly associated with elevated risk of death among patients with stage I tumors (RR = 1.53, 95% CI = 0.85-2.77, p = 0.16), squamous cell carcinomas (RR = 1.75, 95% CI = 0.73-4.21, p = 0.21), and family histories of lung cancer (RR = 1.55, 95% CI = 0.81-2.97, p=0.18), although none of these associations was statistically significant. Thus elevated expression of hHpr1/p84/Thoc1 is common in NSCLC and may have prognostic significance in subgroups of patients. Further studies with larger sample size are needed to elucidate the role of this critical nuclear matrix protein in NSCLC prognosis.
PMCID: PMC2606038  PMID: 18469354
nuclear matrix proteins; hHpr1/p84/Thoc1; non-small cell lung cancer; tissue microarray
15.  Humanised IgG1 antibody variants targeting membrane-bound carcinoembryonic antigen by antibody-dependent cellular cytotoxicity and phagocytosis 
British Journal of Cancer  2009;101(10):1758-1768.
The effect of glycoengineering a membrane specific anti-carcinoembryonic antigen (CEA) (this paper uses the original term CEA for the formally designated CEACAM5) antibody (PR1A3) on its ability to enhance killing of colorectal cancer (CRC) cell lines by human immune effector cells was assessed. In vivo efficacy of the antibody was also tested.
The antibody was modified using EBNA cells cotransfected with β-1,4-N-acetylglucosaminyltransferase III and the humanised hPR1A3 antibody genes.
The resulting alteration of the Fc segment glycosylation pattern enhances the antibody's binding affinity to the FcγRIIIa receptor on human immune effector cells but does not alter the antibody's binding capacity. Antibody-dependent cellular cytotoxicity (ADCC) is inhibited in the presence of anti-FcγRIII blocking antibodies. This glycovariant of hPR1A3 enhances ADCC 10-fold relative to the parent unmodified antibody using either unfractionated peripheral blood mononuclear or natural killer (NK) cells and CEA-positive CRC cells as targets. NK cells are far more potent in eliciting ADCC than either freshly isolated monocytes or granulocytes. Flow cytometry and automated fluorescent microscopy have been used to show that both versions of hPR1A3 can induce antibody-dependent cellular phagocytosis (ADCP) by monocyte-derived macrophages. However, the glycovariant antibody did not mediate enhanced ADCP. This may be explained by the relatively low expression of FcγRIIIa on cultured macrophages. In vivo studies show the efficacy of glycoengineered humanised IgG1 PR1A3 in significantly improving survival in a CRC metastatic murine model.
The greatly enhanced in vitro ADCC activity of the glycoengineered version of hPR1A3 is likely to be clinically beneficial.
PMCID: PMC2778542  PMID: 19904275
PR1A3; CEA; ADCC; ADCP; colorectal cancer; glycoengineering; NK cells; monocyte-derived macrophages
16.  AF1q: A Novel Mediator of Basal and 4-HPR-Induced Apoptosis in Ovarian Cancer Cells 
PLoS ONE  2012;7(6):e39968.
Fenretinide (4-HPR) is a synthetic retinoid that exhibits potent antitumor and chemopreventive activities against different malignancies, including ovarian tumors. We previously showed that in ovarian cancer cells, 4-HPR induces apoptosis through a signaling cascade starting from reactive oxygen species (ROS) generation and involving endoplasmic reticulum (ER) stress response, Jun N-terminal Kinase (JNK) activation, and induction of the proapoptotic PLAcental Bone morphogenetic protein (PLAB). Since recent studies have shown that the oncogene ALL1-fused from chromosome 1q (AF1q), a retinoic acid target gene, is implicated in apoptosis induction by several therapeutic agents, we investigated its possible involvement in the apoptosis induced by 4-HPR in ovarian cancer cells.
