PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (909508)

Clipboard (0)
None

Related Articles

1.  Copy Number Variation in Familial Parkinson Disease 
PLoS ONE  2011;6(8):e20988.
Copy number variants (CNVs) are known to cause Mendelian forms of Parkinson disease (PD), most notably in SNCA and PARK2. PARK2 has a recessive mode of inheritance; however, recent evidence demonstrates that a single CNV in PARK2 (but not a single missense mutation) may increase risk for PD. We recently performed a genome-wide association study for PD that excluded individuals known to have either a LRRK2 mutation or two PARK2 mutations. Data from the Illumina370Duo arrays were re-clustered using only white individuals with high quality intensity data, and CNV calls were made using two algorithms, PennCNV and QuantiSNP. After quality assessment, the final sample included 816 cases and 856 controls. Results varied between the two CNV calling algorithms for many regions, including the PARK2 locus (genome-wide p = 0.04 for PennCNV and p = 0.13 for QuantiSNP). However, there was consistent evidence with both algorithms for two novel genes, USP32 and DOCK5 (empirical, genome-wide p-values<0.001). PARK2 CNVs tended to be larger, and all instances that were molecularly tested were validated. In contrast, the CNVs in both novel loci were smaller and failed to replicate using real-time PCR, MLPA, and gel electrophoresis. The DOCK5 variation is more akin to a VNTR than a typical CNV and the association is likely caused by artifact due to DNA source. DNA for all the cases was derived from whole blood, while the DNA for all controls was derived from lymphoblast cell lines. The USP32 locus contains many SNPs with low minor allele frequency leading to a loss of heterozygosity that may have been spuriously interpreted by the CNV calling algorithms as support for a deletion. Thus, only the CNVs within the PARK2 locus could be molecularly validated and associated with PD susceptibility.
doi:10.1371/journal.pone.0020988
PMCID: PMC3149037  PMID: 21829596
2.  Analysis of GWAS-linked loci in Parkinson disease reaffirms PARK16 as a susceptibility locus 
Neurology  2010;75(6):508-512.
Objective:
A genome-wide association study (GWAS) in the Japanese population identified 2 new Parkinson disease (PD) susceptibility loci on 1q32 (PARK16) (OMIM 613164) and BST1. We analyzed single nucleotide polymorphism (SNPs) located at the GWAS-linked loci (PARK16, PARK8, PARK1, and BST1) in a Chinese population and also conducted a meta-analysis in Asians by pooling 2 independent replication studies from Japan.
Methods:
We conducted an analysis of 13 SNPs associated with PD GWAS-linked loci in 2 case-control cohorts comprised of 1,349 ethnic Chinese subjects.
Results:
PARK16, PARK8, and PARK1 loci but not BST1 were found to be associated with PD. PARK16 SNPs were associated with a decreased risk while PARK1 and PARK8 SNPs were associated with an increased risk of PD. A pooled analysis of our Chinese cohorts and 2 Japanese replication cohorts involving 1,366 subjects with PD and 16,669 controls revealed robust association with these 3 loci and also BST1. There was a trend toward a stronger protective effect of SNPs at the PARK16 locus in sporadic PD compared to familial cases and in older compared to younger subjects.
Conclusions:
Our study reaffirms the role of GWAS-linked loci in PD in Asian subjects and the strength of association is similar between Chinese and Japanese subjects. Efforts to elucidate the associated gene within PARK16 locus are warranted.
GLOSSARY
= genome-wide association study;
= Parkinson disease;
= single nucleotide polymorphism.
doi:10.1212/WNL.0b013e3181eccfcd
PMCID: PMC2918477  PMID: 20697102
3.  Mutations in DJ-1 are rare in familial Parkinson disease 
Neuroscience letters  2006;408(3):209-213.
Mutations in DJ-1 (PARK7) are one cause of early-onset autosomal-recessive parkinsonism. We screened for DJ-1 mutations in 93 affected individuals from the 64 multiplex Parkinson disease (PD) families in our sample that had the highest family-specific multipoint LOD scores at the DJ-1 locus. In addition to sequencing all coding exons for alterations, we used multiplex ligation-dependent probe amplification (MLPA) to examine the genomic copy number of DJ-1 exons. A known polymorphism (R98Q) was found in five PD subjects, once as a homozygote and in the other four cases as heterozygotes. No additional missense mutations and no exon deletions or duplications were detected. Our results, in combination with those of previous studies, suggest that alterations in DJ-1 are not a common cause of familial PD.
doi:10.1016/j.neulet.2006.09.003
PMCID: PMC1706076  PMID: 16997464
Parkinson disease; DJ-1; multiplex ligation-dependent probe amplification; MLPA
4.  Significance of the parkin and PINK1 gene in Jordanian families with incidences of young-onset and juvenile parkinsonism 
BMC Neurology  2008;8:47.
