PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (992971)

Clipboard (0)
None

Related Articles

1.  A novel series of compositionally biased substitution matrices for comparing Plasmodium proteins 
BMC Bioinformatics  2008;9:236.
Background
The most common substitution matrices currently used (BLOSUM and PAM) are based on protein sequences with average amino acid distributions, thus they do not represent a fully accurate substitution model for proteins characterized by a biased amino acid composition. This problem has been addressed recently by adjusting existing matrices, however, to date, no empirical approach has been taken to build matrices which offer a substitution model for comparing proteins sharing an amino acid compositional bias. Here, we present a novel procedure to construct series of symmetrical substitution matrices to align proteins from similarly biased Plasmodium proteomes.
Results
We generated substitution matrices by selecting from the BLOCKS database those multiple alignments with a compositional bias similar to that of P. falciparum and P. yoelii proteins. A novel 'fuzzy' clustering method was adopted to group sequences within these alignments, showing that this method retains more complete information on the amino acid substitutions when compared to hierarchical clustering. We assessed the performance against the BLOSUM62 series and showed that the usage of our matrices results in an improvement in the performance of BLAST database searches, greatly reducing the number of false positive hits. We then demonstrated applications of the use of novel matrices to improve the annotation of homologs between the two Plasmodium species and to classify members of the P. falciparum RIFIN/STEVOR family.
Conclusion
We confirmed that in the case of compositionally biased proteins, standard BLOSUM matrices are not suited for optimal alignments, and specific substitution matrices are required. In addition, we showed that the usage of these matrices leads to a reduction of false positive hits, facilitating the automatic annotation process.
doi:10.1186/1471-2105-9-236
PMCID: PMC2408606  PMID: 18485187
2.  High quality protein sequence alignment by combining structural profile prediction and profile alignment using SABERTOOTH 
BMC Bioinformatics  2010;11:251.
Background
Protein alignments are an essential tool for many bioinformatics analyses. While sequence alignments are accurate for proteins of high sequence similarity, they become unreliable as they approach the so-called 'twilight zone' where sequence similarity gets indistinguishable from random. For such distant pairs, structure alignment is of much better quality. Nevertheless, sequence alignment is the only choice in the majority of cases where structural data is not available. This situation demands development of methods that extend the applicability of accurate sequence alignment to distantly related proteins.
Results
We develop a sequence alignment method that combines the prediction of a structural profile based on the protein's sequence with the alignment of that profile using our recently published alignment tool SABERTOOTH. In particular, we predict the contact vector of protein structures using an artificial neural network based on position-specific scoring matrices generated by PSI-BLAST and align these predicted contact vectors. The resulting sequence alignments are assessed using two different tests: First, we assess the alignment quality by measuring the derived structural similarity for cases in which structures are available. In a second test, we quantify the ability of the significance score of the alignments to recognize structural and evolutionary relationships. As a benchmark we use a representative set of the SCOP (structural classification of proteins) database, with similarities ranging from closely related proteins at SCOP family level, to very distantly related proteins at SCOP fold level. Comparing these results with some prominent sequence alignment tools, we find that SABERTOOTH produces sequence alignments of better quality than those of Clustal W, T-Coffee, MUSCLE, and PSI-BLAST. HHpred, one of the most sophisticated and computationally expensive tools available, outperforms our alignment algorithm at family and superfamily levels, while the use of SABERTOOTH is advantageous for alignments at fold level. Our alignment scheme will profit from future improvements of structural profiles prediction.
Conclusions
We present the automatic sequence alignment tool SABERTOOTH that computes pairwise sequence alignments of very high quality. SABERTOOTH is especially advantageous when applied to alignments of remotely related proteins. The source code is available at http://www.fkp.tu-darmstadt.de/sabertooth_project/, free for academic users upon request.
doi:10.1186/1471-2105-11-251
PMCID: PMC2885375  PMID: 20470364
3.  Type II restriction endonuclease R.Hpy188I belongs to the GIY-YIG nuclease superfamily, but exhibits an unusual active site 
Background
Catalytic domains of Type II restriction endonucleases (REases) belong to a few unrelated three-dimensional folds. While the PD-(D/E)XK fold is most common among these enzymes, crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI). Bioinformatics analyses supported by mutagenesis experiments suggested that some REases belong to the HNH fold (e.g. R.KpnI), and that a small group represented by R.Eco29kI belongs to the GIY-YIG fold. However, for a large fraction of REases with known sequences, the three-dimensional fold and the architecture of the active site remain unknown, mostly due to extreme sequence divergence that hampers detection of homology to enzymes with known folds.