Methodology/Principal Findings
Protein expression analysis, performed in ovarian cancer cells and extended to other histotypes (breast, neuroblastoma, and cervical), revealed that 4-HPR enhanced AF1q expression in cancer cells sensitive to the retinoid but not in resistant cells. Through gene silencing, AF1q was found functionally involved in 4-HPR-induced apoptosis in A2780, an ovarian cancer cell line highly sensitive to retinoid growth inhibitory and apoptotic effects. Inhibition of the signaling intermediates of the 4-HPR apoptotic cascade showed that AF1q upregulation was depended on prior generation of ROS, induction of ER stress response, JNK activation, and PLAB upmodulation. Finally, we found that direct overexpression of AF1q, in the absence of external stimuli, increased apoptosis in ovarian cancer cell lines.
The study expands the knowledge of the 4-HPR mechanism of action, which has not yet been completely elucidated, identifying AF1q as a novel mediator of retinoid anticancer activity. In addition, we demonstrate, for the first time, that AF1q plays a role in the onset of basal apoptosis in ovarian cancer cells, thus providing new information about the activity of this protein whose biologic functions are mostly unknown.
PMCID: PMC3383705  PMID: 22761939
17.  Phosphoenolpyruvate-sugar phosphotransferase transport system of Streptococcus mutans: purification of HPr and enzyme I and determination of their intracellular concentrations by rocket immunoelectrophoresis. 
Infection and Immunity  1985;50(3):817-825.
Enzyme I and HPr, the general proteins of the phosphoenolpyruvate-sugar phosphotransferase system, play a pivotal role in the control of sugar utilization in gram-negative and gram-positive bacteria. To determine whether growth conditions could modify the rate of biosynthesis of these proteins in Streptococcus mutans, we first purified to homogeneity enzyme I and HPr from S. mutans ATCC 27352. Using specific antibodies obtained against these proteins, we determined by rocket electrophoresis the intracellular levels of enzyme I and HPr in cells of S. mutans 27352 grown under various batch culture conditions and in a number of glucose-grown cells of other strains of S. mutans. HPr was purified by the procedure reported by Gauthier et al. (L. Gauthier, D. Mayrand, and C. Vadeboncoeur, J. Bacteriol. 160:755-763, 1984) and displayed a single band with a molecular weight of 6,650 when analyzed by sodium dodecyl sulfate-urea gel electrophoresis. Enzyme I was purified by DEAE-cellulose chromatography, affinity chromatography on an anti-Streptococcus salivarius column, and preparative electrophoresis. The protein migrated as a single band in native and denaturating gel electrophoresis. The subunit molecular weight of enzyme I determined by electrophoresis under denaturating conditions was 68,000. In gel filtration chromatography at 4 degrees C, the enzyme migrated as a 135,000- to 160,000-molecular-weight species, suggesting that enzyme I is a dimer. In double immunodiffusion experiments, antibodies against HPr reacted with several oral streptococci, Streptococcus lactis, Streptococcus faecium, and Lactobacillus casei, but not with Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Antibodies against enzyme I of S. mutans 27352 cross-reacted with enzyme I from all the other oral streptococci tested. No cross-reaction was observed with other gram-positive and gram-negative bacteria. The levels of enzyme I and HPr determined by rocket electrophoresis in S. mutans 27352 varied at the most by twofold, depending on the growth conditions. Glucose-grown cells of other S. mutans strains contained levels of enzyme I and HPr which were similar to those found in S. mutans 27352.
PMCID: PMC261154  PMID: 4066033
18.  The Opposing Transcriptional Activities of the Two Isoforms of the Human Progesterone Receptor Are Due to Differential Cofactor Binding 
Molecular and Cellular Biology  2000;20(9):3102-3115.