Background
Parkinson's disease is a progressive neurodegenerative disorder, where most cases are sporadic with a late onset. In rare incidences familial forms of early-onset parkinsonism occur, and when recessively inherited, cases are often explained by mutations in either the parkin (PARK2) or PINK1 (PARK6) gene or on exceptional occasions the DJ-1 (PARK7) or ATP13A2 (PARK9) gene. Recessively inherited deletions/duplications and point mutations in the parkin gene are the most common cause of early-onset parkinsonism known so far, but in an increasing number of studies, genetic variations in the serine/threonine kinase domain of the PINK1 gene are found to explain early-onset parkinsonism.
Methods
In this study all families were from a population with a high incidence of consanguinity. We investigated 11 consanguineous families comprising 17 affected with recessively inherited young-onset parkinsonism for mutations both in the parkin and PINK1 gene. Exons and flanking regions were sequenced, and segregation patterns of genetic variation were assessed in members of the respective families. An exon dosage analysis was performed for all exons in both genes.
Results
In the parkin gene, a three generation family was identified with an exon 4 deletion segregating with disease. Both affected were homozygous for the deletion that segregated on a haplotype that spanned the gene in a haplotype segregation analysis that was performed using additional markers. Exon dosage analysis confirmed the recessive pattern of inheritance with heterozygous deletions segregating in healthy family members. In the PINK1 gene we identified two novel putative pathogenic substitutions, P416R and S419P, located in a conserved motif of the serine/threonine kinase domain. Both substitutions segregated with disease in agreement with a recessive pattern of inheritance within respective families and both were present as homozygous in two affected each. We also discuss common polymorphisms in the two genes found to be co-segregating within families.
Conclusion
Our results further extend on the involvement of PINK1 mutations in recessive early-onset parkinsonism with clinical features similar to carriers of parkin mutations.
doi:10.1186/1471-2377-8-47
PMCID: PMC2635385  PMID: 19087301
5.  Analysis of copy number variation using quantitative interspecies competitive PCR 
Nucleic Acids Research  2008;36(17):e112.
Over recent years small submicroscopic DNA copy-number variants (CNVs) have been highlighted as an important source of variation in the human genome, human phenotypic diversity and disease susceptibility. Consequently, there is a pressing need for the development of methods that allow the efficient, accurate and cheap measurement of genomic copy number polymorphisms in clinical cohorts. We have developed a simple competitive PCR based method to determine DNA copy number which uses the entire genome of a single chimpanzee as a competitor thus eliminating the requirement for competitive sequences to be synthesized for each assay. This results in the requirement for only a single reference sample for all assays and dramatically increases the potential for large numbers of loci to be analysed in multiplex. In this study we establish proof of concept by accurately detecting previously characterized mutations at the PARK2 locus and then demonstrating the potential of quantitative interspecies competitive PCR (qicPCR) to accurately genotype CNVs in association studies by analysing chromosome 22q11 deletions in a sample of previously characterized patients and normal controls.
doi:10.1093/nar/gkn495
PMCID: PMC2553599  PMID: 18697816
6.  Somatic mutations of the Parkinson's disease–associated gene PARK2 in glioblastoma and other human malignancies 
Nature genetics  2009;42(1):77-82.
Mutation of the gene PARK2, which encodes an E3 ubiquitin ligase, is the most common cause of early-onset Parkinson's disease1, 2, 3. In a search for multisite tumor suppressors, we identified PARK2 as a frequently targeted gene on chromosome 6q25.2–q27 in cancer. Here we describe inactivating somatic mutations and frequent intragenic deletions of PARK2 in human malignancies. The PARK2 mutations in cancer occur in the same domains, and sometimes at the same residues, as the germline mutations causing familial Parkinson's disease. Cancer-specific mutations abrogate the growth-suppressive effects of the PARK2 protein. PARK2 mutations in cancer decrease PARK2's E3 ligase activity, compromising its ability to ubiquitinate cyclin E and resulting in mitotic instability. These data strongly point to PARK2 as a tumor suppressor on 6q25.2–q27. Thus, PARK2, a gene that causes neuronal dysfunction when mutated in the germline, may instead contribute to oncogenesis when altered in non-neuronal somatic cells.
doi:10.1038/ng.491
PMCID: PMC4002225  PMID: 19946270
7.  Genetic Etiology of Parkinson Disease Associated with Mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 Genes: A Mutation Update 
Human Mutation  2010;31(7):763-780.