Results
R.Hpy188I is a Type II REase with unknown structure. PSI-BLAST searches of the non-redundant protein sequence database reveal only 1 homolog (R.HpyF17I, with nearly identical amino acid sequence and the same DNA sequence specificity). Standard application of state-of-the-art protein fold-recognition methods failed to predict the relationship of R.Hpy188I to proteins with known structure or to other protein families. In order to increase the amount of evolutionary information in the multiple sequence alignment, we have expanded our sequence database searches to include sequences from metagenomics projects. This search resulted in identification of 23 further members of R.Hpy188I family, both from metagenomics and the non-redundant database. Moreover, fold-recognition analysis of the extended R.Hpy188I family revealed its relationship to the GIY-YIG domain and allowed for computational modeling of the R.Hpy188I structure. Analysis of the R.Hpy188I model in the light of sequence conservation among its homologs revealed an unusual variant of the active site, in which the typical Tyr residue of the YIG half-motif had been substituted by a Lys residue. Moreover, some of its homologs have the otherwise invariant Arg residue in a non-homologous position in sequence that nonetheless allows for spatial conservation of the guanidino group potentially involved in phosphate binding.
Conclusion
The present study eliminates a significant "white spot" on the structural map of REases. It also provides important insight into sequence-structure-function relationships in the GIY-YIG nuclease superfamily. Our results reveal that in the case of proteins with no or few detectable homologs in the standard "non-redundant" database, it is useful to expand this database by adding the metagenomic sequences, which may provide evolutionary linkage to detect more remote homologs.
doi:10.1186/1472-6807-8-48
PMCID: PMC2630997  PMID: 19014591
4.  EvDTree: structure-dependent substitution profiles based on decision tree classification of 3D environments 
BMC Bioinformatics  2005;6:4.
Background
Structure-dependent substitution matrices increase the accuracy of sequence alignments when the 3D structure of one sequence is known, and are successful e.g. in fold recognition. We propose a new automated method, EvDTree, based on a decision tree algorithm, for automatic derivation of amino acid substitution probabilities from a set of sequence-structure alignments. The main advantage over other approaches is an unbiased automatic selection of the most informative structural descriptors and associated values or thresholds. This feature allows automatic derivation of structure-dependent substitution scores for any specific set of structures, without the need to empirically determine best descriptors and parameters.
Results
Decision trees for residue substitutions were constructed for each residue type from sequence-structure alignments extracted from the HOMSTRAD database. For each tree cluster, environment-dependent substitution profiles were derived. The resulting structure-dependent substitution scores were assessed using a criterion based on the mean ranking of observed substitution among all possible substitutions and in sequence-structure alignments. The automatically built EvDTree substitution scores provide significantly better results than conventional matrices and similar or slightly better results than other structure-dependent matrices. EvDTree has been applied to small disulfide-rich proteins as a test case to automatically derive specific substitutions scores providing better results than non-specific substitution scores. Analyses of the decision tree classifications provide useful information on the relative importance of different structural descriptors.
Conclusions
We propose a fully automatic method for the classification of structural environments and inference of structure-dependent substitution profiles. We show that this approach is more accurate than existing methods for various applications. The easy adaptation of EvDTree to any specific data set opens the way for class-specific structure-dependent substitution scores which can be used in threading-based remote homology searches.
doi:10.1186/1471-2105-6-4
PMCID: PMC545998  PMID: 15638949
5.  Revisiting amino acid substitution matrices for identifying distantly related proteins 
Bioinformatics  2013;30(3):317-325.
Motivation: Although many amino acid substitution matrices have been developed, it has not been well understood which is the best for similarity searches, especially for remote homology detection. Therefore, we collected information related to existing matrices, condensed it and derived a novel matrix that can detect more remote homology than ever.
Results: Using principal component analysis with existing matrices and benchmarks, we developed a novel matrix, which we designate as MIQS. The detection performance of MIQS is validated and compared with that of existing general purpose matrices using SSEARCH with optimized gap penalties for each matrix. Results show that MIQS is able to detect more remote homology than the existing matrices on an independent dataset. In addition, the performance of our developed matrix was superior to that of CS-BLAST, which was a novel similarity search method with no amino acid matrix. We also evaluated the alignment quality of matrices and methods, which revealed that MIQS shows higher alignment sensitivity than that with the existing matrix series and CS-BLAST. Fundamentally, these results are expected to constitute good proof of the availability and/or importance of amino acid matrices in sequence analysis. Moreover, with our developed matrix, sophisticated similarity search methods such as sequence–profile and profile–profile comparison methods can be improved further.
Availability and implementation: Newly developed matrices and datasets used for this study are available at http://csas.cbrc.jp/Ssearch/.
Contact: k-tomii@aist.go.jp
Supplementary information: Supplementary data are available at Bioinformatics online
doi:10.1093/bioinformatics/btt694
PMCID: PMC3904525  PMID: 24281694
6.  Pattern of Amino Acid Substitutions in Transmembrane Domains of β-Barrel Membrane Proteins for Detecting Remote Homologs in Bacteria and Mitochondria 
PLoS ONE  2011;6(11):e26400.
