# Related Articles

Self-organized criticality refers to the spontaneous emergence of self-similar dynamics in complex systems poised between order and randomness. The presence of self-organized critical dynamics in the brain is theoretically appealing and is supported by recent neurophysiological studies. Despite this, the neurobiological determinants of these dynamics have not been previously sought. Here, we systematically examined the influence of such determinants in hierarchically modular networks of leaky integrate-and-fire neurons with spike-timing-dependent synaptic plasticity and axonal conduction delays. We characterized emergent dynamics in our networks by distributions of active neuronal ensemble modules (neuronal avalanches) and rigorously assessed these distributions for power-law scaling. We found that spike-timing-dependent synaptic plasticity enabled a rapid phase transition from random subcritical dynamics to ordered supercritical dynamics. Importantly, modular connectivity and low wiring cost broadened this transition, and enabled a regime indicative of self-organized criticality. The regime only occurred when modular connectivity, low wiring cost and synaptic plasticity were simultaneously present, and the regime was most evident when between-module connection density scaled as a power-law. The regime was robust to variations in other neurobiologically relevant parameters and favored systems with low external drive and strong internal interactions. Increases in system size and connectivity facilitated internal interactions, permitting reductions in external drive and facilitating convergence of postsynaptic-response magnitude and synaptic-plasticity learning rate parameter values towards neurobiologically realistic levels. We hence infer a novel association between self-organized critical neuronal dynamics and several neurobiologically realistic features of structural connectivity. The central role of these features in our model may reflect their importance for neuronal information processing.

Author Summary

The intricate relationship between structural brain connectivity and functional brain activity is an important and intriguing research area. Brain structure (the pattern of neuroanatomical connections) is thought to strongly influence and constrain brain function (the pattern of neuronal activations). Concurrently, brain function is thought to gradually reshape brain structure, through processes such as activity-dependent plasticity (the “what fires together, wires together” principle). In this study, we examined the relationship between brain structure and function in a biologically realistic mathematical model. More specifically, we considered the relationship between realistic features of brain structure, such as self-similar organization of specialized brain regions at multiple spatial scales (hierarchical modularity) and realistic features of brain activity, such as self-similar complex dynamics poised between order and randomness (self-organized criticality). We found a direct association between these structural and functional features in our model. This association only occurred in the presence of activity-dependent plasticity, and may reflect the importance of the corresponding structural and functional features in neuronal information processing.

doi:10.1371/journal.pcbi.1002038

PMCID: PMC3107249
PMID: 21673863

Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype) while allowing for switching between multiple phenotypes (network states) as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i) preserve all the already acquired phenotypes (dynamical attractor states) and (ii) generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation) while conserving the existing phenotypes (conservation) suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators) similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape.

Author Summary

Dynamically critical systems are those which operate at the border of a phase transition between two behavioral regimes often present in complex systems: order and disorder. Critical systems exhibit remarkable properties such as fast information processing, collective response to perturbations or the ability to integrate a wide range of external stimuli without saturation. Recent evidence indicates that the genetic networks of living cells are dynamically critical. This has far reaching consequences, for it is at criticality that living organisms can tolerate a wide range of external fluctuations without changing the functionality of their phenotypes. Therefore, it is necessary to know how genetic criticality emerged through evolution. Here we show that dynamical criticality naturally emerges from the delicate balance between two fundamental forces of natural selection that make organisms evolve: (i) the existing phenotypes must be resilient to random mutations, and (ii) new phenotypes must emerge for the organisms to adapt to new environmental challenges. The joint effect of these two forces, which are essential for evolvability, is sufficient in our computational models to generate populations of genetic networks operating at criticality. Thus, natural selection acting as a tinkerer of evolvable systems naturally generates critical dynamics.

doi:10.1371/journal.pcbi.1002669

PMCID: PMC3435273
PMID: 22969419

Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.

doi:10.1371/journal.pone.0025110

PMCID: PMC3221653
PMID: 22132067

The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external signals that may help the organism to change and adapt to different environments. This compromise between robustness and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data available, the five networks under study indeed operate close to criticality. The generality of this result suggests that criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of dynamically robust living forms that we observe around us.

doi:10.1371/journal.pone.0002456

PMCID: PMC2423472
PMID: 18560561

In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and single-path assumption, but also by demonstrating the importance of considering temporal dynamics, and specifically introducing the usefulness of Boolean network models and also reviewing some key properties of network approaches.

doi:10.3389/fpls.2011.00092

PMCID: PMC3355816
PMID: 22645556

epistasis; gene regulatory networks; Boolean networks; feedback loops; feed-forward loops; temporal dynamics; modeling; gene interactions