To date, molecular genetic analyses have identified over 500 distinct DNA variants in five disease genes associated with familial Parkinson disease; α-synuclein (SNCA), parkin (PARK2), PTEN-induced putative kinase 1 (PINK1), DJ-1 (PARK7), and Leucine-rich repeat kinase 2 (LRRK2). These genetic variants include ∼82% simple mutations and ∼18% copy number variations. Some mutation subtypes are likely underestimated because only few studies reported extensive mutation analyses of all five genes, by both exonic sequencing and dosage analyses. Here we present an update of all mutations published to date in the literature, systematically organized in a novel mutation database (http://www.molgen.ua.ac.be/PDmutDB). In addition, we address the biological relevance of putative pathogenic mutations. This review emphasizes the need for comprehensive genetic screening of Parkinson patients followed by an insightful study of the functional relevance of observed genetic variants. Moreover, while capturing existing data from the literature it became apparent that several of the five Parkinson genes were also contributing to the genetic etiology of other Lewy Body Diseases and Parkinson-plus syndromes, indicating that mutation screening is recommendable in these patient groups. Hum Mutat 31:763–780, 2010. © 2010 Wiley-Liss, Inc.
doi:10.1002/humu.21277
PMCID: PMC3056147  PMID: 20506312
Parkinson disease; genetic etiology; database; SNCA; PARK2; PINK1; PARK7; LRRK2
8.  Breakpoint mapping of 13 large parkin deletions/duplications reveals an exon 4 deletion and an exon 7 duplication as founder mutations 
Neurogenetics  2011;12(4):263-271.
Early-onset Parkinson’s disease (EOPD) has been associated with recessive mutations in parkin (PARK2). About half of the mutations found in parkin are genomic rearrangements, i.e., large deletions or duplications. Although many different rearrangements have been found in parkin before, the exact breakpoints involving these rearrangements are rarely mapped. In the present study, the exact breakpoints of 13 different parkin deletions/duplications, detected in 13 patients out of a total screened sample of 116 EOPD patients using Multiple Ligation Probe Amplification (MLPA) analysis, were mapped using real time quantitative polymerase chain reaction (PCR), long-range PCR and sequence analysis. Deletion/duplication-specific PCR tests were developed as a rapid and low cost tool to confirm MLPA results and to test family members or patients with similar parkin deletions/duplications. Besides several different deletions, an exon 3 deletion, an exon 4 deletion and an exon 7 duplication were found in multiple families. Haplotype analysis in four families showed that a common haplotype of 1.2 Mb could be distinguished for the exon 7 duplication and a common haplotype of 6.3 Mb for the deletion of exon 4. These findings suggest common founder effects for distinct large rearrangements in parkin.
doi:10.1007/s10048-011-0302-9
PMCID: PMC3215878  PMID: 21993715
Parkinson’s disease; parkin; Deletion; Duplication; Common founder; Breakpoint mapping
9.  Effective quantitative real-time polymerase chain reaction analysis of the parkin gene (PARK2) exon 1–12 dosage 
Background
One of the causes of Parkinson's disease is mutations in the PARK2 gene. Deletions and duplications of single exons or exon groups account for a large proportion of the gene mutations. Direct detection of these mutations can be used for the diagnosis of Parkinson's disease.
Methods
To detect these mutations, we developed an effective technique based on the real-time TaqMan PCR system, which allows us to evaluate the copynumbers of the PARK2 gene exons by comparing the intensity of the amplification signals from some exon of this gene with that of the β-globin gene (the internal control).
Results
We analyzed rearrangements in exons 1–12 of the PARK2 gene in 64 patients from Russia with early-onset Parkinson's disease. The frequency of these mutations in our patients was 14%.
Conclusion
We have developed a simple, accurate, and reproducible method applicable to the rapid detection of exon rearrangements in the PARK2 gene. It is suitable for the analysis of large patient groups, and it may become the basis for a diagnostic test.
doi:10.1186/1471-2350-8-6
PMCID: PMC1810516  PMID: 17324265
10.  Familial Parkinsonism: Study of Original Sagamihara PARK8 (I2020T) Kindred With Variable Clinicopathologic Outcomes 
Parkinsonism & related disorders  2008;15(4):300-306.
Background
Since the causative gene linked to PARK8 parkinsonism was identified as LRRK2, LRRK2 gene mutations have been found to occur in about 4% of patients with hereditary Parkinson disease (PD); this percentage is even higher in certain populations. Moreover, no clear clinical differences between PARK8-linked parkinsonism and sporadic PD have been identified. Neuropathologic findings have been diverse in PARK8 parkinsonism, but few of the clinicopathologic examinations have been performed in the same family tree. We aimed to describe PET and neuropathologic findings in members of the same family tree with PARK8 parkinsonism.
Methods
We conducted PET of 2 subjects and neuropathologically examined 8 subjects in the same family from the Sagamihara district, the original source of PARK8-linked parkinsonism (I2020T mutation).
Results
The results of the PET scans were virtually identical to those seen in sporadic PD. The neuropathologic study results showed pure nigral degeneration with no Lewy bodies in 6 cases. One case, however, showed the presence of Lewy bodies and was similar neuropathologically to conventional PD with Lewy bodies. Another case had multiple system atrophy pathology.