-barrel membrane proteins play an important role in controlling the exchange and transport of ions and organic molecules across bacterial and mitochondrial outer membranes. They are also major regulators of apoptosis and are important determinants of bacterial virulence. In contrast to -helical membrane proteins, their evolutionary pattern of residue substitutions has not been quantified, and there are no scoring matrices appropriate for their detection through sequence alignment. Using a Bayesian Monte Carlo estimator, we have calculated the instantaneous substitution rates of transmembrane domains of bacterial -barrel membrane proteins. The scoring matrices constructed from the estimated rates, called bbTM for -barrel Transmembrane Matrices, improve significantly the sensitivity in detecting homologs of -barrel membrane proteins, while avoiding erroneous selection of both soluble proteins and other membrane proteins of similar composition. The estimated evolutionary patterns are general and can detect -barrel membrane proteins very remote from those used for substitution rate estimation. Furthermore, despite the separation of 2–3 billion years since the proto-mitochondrion entered the proto-eukaryotic cell, mitochondria outer membrane proteins in eukaryotes can also be detected accurately using these scoring matrices derived from bacteria. This is consistent with the suggestion that there is no eukaryote-specific signals for translocation. With these matrices, remote homologs of -barrel membrane proteins with known structures can be reliably detected at genome scale, allowing construction of high quality structural models of their transmembrane domains, at the rate of 131 structures per template protein. The scoring matrices will be useful for identification, classification, and functional inference of membrane proteins from genome and metagenome sequencing projects. The estimated substitution pattern will also help to identify key elements important for the structural and functional integrity of -barrel membrane proteins, and will aid in the design of mutagenesis studies.
doi:10.1371/journal.pone.0026400
PMCID: PMC3206045  PMID: 22069449
7.  DescFold: A web server for protein fold recognition 
BMC Bioinformatics  2009;10:416.
Background
Machine learning-based methods have been proven to be powerful in developing new fold recognition tools. In our previous work [Zhang, Kochhar and Grigorov (2005) Protein Science, 14: 431-444], a machine learning-based method called DescFold was established by using Support Vector Machines (SVMs) to combine the following four descriptors: a profile-sequence-alignment-based descriptor using Psi-blast e-values and bit scores, a sequence-profile-alignment-based descriptor using Rps-blast e-values and bit scores, a descriptor based on secondary structure element alignment (SSEA), and a descriptor based on the occurrence of PROSITE functional motifs. In this work, we focus on the improvement of DescFold by incorporating more powerful descriptors and setting up a user-friendly web server.
Results
In seeking more powerful descriptors, the profile-profile alignment score generated from the COMPASS algorithm was first considered as a new descriptor (i.e., PPA). When considering a profile-profile alignment between two proteins in the context of fold recognition, one protein is regarded as a template (i.e., its 3D structure is known). Instead of a sequence profile derived from a Psi-blast search, a structure-seeded profile for the template protein was generated by searching its structural neighbors with the assistance of the TM-align structural alignment algorithm. Moreover, the COMPASS algorithm was used again to derive a profile-structural-profile-alignment-based descriptor (i.e., PSPA). We trained and tested the new DescFold in a total of 1,835 highly diverse proteins extracted from the SCOP 1.73 version. When the PPA and PSPA descriptors were introduced, the new DescFold boosts the performance of fold recognition substantially. Using the SCOP_1.73_40% dataset as the fold library, the DescFold web server based on the trained SVM models was further constructed. To provide a large-scale test for the new DescFold, a stringent test set of 1,866 proteins were selected from the SCOP 1.75 version. At a less than 5% false positive rate control, the new DescFold is able to correctly recognize structural homologs at the fold level for nearly 46% test proteins. Additionally, we also benchmarked the DescFold method against several well-established fold recognition algorithms through the LiveBench targets and Lindahl dataset.
Conclusions
The new DescFold method was intensively benchmarked to have very competitive performance compared with some well-established fold recognition methods, suggesting that it can serve as a useful tool to assist in template-based protein structure prediction. The DescFold server is freely accessible at http://202.112.170.199/DescFold/index.html.
doi:10.1186/1471-2105-10-416
PMCID: PMC2803855  PMID: 20003426
8.  Detecting Remote Homologues Using Scoring Matrices Calculated from the Estimation of Amino Acid Substitution Rates of Beta-Barrel Membrane Proteins 
Beta-barrel membrane proteins (MP) are found in Gram-negative bacteria, mitochondria and chloroplasts. They play important roles in metabolism of bacteria, where they are involved in transport of solutes in and out of the cell. Beta-barrel proteins may also act as proteases, lipases and may be important for cell-cell adhesion. Currently, there are about 30 non-redundant solved structures of β-barrels. Although the number of b-barrel folds is fairly small, it is possible to expand the amount of available structural information by homology modeling using existing structures as templates. The scope of structure prediction may be widened by finding remote homologues of the existing structures. To improve the sensitivity of the database searches and the quality of sequence alignments, we first study evolutionary history of transmembrane segments of 7 β-barrel membrane proteins by estimating substitution rates with a Bayesian Monte Carlo approach. Next, we calculate amino acid substitution matrices, beta-barrel Transmembrane scoring Matrices (bbTM), specifically tuned for TM regions, which can be used to detect remote homologues. We then test bbTM matrices by comparing their performance with membrane-protein derived scoring matrices PHAT and SLIM. Our results demonstrate that bbTM matrices have higher selectivity towards transmembrane β-barrel proteins and may be used with higher confidence in database searches for remote homologues of this class of proteins.