The human progesterone receptor (PR) exists as two functionally distinct isoforms, hPRA and hPRB. hPRB functions as a transcriptional activator in most cell and promoter contexts, while hPRA is transcriptionally inactive and functions as a strong ligand-dependent transdominant repressor of steroid hormone receptor transcriptional activity. Although the precise mechanism of hPRA-mediated transrepression is not fully understood, an inhibitory domain (ID) within human PR, which is necessary for transrepression by hPRA, has been identified. Interestingly, although ID is present within both hPR isoforms, it is functionally active only in the context of hPRA, suggesting that the two receptors adopt distinct conformations within the cell which allow hPRA to interact with a set of cofactors that are different from those recognized by hPRB. In support of this hypothesis, we identified, using phage display technology, hPRA-selective peptides which differentially modulate hPRA and hPRB transcriptional activity. Furthermore, using a combination of in vitro and in vivo methodologies, we demonstrate that the two receptors exhibit different cofactor interactions. Specifically, it was determined that hPRA has a higher affinity for the corepressor SMRT than hPRB and that this interaction is facilitated by ID. Interestingly, inhibition of SMRT activity, by either a dominant negative mutant (C'SMRT) or histone deacetylase inhibitors, reverses hPRA-mediated transrepression but does not convert hPRA to a transcriptional activator. Together, these data indicate that the ability of hPRA to transrepress steroid hormone receptor transcriptional activity and its inability to activate progesterone-responsive promoters occur by distinct mechanisms. To this effect, we observed that hPRA, unlike hPRB, was unable to efficiently recruit the transcriptional coactivators GRIP1 and SRC-1 upon agonist binding. Thus, although both receptors contain sequences within their ligand-binding domains known to be required for coactivator binding, the ability of PR to interact with cofactors in a productive manner is regulated by sequences contained within the amino terminus of the receptors. We propose, therefore, that hPRA is transcriptionally inactive due to its inability to efficiently recruit coactivators. Furthermore, our experiments indicate that hPRA interacts efficiently with the corepressor SMRT and that this activity permits it to function as a transdominant repressor.
PMCID: PMC85605  PMID: 10757795
19.  Anti-tumor effects of retinoids combined with trastuzumab or tamoxifen in breast cancer cells: induction of apoptosis by retinoid/trastuzumab combinations 
HER2 and estrogen receptor (ER) are important in breast cancer and are therapeutic targets of trastuzumab (Herceptin) and tamoxifen, respectively. Retinoids inhibit breast cancer growth, and modulate signaling by HER2 and ER. We hypothesized that treatment with retinoids and simultaneous targeting of HER2 and/or ER may have enhanced anti-tumor effects.
The effects of retinoids combined with trastuzumab or tamoxifen were examined in two human breast cancer cell lines in culture, BT474 and SKBR3. Assays of proliferation, apoptosis, differentiation, cell cycle distribution, and receptor signaling were performed.
In HER2-overexpressing/ER-positive BT474 cells, combining all-trans retinoic acid (atRA) with tamoxifen or trastuzumab synergistically inhibited cell growth, and altered cell differentiation and cell cycle. Only atRA/trastuzumab-containing combinations induced apoptosis. BT474 and HER2-overexpressing/ER-negative SKBR3 cells were treated with a panel of retinoids (atRA, 9-cis-retinoic acid, 13-cis-retinoic acid, or N-(4-hydroxyphenyl) retinamide (fenretinide) (4-HPR)) combined with trastuzumab. In BT474 cells, none of the single agents except 4-HPR induced apoptosis, but again combinations of each retinoid with trastuzumab did induce apoptosis. In contrast, the single retinoid agents did cause apoptosis in SKBR3 cells; this was only modestly enhanced by addition of trastuzumab. The retinoid drug combinations altered signaling by HER2 and ER. Retinoids were inactive in trastuzumab-resistant BT474 cells.
Combining retinoids with trastuzumab maximally inhibits cell growth and induces apoptosis in trastuzumab-sensitive cells. Treatment with such combinations may have benefit for breast cancer patients.
PMCID: PMC2949655  PMID: 20696059
20.  Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. 
Journal of Bacteriology  1996;178(4):1126-1133.