Conclusions
Our study of PARK8-linked parkinsonism affecting several members of the same pedigree shows that the same gene mutation can induce diverse neuropathologies, even if the clinical picture and PET findings are virtually identical.
doi:10.1016/j.parkreldis.2008.07.010
PMCID: PMC2702757  PMID: 18804399
nigral degeneration; PARK8; PET
11.  The G2019S LRRK2 Mutation is Rare in Korean Patients with Parkinson's Disease and Multiple System Atrophy 
Background and Purpose
The LRRK2 (PARK8; OMIM607060) substitution was recently identified as a causative mutation for Parkinson's disease (PD). The pathologic heterogeneity of LRRK2-positive patients suggests that mutation of the LRRK2 gene is associated with the pathogenesis of PD and Parkinson-plus disorders, such as multiple system atrophy (MSA). We previously reported that the G2019S LRRK2 mutation-which is the most common LRRK2 mutation-was not found in a sample of 453 Korean PD patients. In the present study, we extended the screening for the G2019S mutation to a larger group of PD and MSA patients.
Methods
We performed a genetic analysis of the G2019S mutation in 877 patients with PD and 199 patients with MSA using a standard PCR and restriction digestion method.
Results
None of the subjects carried the G2019S mutation.
Conclusions
The results of the present study support that the G2019S mutation is extremely rare in PD and is unlikely to be associated with MSA in the Korean population.
doi:10.3988/jcn.2009.5.1.29
PMCID: PMC2686897  PMID: 19513331
Parkinson's disease; multiple system atrophy; LRRK2; G2019S mutation
12.  A Rare Novel Deletion of the Tyrosine Hydroxylase Gene in Parkinson Disease 
Human Mutation  2010;31(10):E1767-E1771.
Tyrosine hydroxylase (TH) enzyme is a rate limiting enzyme in dopamine biosynthesis. Missense mutation in both alleles of the TH gene is known to cause dopamine-related phenotypes, including dystonia and infantile Parkinsonism. However, it is not clear if single allele mutation in TH modifies the susceptibility to the adult form of Parkinson disease (PD). We reported a novel deletion of entire TH gene in an adult with PD. The deletion was first identified by copy number variation (CNV) analysis in a genome-wide association study using Illumina Infinium BeadChips. After screening 635 cases and 642 controls, the deletion was found in one PD case but not in any control. The deletion was confirmed by multiple quantitative PCR (qPCR) assays. There is no additional exonic single nucleotide variant in the one copy of TH gene of the patient. The patient has an age-at-onset of 54 years, no evidence for dystonia, and was responsive to L-DOPA. This case supports the importance of the TH gene in PD pathogenesis and raises more attention to rare variants in candidate genes being a risk factor for Parkinson disease. © 2010 Wiley-Liss, Inc.
doi:10.1002/humu.21351
PMCID: PMC3025121  PMID: 20809526
Parkinson disease; TH; deletion; CNV; rare variants
13.  PARK2 variability in Polish Parkinson’s disease patients - interaction with mitochondrial haplogroups 
Parkinsonism & related disorders  2012;18(5):520-524.
Aims and objectives
A new pathomechanism of Parkinson’s disease (PD) involving regulation of mitochondrial functions was recently proposed. Parkin complexed with mitochondrial transcription factor A (TFAM) binds mtDNA and promotes mitochondrial biogenesis, which is abolished by PARK2 gene mutations. We have previously shown that mitochondrial haplogroups/clusters and TFAM common variation influenced PD risk. We investigate the role of PARK2 polymorphisms on PD risk and their interactions with mitochondrial haplogroups/clusters as well as with TFAM variability.
Methods
104 early-onset PD patients (EOPD, age at onset ≤ 50 years) were screened for PARK2 coding sequence changes including gene dosage alterations. Three selected PARK2 polymorphisms (S167N, V380L, D394N) were genotyped in 326 PD patients and 315 controls using TaqMan allelic discrimination assay.
Results
PARK2 screen revealed two heterozygous changes in two EOPD patients: exon 2 deletion and one novel synonymous variation (c.999C>A, P333P).
In association study no differences in genotype/allele frequencies of S167N, V380L, D394N were found between analyzed groups. Stratification by mitochondrial clusters revealed higher frequency of V380L G/G genotype and allele G in PD patients, within HV cluster (p=0.040; p=0.022, respectively). Moreover, interaction between genotypes G/G V380L of PARK2 and G/G rs2306604 of TFAM, within HV cluster was significant (OR 2.05; CI 1.04 – 4.04; p=0.038).
Conclusions
Our results indicate that co-occurence of G/G V380L PARK2 and G/G rs2306604 TFAM on the prooxidative HV cluster background can contribute to PD risk. We confirm low PARK2 mutation frequency in Polish EOPD patients.
doi:10.1016/j.parkreldis.2012.01.021
PMCID: PMC3358581  PMID: 22361577
Parkinson’s disease risk factors; PARK2; mitochondrial clusters; mitochondrial transcription factor A (TFAM)
14.  Associations between Body Mass Index and Park Proximity, Size, Cleanliness and Recreational Facilities 
Purpose
To determine whether body mass index (BMI) is associated with proximity to neighborhood parks, the size of the parks, their cleanliness and the availability of recreational facilities in the parks.