PMCID: PMC2630510  PMID: 19162917
Substitution rate; scoring matrices; beta barrel membrane proteins; bioinformatics
9.  Optimizing amino acid substitution matrices with a local alignment kernel 
BMC Bioinformatics  2006;7:246.
Background
Detecting remote homologies by direct comparison of protein sequences remains a challenging task. We had previously developed a similarity score between sequences, called a local alignment kernel, that exhibits good performance for this task in combination with a support vector machine. The local alignment kernel depends on an amino acid substitution matrix. Since commonly used BLOSUM or PAM matrices for scoring amino acid matches have been optimized to be used in combination with the Smith-Waterman algorithm, the matrices optimal for the local alignment kernel can be different.
Results
Contrary to the local alignment score computed by the Smith-Waterman algorithm, the local alignment kernel is differentiable with respect to the amino acid substitution and its derivative can be computed efficiently by dynamic programming. We optimized the substitution matrix by classical gradient descent by setting an objective function that measures how well the local alignment kernel discriminates homologs from non-homologs in the COG database. The local alignment kernel exhibits better performance when it uses the matrices and gap parameters optimized by this procedure than when it uses the matrices optimized for the Smith-Waterman algorithm. Furthermore, the matrices and gap parameters optimized for the local alignment kernel can also be used successfully by the Smith-Waterman algorithm.
Conclusion
This optimization procedure leads to useful substitution matrices, both for the local alignment kernel and the Smith-Waterman algorithm. The best performance for homology detection is obtained by the local alignment kernel.
doi:10.1186/1471-2105-7-246
PMCID: PMC1513605  PMID: 16677385
10.  The parasite specific substitution matrices improve the annotation of apicomplexan proteins 
BMC Genomics  2012;13(Suppl 7):S19.
Background
A number of apicomplexan genomes have been sequenced successfully in recent years and this would help in understanding the biology of apicomplexan parasites. The members of the phylum Apicomplexa are important protozoan parasites (Plasmodium, Toxoplasma and Cryptosporidium etc) that cause some of the deadly diseases in humans and animals. In our earlier studies, we have shown that the standard BLOSUM matrices are not suitable for compositionally biased apicomplexan proteins. So we developed a novel series (SMAT and PfFSmat60) of substitution matrices which performed better in comparison to standard BLOSUM matrices and developed ApicoAlign, a sequence search and alignment tool for apicomplexan proteins. In this study, we demonstrate the higher specificity of these matrices and make an attempt to improve the annotation of apicomplexan kinases and proteases.
Results
The ROC curves proved that SMAT80 performs best for apicomplexan proteins followed by compositionally adjusted BLOSUM62 (PSI-BLAST searches), BLOSUM90 and BLOSUM62 matrices in terms of detecting true positives. The poor E-values and/or bit scores given by SMAT80 matrix for the experimentally identified coccidia-specific oocyst wall proteins against hematozoan (non-coccidian) parasites further supported the higher specificity of the same. SMAT80 uniquely detected (missed by BLOSUM) orthologs for 1374 apicomplexan hypothetical proteins against SwissProt database and predicted 70 kinases and 17 proteases. Further analysis confirmed the conservation of functional residues of kinase domain in one of the SMAT80 detected kinases. Similarly, one of the SMAT80 detected proteases was predicted to be a rhomboid protease.
Conclusions
The parasite specific substitution matrices have higher specificity for apicomplexan proteins and are helpful in detecting the orthologs missed by BLOSUM matrices and thereby improve the annotation of apicomplexan proteins which are hypothetical or with unknown function.
doi:10.1186/1471-2164-13-S7-S19
PMCID: PMC3521392  PMID: 23281791
11.  A sequence sub-sampling algorithm increases the power to detect distant homologues 
Nucleic Acids Research  2005;33(12):3772-3778.
Searching databases for distant homologues using alignments instead of individual sequences increases the power of detection. However, most methods assume that protein evolution proceeds in a regular fashion, with the inferred tree of sequences providing a good estimation of the evolutionary process. We investigated the combined HMMER search results from random alignment subsets (with three sequences each) drawn from the parent alignment (Rand-shuffle algorithm), using the SCOP structural classification to determine true similarities. At false-positive rates of 5%, the Rand-shuffle algorithm improved HMMER's sensitivity, with a 37.5% greater sensitivity compared with HMMER alone, when easily identified similarities (identifiable by BLAST) were excluded from consideration. An extension of the Rand-shuffle algorithm (Ali-shuffle) weighted towards more informative sequence subsets. This approach improved the performance over HMMER alone and PSI-BLAST, particularly at higher false-positive rates. The improvements in performance of these sequence sub-sampling methods may reflect lower sensitivity to alignment error and irregular evolutionary patterns. The Ali-shuffle and Rand-shuffle sequence homology search programs are available by request from the authors.
doi:10.1093/nar/gki687
PMCID: PMC1174907  PMID: 16006623
12.  Improved Detection of Remote Homologues Using Cascade PSI-BLAST: Influence of Neighbouring Protein Families on Sequence Coverage 
PLoS ONE  2013;8(2):e56449.