The permeases of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system (PTS), the sugar-specific enzymes II, are energized by sequential phosphoryl transfer from phosphoenolpyruvate to (i) enzyme I, (ii) the phosphocarrier protein HPr, (iii) the enzyme IIA domains of the permeases, and (iv) the enzyme IIBC domains of the permeases which transport and phosphorylate their sugar substrates. A number of site-specific mutants of HPr were examined by using kinetic approaches. Most of the mutations exerted minimal effects on the kinetic parameters characterizing reactions involving phosphoryl transfer from phospho-HPr to various sugars. However, when the well-conserved aspartyl 69 residue in HPr was changed to a glutamyl residue, the affinities for phospho-HPr of the enzymes II specific for mannitol, N-acetylglucosamine, and beta-glucosides decreased markedly without changing the maximal reaction rates. The same mutation reduced the spontaneous rate of phosphohistidyl HPr hydrolysis but did not appear to alter the rate of phosphoryl transfer from phospho-enzyme I to HPr. When the adjacent glutamyl residue 70 in HPr was changed to a lysyl residue, the Vmax values of the reactions catalyzed by the enzymes II were reduced, but the Km values remained unaltered. Changing this residue to alanine exerted little effect. Site-specific alterations in the C terminus of the beta-glucoside enzyme II which reduced the maximal reaction rate of phosphoryl transfer about 20-fold did not alter the relative kinetic parameters because of the aforementioned mutations in HPr. Published three-dimensional structural analyses of HPr and the complex of HPr with the glucose-specific enzyme IIA (IIAGlc) (homologous to the beta-glucoside and N-acetylglucosamine enzyme IIA domains) have revealed that residues 69 and 70 in HPr are distant from the active phosphorylation site and the IIAGlc binding interface in HPr. The results reported therefore suggest that residues D-69 and E-70 in HPr play important roles in controlling conformational aspects of HPr that influence (i) autophosphohydrolysis, (ii) the interaction of this protein with the sugar permeases of the bacterial phosphotransferase system, and (iii) catalysis of phosphoryl transfer to the IIA domains in these permeases.
PMCID: PMC177775  PMID: 8576048
21.  HYPER RECOMBINATION1 of the THO/TREX Complex Plays a Role in Controlling Transcription of the REVERSION-TO-ETHYLENE SENSITIVITY1 Gene in Arabidopsis 
PLoS Genetics  2015;11(2):e1004956.
Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) represses ethylene hormone responses by promoting ethylene receptor ETHYLENE RESPONSE1 (ETR1) signaling, which negatively regulates ethylene responses. To investigate the regulation of RTE1, we performed a genetic screening for mutations that suppress ethylene insensitivity conferred by RTE1 overexpression in Arabidopsis. We isolated HYPER RECOMBINATION1 (HPR1), which is required for RTE1 overexpressor (RTE1ox) ethylene insensitivity at the seedling but not adult stage. HPR1 is a component of the THO complex, which, with other proteins, forms the TRanscription EXport (TREX) complex. In yeast, Drosophila, and humans, the THO/TREX complex is involved in transcription elongation and nucleocytoplasmic RNA export, but its role in plants is to be fully determined. We investigated how HPR1 is involved in RTE1ox ethylene insensitivity in Arabidopsis. The hpr1-5 mutation may affect nucleocytoplasmic mRNA export, as revealed by in vivo hybridization of fluorescein-labeled oligo(dT)45 with unidentified mRNA in the nucleus. The hpr1-5 mutation reduced the total and nuclear RTE1 transcript levels to a similar extent, and RTE1 transcript reduction rate was not affected by hpr1-5 with cordycepin treatment, which prematurely terminates transcription. The defect in the THO-interacting TEX1 protein of TREX but not the mRNA export factor SAC3B also reduced the total and nuclear RTE1 levels. SERINE-ARGININE-RICH (SR) proteins are involved mRNA splicing, and we found that SR protein SR33 co-localized with HPR1 in nuclear speckles, which agreed with the association of human TREX with the splicing machinery. We reveal a role for HPR1 in RTE1 expression during transcription elongation and less likely during export. Gene expression involved in ethylene signaling suppression was not reduced by the hpr1-5 mutation, which indicates selectivity of HPR1 for RTE1 expression affecting the consequent ethylene response. Thus, components of the THO/TREX complex appear to have specific roles in the transcription or export of selected genes.