Design
Cross-sectional.
Setting
New York City.
Subjects
13,102 adults (median age 45 years, 36% male) recruited from 2000–2002.
Measures
Anthropometric and socio-demographic data from study subjects were linked to Department of Parks & Recreation data on park space, cleanliness, and facilities. Neighborhood level socio-demographic and park proximity metrics were created for half-mile radius circular buffers around each subject’s residence. Proximity to park space was measured as the proportion of the subject’s neighborhood buffer area that was total park space, large park space (a park > 6 acres) and small park space (a park <=6 acres).
Analysis
Hierarchical linear models were used to determine whether neighborhood park metrics were associated with BMI.
Results
Higher proximity to large park space was significantly associated with lower BMI (beta = −1.69 95% CI = −2.76, −0.63). Across the population distribution of proximity to large park space, compared to subjects living in neighborhoods at the 10th percentile of the distribution, the covariate adjusted average BMI was estimated to be 0.35 kg/m2 lower for those living in neighborhoods at the 90th percentile. The proportion of neighborhood area that was small park space was not associated with BMI, nor was park cleanliness or the availability of recreational facilities.
Conclusions
Neighborhood proximity to large park spaces is modestly associated with lower BMI in a diverse urban population.
doi:10.4278/ajhp.110809-QUAN-304
PMCID: PMC3696994  PMID: 23448416
Obesity; Body mass index; park proximity; neighborhood
15.  A multidisciplinary study of patients with early-onset PD with and without parkin mutations 
Neurology  2009;72(2):110-116.
Objective:
To establish phenotype–genotype correlations in early-onset Parkinson disease (EOPD), we performed neurologic, neuropsychological, and psychiatric evaluations in a series of patients with and without parkin mutations.
Background:
Parkin (PARK2) gene mutations are the major cause of autosomal recessive parkinsonism. The usual clinical features are early-onset typical PD with a slow clinical course, an excellent response to low doses of levodopa, frequent treatment-induced dyskinesias, and the absence of dementia.
Methods:
A total of 44 patients with EOPD (21 with and 23 without parkin mutations) and 9 unaffected single heterozygous carriers of parkin mutations underwent extensive clinical, neuropsychological, and psychiatric examinations.
Results:
The neurologic, neuropsychological, and psychiatric features were similar in all patients, except for significantly lower daily doses of dopaminergic treatment and greater delay in the development of levodopa-related fluctuations (p < 0.05) in parkin mutation carriers compared to noncarriers. There was no major difference between the two groups in terms of general cognitive efficiency. Psychiatric manifestations (depression) were more frequent in patients than in healthy single heterozygous parkin carriers but did not differ between the two groups of patients.
Conclusion:
Carriers of parkin mutations are clinically indistinguishable from other patients with young-onset Parkinson disease (PD) on an individual basis. Severe generalized loss of dopaminergic neurons in the substantia nigra pars compacta in these patients is associated with an excellent response to low doses of dopa-equivalent and delayed fluctuations, but cognitive impairment and special behavioral or psychiatric symptoms were not more severe than in other patients with early-onset PD.
GLOSSARY
= Comprehensive Psychopathological Rating Scale;
= early-onset Parkinson disease;
= Frontal Assessment Battery;
= Montgomery-Asberg Depression Rating Scale;
= Mattis Dementia Rating Scale;
= Mini International Neuropsychiatric Interview;
= Mini-Mental State Examination;
= Trail Making Test;
= Unified Parkinson's Disease Rating Scale;
= Wisconsin Card Sorting Test.
doi:10.1212/01.wnl.0000327098.86861.d4
PMCID: PMC2677494  PMID: 18987353
16.  Transcriptional Activation of Low-Density Lipoprotein Receptor Gene by DJ-1 and Effect of DJ-1 on Cholesterol Homeostasis 
PLoS ONE  2012;7(5):e38144.