Background
Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST.
Methodology/Principal Findings
We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ∼100% and Mathew’s correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families.
Conclusions/Significance
Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also provides an understanding of the ‘bridging’ role of related families.
doi:10.1371/journal.pone.0056449
PMCID: PMC3577913  PMID: 23437136
13.  PHOG-BLAST – a new generation tool for fast similarity search of protein families 
Background
The need to compare protein profiles frequently arises in various protein research areas: comparison of protein families, domain searches, resolution of orthology and paralogy. The existing fast algorithms can only compare a protein sequence with a protein sequence and a profile with a sequence. Algorithms to compare profiles use dynamic programming and complex scoring functions.
Results
We developed a new algorithm called PHOG-BLAST for fast similarity search of profiles. This algorithm uses profile discretization to convert a profile to a finite alphabet and utilizes hashing for fast search. To determine the optimal alphabet, we analyzed columns in reliable multiple alignments and obtained column clusters in the 20-dimensional profile space by applying a special clustering procedure. We show that the clustering procedure works best if its parameters are chosen so that 20 profile clusters are obtained which can be interpreted as ancestral amino acid residues. With these clusters, only less than 2% of columns in multiple alignments are out of clusters. We tested the performance of PHOG-BLAST vs. PSI-BLAST on three well-known databases of multiple alignments: COG, PFAM and BALIBASE. On the COG database both algorithms showed the same performance, on PFAM and BALIBASE PHOG-BLAST was much superior to PSI-BLAST. PHOG-BLAST required 10–20 times less computer memory and computation time than PSI-BLAST.
Conclusion
Since PHOG-BLAST can compare multiple alignments of protein families, it can be used in different areas of comparative proteomics and protein evolution. For example, PHOG-BLAST helped to build the PHOG database of phylogenetic orthologous groups. An essential step in building this database was comparing protein complements of different species and orthologous groups of different taxons on a personal computer in reasonable time. When it is applied to detect weak similarity between protein families, PHOG-BLAST is less precise than rigorous profile-profile comparison method, though it runs much faster and can be used as a hit pre-selecting tool.
doi:10.1186/1471-2148-6-51
PMCID: PMC1522020  PMID: 16792802
14.  Domain enhanced lookup time accelerated BLAST 
Biology Direct  2012;7:12.
Background
BLAST is a commonly-used software package for comparing a query sequence to a database of known sequences; in this study, we focus on protein sequences. Position-specific-iterated BLAST (PSI-BLAST) iteratively searches a protein sequence database, using the matches in round i to construct a position-specific score matrix (PSSM) for searching the database in round i + 1. Biegert and Söding developed Context-sensitive BLAST (CS-BLAST), which combines information from searching the sequence database with information derived from a library of short protein profiles to achieve better homology detection than PSI-BLAST, which builds its PSSMs from scratch.
Results
We describe a new method, called domain enhanced lookup time accelerated BLAST (DELTA-BLAST), which searches a database of pre-constructed PSSMs before searching a protein-sequence database, to yield better homology detection. For its PSSMs, DELTA-BLAST employs a subset of NCBI’s Conserved Domain Database (CDD). On a test set derived from ASTRAL, with one round of searching, DELTA-BLAST achieves a ROC5000 of 0.270 vs. 0.116 for CS-BLAST. The performance advantage diminishes in iterated searches, but DELTA-BLAST continues to achieve better ROC scores than CS-BLAST.
Conclusions
DELTA-BLAST is a useful program for the detection of remote protein homologs. It is available under the “Protein BLAST” link at http://blast.ncbi.nlm.nih.gov.
Reviewers
This article was reviewed by Arcady Mushegian, Nick V. Grishin, and Frank Eisenhaber.
doi:10.1186/1745-6150-7-12
PMCID: PMC3438057  PMID: 22510480
15.  Automatic classification of protein structures using low-dimensional structure space mappings 
BMC Bioinformatics  2014;15(Suppl 2):S1.
Background
Protein function is closely intertwined with protein structure. Discovery of meaningful structure-function relationships is of utmost importance in protein biochemistry and has led to creation of high-quality, manually curated classification databases, such as the gold-standard SCOP (Structural Classification of Proteins) database. The SCOP database and its counterparts such as CATH provide a detailed and comprehensive description of the structural and evolutionary relationships of the proteins of known structure and are widely employed in structural and computational biology. Since manual classification is both subjective and highly laborious, automated classification of novel structures is increasingly an active area of research. The design of methods for automated structure classification has been rendered even more important since the recent past, due to the explosion in number of solved structures arising out of various structural biology initiatives.