Author Summary
The transcription and export of RNA is a dynamic and highly coordinated process. mRNA species that are selectively mediated by the THO/TRanscription EXport (THO/TREX) complex for their transcription and export remain to be identified. As well, the specific roles of complex components in transcription-coupled export are unclear. We reveal a role for HYPER RECOMBINATION1 (HPR1) [the yeast HYPER RECOMBINATION1 (Hpr1) homolog] in REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) transcription elongation but not activation or export, which agrees with the role of yeast Hpr1 in transcription elongation. Defects in the THO/TREX component TEX1 but not the RNA-export TREX-2 component SAC3B also reduced the native RTE1 level. Our data suggest a specific role of the THO/TREX component HPR1 in RTE1 expression. Whether TEX1 is involved in RTE1 transcription or stability remains to be determined. The yeast Sub2 protein is an RNA helicase involved in unwinding the inhibitory structure in the nascent RNA, and SUB2 overexpression suppresses yeast Δhpr1 defects; HPR1 could be involved in expression of selected genes with higher-order structure, where RNA polymerase movement could pause. Studies of the gene structure and transcription activity could shed light on roles of these components in gene expression regulation at the transcription-export level.
PMCID: PMC4334170  PMID: 25680185
22.  A germline TaqI restriction fragment length polymorphism in the progesterone receptor gene in ovarian carcinoma. 
British Journal of Cancer  1995;71(3):451-455.
Clinical outcome in ovarian carcinoma is predicted by progesterone receptor status, indicating an endocrine aspect to this disease. Peripheral leucocyte genomic DNAs were obtained from 41 patients with primary ovarian carcinoma and 83 controls from Ireland, as well as from 26 primary ovarian carcinoma patients and 101 controls in Germany. Southern analysis using a human progesterone receptor (hPR) cDNA probe identified a germline TaqI restriction fragment length polymorphism (RFLP) defined by two alleles: T1, represented by a 2.7 kb fragment; and T2, represented by a 1.9 kb fragment and characterised by an additional TaqI restriction site with respect to T1. An over-representation of T2 in ovarian cancer patients compared with controls in the pooled Irish/German population (P < 0.025) was observed. A difference (P < 0.02) in the distribution of the RFLP genotypes between Irish and German control populations was also observed. The allele distributions could not be shown to differ significantly from Hardy-Weinberg distribution in any subgroup. Using hPR cDNA region-specific probes, the extra TaqI restriction site was mapped to intron G of the hPR gene.
PMCID: PMC2033643  PMID: 7880723
23.  High-Resolution Structure of the Histidine-Containing Phosphocarrier Protein (HPr) from Staphylococcus aureus and Characterization of Its Interaction with the Bifunctional HPr Kinase/Phosphorylase 
Journal of Bacteriology  2004;186(17):5906-5918.
A high-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus was obtained by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy on the basis of 1,766 structural restraints. Twenty-three hydrogen bonds in HPr could be directly detected by polarization transfer from the amide nitrogen to the carbonyl carbon involved in the hydrogen bond. Differential line broadening was used to characterize the interaction of HPr with the HPr kinase/phosphorylase (HPrK/P) of Staphylococcus xylosus, which is responsible for phosphorylation-dephosphorylation of the hydroxyl group of the regulatory serine residue at position 46. The dissociation constant Kd was determined to be 0.10 ± 0.02 mM at 303 K from the NMR data, assuming independent binding. The data are consistent with a stoichiometry of 1 HPr molecule per HPrK/P monomer in solution. Using transversal relaxation optimized spectroscopy-heteronuclear single quantum correlation, we mapped the interaction site of the two proteins in the 330-kDa complex. As expected, it covers the region around Ser46 and the small helix b following this residue. In addition, HPrK/P also binds to the second phosphorylation site of HPr at position 15. This interaction may be essential for the recognition of the phosphorylation state of His15 and the phosphorylation-dependent regulation of the kinase/phosphorylase activity. In accordance with this observation, the recently published X-ray structure of the HPr/HPrK core protein complex from Lactobacillus casei shows interactions with the two phosphorylation sites. However, the NMR data also suggest differences for the full-length protein from S. xylosus: there are no indications for an interaction with the residues preceding the regulatory Ser46 residue (Thr41 to Lys45) in the protein of S. xylosus. In contrast, it seems to interact with the C-terminal helix of HPr in solution, an interaction which is not observed for the complex of HPr with the core of HPrK/P of L. casei in crystals.
PMCID: PMC516805  PMID: 15317796
24.  Hemoglobin Is a Co-Factor of Human Trypanosome Lytic Factor 
PLoS Pathogens  2007;3(9):e129.