DJ-1 is a novel oncogene and also causative gene for familial Parkinson’s disease park7. DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. For transcriptional regulation, DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found the low-density lipoprotein receptor (LDLR) gene is a transcriptional target gene for DJ-1. Reduced expression of LDLR mRNA and protein was observed in DJ-1-knockdown cells and DJ-1-knockout mice and this occurred at the transcription level. Reporter gene assays using various deletion and point mutations of the LDLR promoter showed that DJ-1 stimulated promoter activity by binding to the sterol regulatory element (SRE) with sterol regulatory element binding protein (SREBP) and that stimulating activity of DJ-1 toward LDLR promoter activity was enhanced by oxidation of DJ-1. Chromatin immunoprecipitation, gel-mobility shift and co-immunoprecipitation assays showed that DJ-1 made a complex with SREBP on the SRE. Furthermore, it was found that serum LDL cholesterol level was increased in DJ-1-knockout male, but not female, mice and that the increased serum LDL cholesterol level in DJ-1-knockout male mice was cancelled by administration with estrogen, suggesting that estrogen compensates the increased level of serum LDL cholesterol in DJ-1-knockout female mice. This is the first report that DJ-1 participates in metabolism of fatty acid synthesis through transcriptional regulation of the LDLR gene.
doi:10.1371/journal.pone.0038144
PMCID: PMC3364227  PMID: 22666465
17.  L166P mutant DJ-1 promotes cell death by dissociating Bax from mitochondrial Bcl-XL 
Background
Mutations or deletions in DJ-1/PARK7 gene are causative for recessive forms of early onset Parkinson’s disease (PD). Wild-type DJ-1 has cytoprotective roles against cell death through multiple pathways. The most commonly studied mutant DJ-1(L166P) shifts its subcellular distribution to mitochondria and renders cells more susceptible to cell death under stress stimuli. We previously reported that wild-type DJ-1 binds to Bcl-XL and stabilizes it against ultraviolet B (UVB) irradiation-induced rapid degradation. However, the mechanisms by which mitochondrial DJ-1(L166P) promotes cell death under death stimuli are largely unknown.
Results
We show that DJ-1(L166P) is more prone to localize in mitochondria and it binds to Bcl-XL more strongly than wild-type DJ-1. In addition, UVB irradiation significantly promotes DJ-1(L166P) translocation to mitochondria and binding to Bcl-XL. DJ-1(L166P) but not wild-type DJ-1 dissociates Bax from Bcl-XL, thereby leading to Bax enrichment at outer mitochondrial membrane and promoting mitochondrial apoptosis pathway in response to UVB irradiation.
Conclusion
Our findings suggest that wild-type DJ-1 protects cells and DJ-1(L166P) impairs cells by differentially regulating mitochondrial Bax/Bcl-XL functions.
doi:10.1186/1750-1326-7-40
PMCID: PMC3479024  PMID: 22892098
Parkinson’s disease; DJ-1; L166P; Mitochondria; Apoptosis; Bcl-XL; Bax; UVB
18.  Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease 
Nature genetics  2010;42(9):781-785.
Parkinson disease (PD) is a common disorder that leads to motor and cognitive disability. We performed a genome-wide association study (GWAS) with 2000 PD and 1986 control Caucasian subjects from NeuroGenetics Research Consortium.1–5 We confirmed SNCA2,6–8 and MAPT3,7–9; replicated GAK9 (PPankratz+NGRC=3.2×10−9); and detected a novel association with HLA (PNGRC=2.9×10−8) which replicated in two datasets (PMeta-analysis=1.9×10−10). We designate the new PD genes PARK17 (GAK) and PARK18 (HLA). PD-HLA association was uniform across genetic and environmental risk strata, and strong in sporadic (P=5.5×10−10) and late-onset (P=2.4×10−8) PD. The association peak was at rs3129882, a non-coding variant in HLA-DRA. Two studies suggested rs3129882 influences expression of HLA-DR and HLA-DQ.10,11 PD brains exhibit up-regulation of DR antigens and presence of DR-positive reactive microglia.12 Moreover, non-steroidal anti-inflammatory drugs (NSAID) reduce PD risk.4,13 The genetic association with HLA coalesces the evidence for involvement of the immune system and offers new targets for drug development and pharmacogenetics.
doi:10.1038/ng.642
PMCID: PMC2930111  PMID: 20711177
19.  Park7 Expression Influences Myotube Size and Myosin Expression in Muscle 
PLoS ONE  2014;9(3):e92030.
Callipyge sheep exhibit postnatal muscle hypertrophy due to the up-regulation of DLK1 and/or RTL1. The up-regulation of PARK7 was identified in hypertrophied muscles by microarray analysis and further validated by quantitative PCR. The expression of PARK7 in hypertrophied muscle of callipyge lambs was confirmed to be up-regulated at the protein level. PARK7 was previously identified to positively regulate PI3K/AKT pathway by suppressing the phosphatase activity of PTEN in mouse fibroblasts. The purpose of this study was to investigate the effects of PARK7 in muscle growth and protein accretion in response to IGF1. Primary myoblasts isolated from Park7 (+/+) and Park7 (−/−) mice were used to examine the effect of differential expression of Park7. The Park7 (+/+) myotubes had significantly larger diameters and more total sarcomeric myosin expression than Park7 (−/−) myotubes. IGF1 treatment increased the mRNA abundance of Myh4, Myh7 and Myh8 between 20-40% in Park7 (+/+) myotubes relative to Park7 (−/−). The level of AKT phosphorylation was increased in Park7 (+/+) myotubes at all levels of IGF1 supplementation. After removal of IGF1, the Park7 (+/+) myotubes maintained higher AKT phosphorylation through 3 hours. PARK7 positively regulates the PI3K/AKT pathway by inhibition of PTEN phosphatase activity in skeletal muscle. The increased PARK7 expression can increase protein synthesis and result in myotube hypertrophy. These results support the hypothesis that elevated expression of PARK7 in callipyge muscle would increase levels of AKT activity to cause hypertrophy in response to the normal IGF1 signaling in rapidly growing lambs. Increasing expression of PARK7 could be a novel mechanism to increase protein accretion and muscle growth in livestock or help improve muscle mass with disease or aging.