In this paper we propose an approach to the problem of structure classification based on creating and tessellating low dimensional maps of the protein structure space (MPSS). Given a set of protein structures, an MPSS is a low dimensional embedding of structural similarity-based distances between the molecules. In an MPSS, a group of proteins (such as all the proteins in the PDB or sub-samplings thereof) under consideration are represented as point clouds and structural relatedness maps to spatial adjacency of the points. In this paper we present methods and results that show that MPSS can be used to create tessellations of the protein space comparable to the clade systems within SCOP. Though we have used SCOP as the gold standard, the proposed approach is equally applicable for other structural classifications.
Methods
In the proposed approach, we first construct MPSS using pairwise alignment distances obtained from four established structure alignment algorithms (CE, Dali, FATCAT and MATT). The low dimensional embeddings are next computed using an embedding technique called multidimensional scaling (MDS). Next, by using the remotely homologous Superfamily and Fold levels of the hierarchical SCOP database, a distance threshold is determined to relate adjacency in the low dimensional map to functional relationships. In our approach, the optimal threshold is determined as the value that maximizes the total true classification rate vis-a-vis the SCOP classification. We also show that determining such a threshold is often straightforward, once the structural relationships are represented using MPSS.
Results and conclusion
We demonstrate that MPSS constitute highly accurate representations of protein fold space and enable automatic classification of SCOP Superfamily and Fold-level relationships. The results from our automatic classification approach are remarkably similar to those found in the distantly homologous Superfamily level and the quite remotely homologous Fold levels of SCOP. The significance of our results are underlined by the fact that most automated methods developed thus far have only managed to match the closest-homology Family level of the SCOP hierarchy and tend to differ considerably at the Superfamily and Fold levels. Furthermore, our research demonstrates that projection into a low-dimensional space using MDS constitutes a superior noise-reducing transformation of pairwise distances than do the variety of probability- and alignment-length-based transformations currently used by structure alignment algorithms.
doi:10.1186/1471-2105-15-S2-S1
PMCID: PMC4016610  PMID: 24564500
16.  PSSM-based prediction of DNA binding sites in proteins 
BMC Bioinformatics  2005;6:33.
Background
Detection of DNA-binding sites in proteins is of enormous interest for technologies targeting gene regulation and manipulation. We have previously shown that a residue and its sequence neighbor information can be used to predict DNA-binding candidates in a protein sequence. This sequence-based prediction method is applicable even if no sequence homology with a previously known DNA-binding protein is observed. Here we implement a neural network based algorithm to utilize evolutionary information of amino acid sequences in terms of their position specific scoring matrices (PSSMs) for a better prediction of DNA-binding sites.
Results
An average of sensitivity and specificity using PSSMs is up to 8.7% better than the prediction with sequence information only. Much smaller data sets could be used to generate PSSM with minimal loss of prediction accuracy.
Conclusion
One problem in using PSSM-derived prediction is obtaining lengthy and time-consuming alignments against large sequence databases. In order to speed up the process of generating PSSMs, we tried to use different reference data sets (sequence space) against which a target protein is scanned for PSI-BLAST iterations. We find that a very small set of proteins can actually be used as such a reference data without losing much of the prediction value. This makes the process of generating PSSMs very rapid and even amenable to be used at a genome level. A web server has been developed to provide these predictions of DNA-binding sites for any new protein from its amino acid sequence.
Availability
Online predictions based on this method are available at
doi:10.1186/1471-2105-6-33
PMCID: PMC550660  PMID: 15720719
17.  PSI-Search: iterative HOE-reduced profile SSEARCH searching 
Bioinformatics  2012;28(12):1650-1651.
Summary: Iterative similarity searches with PSI-BLAST position-specific score matrices (PSSMs) find many more homologs than single searches, but PSSMs can be contaminated when homologous alignments are extended into unrelated protein domains—homologous over-extension (HOE). PSI-Search combines an optimal Smith–Waterman local alignment sequence search, using SSEARCH, with the PSI-BLAST profile construction strategy. An optional sequence boundary-masking procedure, which prevents alignments from being extended after they are initially included, can reduce HOE errors in the PSSM profile. Preventing HOE improves selectivity for both PSI-BLAST and PSI-Search, but PSI-Search has ~4-fold better selectivity than PSI-BLAST and similar sensitivity at 50% and 60% family coverage. PSI-Search is also produces 2- for 4-fold fewer false-positives than JackHMMER, but is ~5% less sensitive.
Availability and implementation: PSI-Search is available from the authors as a standalone implementation written in Perl for Linux-compatible platforms. It is also available through a web interface (www.ebi.ac.uk/Tools/sss/psisearch) and SOAP and REST Web Services (www.ebi.ac.uk/Tools/webservices).