Trypanosome lytic factor (TLF) is a high-density lipoprotein (HDL) subclass providing innate protection to humans against infection by the protozoan parasite Trypanosoma brucei brucei. Two primate-specific plasma proteins, haptoglobin-related protein (Hpr) and apolipoprotein L-1 (ApoL-1), have been proposed to kill T. b. brucei both singularly or when co-assembled into the same HDL. To better understand the mechanism of T. b. brucei killing by TLF, the protein composition of TLF was investigated using a gentle immunoaffinity purification technique that avoids the loss of weakly associated proteins. HDL particles recovered by immunoaffinity absorption, with either anti-Hpr or anti-ApoL-1, were identical in protein composition and specific activity for T. b. brucei killing. Here, we show that TLF-bound Hpr strongly binds Hb and that addition of Hb stimulates TLF killing of T. b. brucei by increasing the affinity of TLF for its receptor, and by inducing Fenton chemistry within the trypanosome lysosome. These findings suggest that TLF in uninfected humans may be inactive against T. b. brucei prior to initiation of infection. We propose that infection of humans by T. b. brucei causes hemolysis that triggers the activation of TLF by the formation of Hpr–Hb complexes, leading to enhanced binding, trypanolytic activity, and clearance of parasites.
Author Summary
African trypanosomes are parasites that can infect a wide range of mammals, including domestic animals and humans. Several hundred thousand humans are infected with African sleeping sickness, but this number would be much higher if not for a natural defense molecule found in human blood. The trypanosome lytic factor (TLF) is a minor subclass of high-density lipoprotein that contains two proteins found only in primates, apolipoprotein L-1 and haptoglobin-related protein (Hpr). In this paper, we show that Hpr contributes to TLF toxicity to trypanosomes because it binds hemoglobin (Hb). We found that when Hb is bound to TLF, it is rapidly taken up by the parasite and activated within the acidic environment of the parasite's digestive organelle, the lysosome. Within the lysosome, Hb releases iron, inducing a chemical reaction that produces free radicals that damage membranes and contributes to trypanosome killing. Usually, free Hb is rapidly cleared from the circulation of mammals because of the organ damage free Hb can cause. Trypanosome infection results in breakage of red blood cells and the release of large amounts of Hb. We postulate that trypanosome infection causes increased vascular levels of Hb, resulting in the formation of TLF–Hb complexes that may be important in “arming” the human innate immune system to clear the circulation of certain African trypanosomes.
PMCID: PMC1971115  PMID: 17845074
25.  Structures of carbon catabolite protein A–(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity binding to degenerate DNA operators 
Nucleic Acids Research  2010;39(7):2931-2942.
In Gram-positive bacteria, carbon catabolite protein A (CcpA) is the master regulator of carbon catabolite control, which ensures optimal energy usage under diverse conditions. Unlike other LacI-GalR proteins, CcpA is activated for DNA binding by first forming a complex with the phosphoprotein HPr-Ser46-P. Bacillus subtilis CcpA functions as both a transcription repressor and activator and binds to more than 50 operators called catabolite response elements (cres). These sites are highly degenerate with the consensus, WTGNNARCGNWWWCAW. How CcpA–(HPr-Ser46-P) binds such diverse sequences is unclear. To gain insight into this question, we solved the structures of the CcpA–(HPr-Ser46-P) complex bound to three different operators, the synthetic (syn) cre, ackA2 cre and gntR-down cre. Strikingly, the structures show that the CcpA-bound operators display different bend angles, ranging from 31° to 56°. These differences are accommodated by a flexible linkage between the CcpA helix-turn-helix-loop-helix motif and hinge helices, which allows independent docking of these DNA-binding modules. This flexibility coupled with an abundance of non-polar residues capable of non-specific nucleobase interactions permits CcpA–(HPr-Ser46-P) to bind diverse operators. Indeed, biochemical data show that CcpA–(HPr-Ser46-P) binds the three cre sites with similar affinities. Thus, the data reveal properties that license this protein to function as a global transcription regulator.
PMCID: PMC3074128  PMID: 21106498

Results 1-25 (635773)