doi:10.1371/journal.pone.0092030
PMCID: PMC3956870  PMID: 24637782
20.  Analysis on the Susceptibility Genes in Two Chinese Pedigrees with Familial Parkinson's Disease 
Objective. To screen the susceptibility genes in Chinese pedigrees with early-onset familial Parkinson's disease (FPD). Methods. Fifty-one genomic DNA samples extracted from two Chinese pedigrees with FPD, the alpha-synuclein genes (SNCA), the leucine-rich repeat kinase 2(LRRK2), PINK1(PTEN-induced putative kinase 1), PARK7(Protein DJ1), PARK2(Parkinson juvenile disease protein 2), the glucocerebrosidase (GBA), and ATP(Ezrin-binding protein PACE-1), were sequenced by the use of polymerase chain reaction (PCR) technique. The gene dose of SNCA was checked. Results. There were only two missense mutations observed, respectively, at exon 5 of LRRK2 and exon 10 of PARK2, and both were enrolled in SNPs. Conclusion. No meaningful mutations could be detected, and other susceptibility genes should be detected in FDP patients in China.
doi:10.1155/2010/674740
PMCID: PMC3003980  PMID: 21188226
21.  A PARK2 polymorphism associated with delayed neuropsychological sequelae after carbon monoxide poisoning 
BMC Medical Genetics  2013;14:99.
Background
Delayed neuropsychological sequelae (DNS) are the most severe and clinically intractable complications following acute carbon monoxide (CO) poisoning. Symptoms of DNS often resemble those of Parkinson’s disease (PD), suggesting shared neurological deficits. Furthermore, Parkinson protein 2 (PARK2) mutations are associated with PD and other neurodegenerative diseases. The association signal was detected between PARK2 and DNS after acute CO poisoning in our DNA pooling base genome-wide association study.
Methods
Two PARK2 single nucleotide polymorphisms (SNPs), rs1784594 (C/T allele) and rs1893895 (G/A allele), selected from DNA pooling base genome-wide association study, were genotyped by in 514 CO poisoning patients using polymerase chain reaction restriction fragment length polymorphisms (PCR-RFLPs). The patient group consisted of 231 patients with DNS and 283 patients with no signs of lasting neurological damage (control population).
Results
The frequency of the rs1784594 T allele was significantly lower in the DNS population (OR = 1.42, 95%CI: 1.08 − 1.87), as was the TT vs. CC genotype (OR = 1.95, 95%CI: 1.15 − 3.23) and the TT vs. CT + CC frequency (OR = 1.68, 95%CI: 1.32 − 2.49) compared to controls. Association analysis revealed a significant association between DNS and rs1784594 (P < 0.01) but not rs1893895 (P > 0.05). In female cases, the T allele frequency of rs1784594 was significantly lower in DNS patients compared to female controls (OR = 1.48, 95%CI: 1.01 − 2.17).
Conclusion
These data suggest that the allelic variant of rs1784594 is a risk factor for DNS following acute CO poisoning, especially in females. The PARK2 protein may modulate the susceptibility to DNS, underscoring the importance of examining the relationship between other PARK2 polymorphisms and clinical outcome following CO poisoning.
doi:10.1186/1471-2350-14-99
PMCID: PMC3849006  PMID: 24063657
Delayed neuropsychological sequelae; Acute carbon monoxide poisoning; PARK2; SNP
22.  Elevated α-synuclein mRNA levels in individual UV-laser-microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease 
Nucleic Acids Research  2008;36(7):e38.