Contact: pearson@virginia.edu; rodrigo.lopez@ebi.ac.uk
doi:10.1093/bioinformatics/bts240
PMCID: PMC3371869  PMID: 22539666
18.  fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies 
Nucleic Acids Research  2007;35(Web Server issue):W438-W443.
The fastSCOP is a web server that rapidly identifies the structural domains and determines the evolutionary superfamilies of a query protein structure. This server uses 3D-BLAST to scan quickly a large structural classification database (SCOP1.71 with <95% identity with each other) and the top 10 hit domains, which have different superfamily classifications, are obtained from the hit lists. MAMMOTH, a detailed structural alignment tool, is adopted to align these top 10 structures to refine domain boundaries and to identify evolutionary superfamilies. Our previous works demonstrated that 3D-BLAST is as fast as BLAST, and has the characteristics of BLAST (e.g. a robust statistical basis, effective search and reliable database search capabilities) in large structural database searches based on a structural alphabet database and a structural alphabet substitution matrix. The classification accuracy of this server is ∼98% for 586 query structures and the average execution time is ∼5. This server was also evaluated on 8700 structures, which have no annotations in the SCOP; the server can automatically assign 7311 (84%) proteins (9420 domains) to the SCOP superfamilies in 9.6 h. These results suggest that the fastSCOP is robust and can be a useful server for recognizing the evolutionary classifications and the protein functions of novel structures. The server is accessible at http://fastSCOP.life.nctu.edu.tw.
doi:10.1093/nar/gkm288
PMCID: PMC1933144  PMID: 17485476
19.  Cascade PSI-BLAST web server: a remote homology search tool for relating protein domains 
Nucleic Acids Research  2006;34(Web Server issue):W143-W146.
Owing to high evolutionary divergence, it is not always possible to identify distantly related protein domains by sequence search techniques. Intermediate sequences possess sequence features of more than one protein and facilitate detection of remotely related proteins. We have demonstrated recently the employment of Cascade PSI-BLAST where we perform PSI-BLAST for many ‘generations’, initiating searches from new homologues as well. Such a rigorous propagation through generations of PSI-BLAST employs effectively the role of intermediates in detecting distant similarities between proteins. This approach has been tested on a large number of folds and its performance in detecting superfamily level relationships is ∼35% better than simple PSI-BLAST searches. We present a web server for this search method that permits users to perform Cascade PSI-BLAST searches against the Pfam, SCOP and SwissProt databases. The URL for this server is .
doi:10.1093/nar/gkl157
PMCID: PMC1538780  PMID: 16844978
20.  Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information 
BMC Bioinformatics  2006;7:124.
Background
The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function.
Results
In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively.
Conclusion
A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
doi:10.1186/1471-2105-7-124
PMCID: PMC1450308  PMID: 16526956
21.  SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition 
BMC Bioinformatics  2007;8(Suppl 4):S2.
Background
Predicting a protein's structural class from its amino acid sequence is a fundamental problem in computational biology. Much recent work has focused on developing new representations for protein sequences, called string kernels, for use with support vector machine (SVM) classifiers. However, while some of these approaches exhibit state-of-the-art performance at the binary protein classification problem, i.e. discriminating between a particular protein class and all other classes, few of these studies have addressed the real problem of multi-class superfamily or fold recognition. Moreover, there are only limited software tools and systems for SVM-based protein classification available to the bioinformatics community.
Results
We present a new multi-class SVM-based protein fold and superfamily recognition system and web server called SVM-Fold, which can be found at . Our system uses an efficient implementation of a state-of-the-art string kernel for sequence profiles, called the profile kernel, where the underlying feature representation is a histogram of inexact matching k-mer frequencies. We also employ a novel machine learning approach to solve the difficult multi-class problem of classifying a sequence of amino acids into one of many known protein structural classes. Binary one-vs-the-rest SVM classifiers that are trained to recognize individual structural classes yield prediction scores that are not comparable, so that standard "one-vs-all" classification fails to perform well. Moreover, SVMs for classes at different levels of the protein structural hierarchy may make useful predictions, but one-vs-all does not try to combine these multiple predictions. To deal with these problems, our method learns relative weights between one-vs-the-rest classifiers and encodes information about the protein structural hierarchy for multi-class prediction. In large-scale benchmark results based on the SCOP database, our code weighting approach significantly improves on the standard one-vs-all method for both the superfamily and fold prediction in the remote homology setting and on the fold recognition problem. Moreover, our code weight learning algorithm strongly outperforms nearest-neighbor methods based on PSI-BLAST in terms of prediction accuracy on every structure classification problem we consider.
Conclusion
By combining state-of-the-art SVM kernel methods with a novel multi-class algorithm, the SVM-Fold system delivers efficient and accurate protein fold and superfamily recognition.
doi:10.1186/1471-2105-8-S4-S2
PMCID: PMC1892081  PMID: 17570145
22.  Composition-Modified Matrices Improve Identification of Homologs of Saccharomyces cerevisiae Low-Complexity Glycoproteins†  
Eukaryotic Cell  2006;5(4):628-637.
Yeast glycoproteins are representative of low-complexity sequences, those sequences rich in a few types of amino acids. Low-complexity protein sequences comprise more than 10% of the proteome but are poorly aligned by existing methods. Under default conditions, BLAST and FASTA use the scoring matrix BLOSUM62, which is optimized for sequences with diverse amino acid compositions. Because low-complexity sequences are rich in a few amino acids, these tools tend to align the most common residues in nonhomologous positions, thereby generating anomalously high scores, deviations from the expected extreme value distribution, and small e values. This anomalous scoring prevents BLOSUM62-based BLAST and FASTA from identifying correct homologs for proteins with low-complexity sequences, including Saccharomyces cerevisiae wall proteins. We have devised and empirically tested scoring matrices that compensate for the overrepresentation of some amino acids in any query sequence in different ways. These matrices were tested for sensitivity in finding true homologs, discrimination against nonhomologous and random sequences, conformance to the extreme value distribution, and accuracy of e values. Of the tested matrices, the two best matrices (called E and gtQ) gave reliable alignments in BLAST and FASTA searches, identified a consistent set of paralogs of the yeast cell wall test set proteins, and improved the consistency of secondary structure predictions for cell wall proteins.
doi:10.1128/EC.5.4.628-637.2006
PMCID: PMC1459670  PMID: 16607010
23.  Prediction of enzyme function based on 3D templates of evolutionarily important amino acids 
BMC Bioinformatics  2008;9:17.
Background
Structural genomics projects such as the Protein Structure Initiative (PSI) yield many new structures, but often these have no known molecular functions. One approach to recover this information is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and may suggest functional similarity when geometrically matched to other structures. Since experimentally determined functional sites are not common enough to define 3D templates on a large scale, this work tests a computational strategy to select relevant residues for 3D templates.
Results
Based on evolutionary information and heuristics, an Evolutionary Trace Annotation (ETA) pipeline built templates for 98 enzymes, half taken from the PSI, and sought matches in a non-redundant structure database. On average each template matched 2.7 distinct proteins, of which 2.0 share the first three Enzyme Commission digits as the template's enzyme of origin. In many cases (61%) a single most likely function could be predicted as the annotation with the most matches, and in these cases such a plurality vote identified the correct function with 87% accuracy. ETA was also found to be complementary to sequence homology-based annotations. When matches are required to both geometrically match the 3D template and to be sequence homologs found by BLAST or PSI-BLAST, the annotation accuracy is greater than either method alone, especially in the region of lower sequence identity where homology-based annotations are least reliable.
Conclusion
These data suggest that knowledge of evolutionarily important residues improves functional annotation among distant enzyme homologs. Since, unlike other 3D template approaches, the ETA method bypasses the need for experimental knowledge of the catalytic mechanism, it should prove a useful, large scale, and general adjunct to combine with other methods to decipher protein function in the structural proteome.
doi:10.1186/1471-2105-9-17
PMCID: PMC2219985  PMID: 18190718
24.  Adaptive GDDA-BLAST: Fast and Efficient Algorithm for Protein Sequence Embedding 
PLoS ONE  2010;5(10):e13596.
A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply “alignment profiles” hereafter) provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.). Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs) are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the “twilight zone” of sequence similarity (<25% identity) [1]–[5]. Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified) and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named “Adaptive GDDA-BLAST.” Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of low-identity alignments and for incorporation thereof into high-performance PSSM-based alignment profiles.
doi:10.1371/journal.pone.0013596
PMCID: PMC2962639  PMID: 21042584
25.  Protein Database Searches Using Compositionally Adjusted Substitution Matrices 
The FEBS journal  2005;272(20):5101-5109.
Almost all protein database search methods use amino acid substitution matrices for scoring, optimizing, and assessing the statistical significance of sequence alignments. Much care and effort has therefore gone into constructing substitution matrices, and the quality of search results can depend strongly upon the choice of the proper matrix. A long-standing problem has been the comparison of sequences with biased amino acid compositions, for which standard substitution matrices are not optimal. To address this problem, we have recently developed a general procedure for transforming a standard matrix into one appropriate for the comparison of two sequences with arbitrary, and possibly differing compositions. Such adjusted matrices yield, on average, improved alignments and alignment scores when applied to the comparison of proteins with markedly biased compositions.
Here we review the application of compositionally adjusted matrices and consider whether they may also be applied fruitfully to general purpose protein sequence database searches, in which related sequence pairs do not necessarily have strong compositional biases. Although it is not advisable to apply compositional adjustment indiscriminately, we describe several simple criteria under which invoking such adjustment is on average beneficial. In a typical database search, at least one of these criteria is satisfied by over half the related sequence pairs. Compositional substitution matrix adjustment is now available in NCBI's protein-protein version of BLAST.
doi:10.1111/j.1742-4658.2005.04945.x
PMCID: PMC1343503  PMID: 16218944
substitution matrices; compositional adjustment; protein database searches; BLAST; BLOSUM

Results 1-25 (992971)