The presynaptic protein α-synuclein is involved in several neurodegenerative diseases, including Parkinson's disease (PD). In rare familial forms of PD, causal mutations (PARK1) as well as multiplications (PARK4) of the α-synuclein gene have been identified. In sporadic, idiopathic PD, abnormal accumulation and deposition of α-synuclein might also cause degeneration of dopaminergic midbrain neurons, the clinically most relevant neuronal population in PD. Thus, cell-specific quantification of α-synuclein expression-levels in dopaminergic neurons from idiopathic PD patients in comparison to controls would provide essential information about contributions of α-synuclein to the etiology of PD. However, a number of previous studies addressing this question at the tissue-level yielded varying results regarding α-synuclein expression. To increase specificity, we developed a cell-specific approach for mRNA quantification that also took into account the important issue of variable RNA integrities of the individual human postmortem brain samples. We demonstrate that PCR –amplicon size can confound quantitative gene-expression analysis, in particular of partly degraded RNA. By combining optimized UV-laser microdissection- and quantitative RT–PCR-techniques with suitable PCR assays, we detected significantly elevated α-synuclein mRNA levels in individual, surviving neuromelanin- and tyrosine hydroxylase-positive substantia nigra dopaminergic neurons from idiopathic PD brains compared to controls. These results strengthen the pathophysiologic role of transcriptional dysregulation of the α-synuclein gene in sporadic PD.
doi:10.1093/nar/gkn084
PMCID: PMC2367701  PMID: 18332041
23.  Update on Genetics of Parkinsonism 
Neuro-Degenerative Diseases  2012;10(1-4):257-260.
Background
Major progress in genetic studies of Parkinson's disease (PD) and parkinsonism has been achieved in the last two decades. Objective: We provide a brief review of the current status of PARK and non-PARK loci/genes, and discuss two new genes: eIF4G1 and VPS35.
Methods
The literature on PARK and non-PARK loci/genes was reviewed and some novel information on two new genes is provided.
Results
There are 18 PARK loci. The symptomatic carriers of these genes usually present with parkinsonism, although additional clinical features can be seen during the course of the disease. Carriers of non-PARK loci/genes frequently present with a mixed phenotype that includes parkinsonism and additional clinical features. Carriers of the eIF4G1 and VPS35 genes present with a parkinsonian phenotype. The pathology of eIF4G1 is of the α-synuclein type; the pathology of VPS35 is unknown.
Conclusion
The current genetic classification of PD/parkinsonism genes is not ideal. The pathological classification based on the accumulation of particular proteins/inclusions is also misleading since there are kindred with a single mutation but pleomorphic pathology. A better classification of neurodegenerative conditions is needed. It is hoped that the genetic studies will lead to better therapies.
doi:10.1159/000334285
PMCID: PMC3363351  PMID: 22261420
Genetics; Parkinsonism; SNCA; PRKN; LRRK2; GBA; eIF4G1; VPS35
24.  Genetics of Parkinson disease and essential tremor 
Current opinion in neurology  2010;23(4):388-393.
Purpose of review
Elucidating the genetic background of Parkinson disease and essential tremor is crucial to understand the pathogenesis and improve diagnostic and therapeutic strategies.
Recent findings
A number of approaches have been applied including familial and association studies, and studies of gene expression profiles to identify genes involved in susceptibility to Parkinson disease. These studies have nominated a number of candidate Parkinson disease genes and novel loci including Omi/HtrA2, GIGYF2, FGF20, PDXK, EIF4G1 and PARK16. A recent notable finding has been the confirmation for the role of heterozygous mutations in glucocerebrosidase (GBA) as risk factors for Parkinson disease. Finally, association studies have nominated genetic variation in the leucine-rich repeat and Ig containing 1 gene (LINGO1) as a risk for both Parkinson disease and essential tremor, providing the first genetic evidence of a link between the two conditions.
Summary
Although undoubtedly genes remain to be identified, considerable progress has been achieved in the understanding of the genetic basis of Parkinson disease. This same effort is now required for essential tremor. The use of next-generation high-throughput sequencing and genotyping technologies will help pave the way for future insight leading to advances in diagnosis, prevention and cure.
doi:10.1097/WCO.0b013e32833b1f4c
PMCID: PMC3930090  PMID: 20489616
essential tremor; genetics; LINGO1; PARK16; Parkinson disease
25.  Nonmotor Symptoms in Patients with PARK2 Mutations 
Parkinson's Disease  2011;2011:473640.
Decreased 123I-meta-iodobenzylguanidine (MIBG) uptake in MIBG myocardial scintigraphy, olfactory dysfunction, and rapid eye movement (REM) sleep behavior disorder (RBD) are considered useful early indicators of Parkinson disease. We investigated whether patients with PARK2 mutations exhibited myocardial sympathetic abnormalities using MIBG scintigraphy, olfactory dysfunction using the Sniffin' Sticks olfactory test, and RBD using polysomnography. None of the examined patients had RBD, and all except 1 patient exhibited an increase in the olfactory threshold. Moreover, one of the oldest patients exhibited impairment in identification and discrimination. Of 12 patients with PARK2 mutations, 4 patients, who were older than patients without abnormal uptake, exhibited decreased MIBG uptake. The results obtained in this study suggest that some patients with PARK2 mutations have increased thresholds of olfactory function and myocardial sympathetic dysfunction as nonmotor symptoms.
doi:10.4061/2011/473640
PMCID: PMC3026966  PMID: 21317980

Results 1-25 (909508)