The inference of gene regulatory networks is a key issue for genomic signal processing. This paper addresses the inference of probabilistic Boolean networks (PBNs) from observed temporal sequences of network states. Since a PBN is composed of a finite number of Boolean networks, a basic observation is that the characteristics of a single Boolean network without perturbation may be determined by its pairwise transitions. Because the network function is fixed and there are no perturbations, a given state will always be followed by a unique state at the succeeding time point. Thus, a transition counting matrix compiled over a data sequence will be sparse and contain only one entry per line. If the network also has perturbations, with small perturbation probability, then the transition counting matrix would have some insignificant nonzero entries replacing some (or all) of the zeros. If a data sequence is sufficiently long to adequately populate the matrix, then determination of the functions and inputs underlying the model is straightforward. The difficulty comes when the transition counting matrix consists of data derived from more than one Boolean network. We address the PBN inference procedure in several steps: (1) separate the data sequence into "pure" subsequences corresponding to constituent Boolean networks; (2) given a subsequence, infer a Boolean network; and (3) infer the probabilities of perturbation, the probability of there being a switch between constituent Boolean networks, and the selection probabilities governing which network is to be selected given a switch. Capturing the full dynamic behavior of probabilistic Boolean networks, be they binary or multivalued, will require the use of temporal data, and a great deal of it. This should not be surprising given the complexity of the model and the number of parameters, both transitional and static, that must be estimated. In addition to providing an inference algorithm, this paper demonstrates that the data requirement is much smaller if one does not wish to infer the switching, perturbation, and selection probabilities, and that constituent-network connectivity can be discovered with decent accuracy for relatively small time-course sequences.

doi:10.1155/2007/32454

PMCID: PMC3171335
PMID: 18364987

Background

Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs). As a logical model, probabilistic Boolean networks (PBNs) consider molecular and genetic noise, so the study of PBNs provides significant insights into the understanding of the dynamics of GRNs. This will ultimately lead to advances in developing therapeutic methods that intervene in the process of disease development and progression. The applications of PBNs, however, are hindered by the complexities involved in the computation of the state transition matrix and the steady-state distribution of a PBN. For a PBN with n genes and N Boolean networks, the complexity to compute the state transition matrix is O(nN22n) or O(nN2n) for a sparse matrix.

Results

This paper presents a novel implementation of PBNs based on the notions of stochastic logic and stochastic computation. This stochastic implementation of a PBN is referred to as a stochastic Boolean network (SBN). An SBN provides an accurate and efficient simulation of a PBN without and with random gene perturbation. The state transition matrix is computed in an SBN with a complexity of O(nL2n), where L is a factor related to the stochastic sequence length. Since the minimum sequence length required for obtaining an evaluation accuracy approximately increases in a polynomial order with the number of genes, n, and the number of Boolean networks, N, usually increases exponentially with n, L is typically smaller than N, especially in a network with a large number of genes. Hence, the computational efficiency of an SBN is primarily limited by the number of genes, but not directly by the total possible number of Boolean networks. Furthermore, a time-frame expanded SBN enables an efficient analysis of the steady-state distribution of a PBN. These findings are supported by the simulation results of a simplified p53 network, several randomly generated networks and a network inferred from a T cell immune response dataset. An SBN can also implement the function of an asynchronous PBN and is potentially useful in a hybrid approach in combination with a continuous or single-molecule level stochastic model.

Conclusions

Stochastic Boolean networks (SBNs) are proposed as an efficient approach to modelling gene regulatory networks (GRNs). The SBN approach is able to recover biologically-proven regulatory behaviours, such as the oscillatory dynamics of the p53-Mdm2 network and the dynamic attractors in a T cell immune response network. The proposed approach can further predict the network dynamics when the genes are under perturbation, thus providing biologically meaningful insights for a better understanding of the dynamics of GRNs. The algorithms and methods described in this paper have been implemented in Matlab packages, which are attached as Additional files.

doi:10.1186/1752-0509-6-113

PMCID: PMC3532238
PMID: 22929591

Boolean networks and, more generally, probabilistic Boolean networks, as one class of gene regulatory networks, model biological processes with the network dynamics determined by the logic-rule regulatory functions in conjunction with probabilistic parameters involved in network transitions. While there has been significant research on applying different control policies to alter network dynamics as future gene therapeutic intervention, we have seen less work on understanding the sensitivity of network dynamics with respect to perturbations to networks, including regulatory rules and the involved parameters, which is particularly critical for the design of intervention strategies. This paper studies this less investigated issue of network sensitivity in the long run. As the underlying model of probabilistic Boolean networks is a finite Markov chain, we define the network sensitivity based on the steady-state distributions of probabilistic Boolean networks and call it long-run sensitivity. The steady-state distribution reflects the long-run behavior of the network and it can give insight into the dynamics or momentum existing in a system. The change of steady-state distribution caused by possible perturbations is the key measure for intervention. This newly defined long-run sensitivity can provide insight on both network inference and intervention. We show the results for probabilistic Boolean networks generated from random Boolean networks and the results from two real biological networks illustrate preliminary applications of sensitivity in intervention for practical problems.

doi:10.1016/j.jtbi.2008.12.023

PMCID: PMC2660388
PMID: 19168076

Genetic regulatory networks; Boolean networks; probabilistic Boolean networks; Markov chains; sensitivity; steady-state distribution; intervention; metastasis

Regulatory networks play a central role in cellular behavior and decision making. Learning these regulatory networks is a major task in biology, and devising computational methods and mathematical models for this task is a major endeavor in bioinformatics. Boolean networks have been used extensively for modeling regulatory networks. In this model, the state of each gene can be either ‘on’ or ‘off’ and that next-state of a gene is updated, synchronously or asynchronously, according to a Boolean rule that is applied to the current-state of the entire system. Inferring a Boolean network from a set of experimental data entails two main steps: first, the experimental time-series data are discretized into Boolean trajectories, and then, a Boolean network is learned from these Boolean trajectories. In this paper, we consider three methods for data discretization, including a new one we propose, and three methods for learning Boolean networks, and study the performance of all possible nine combinations on four regulatory systems of varying dynamics complexities. We find that employing the right combination of methods for data discretization and network learning results in Boolean networks that capture the dynamics well and provide predictive power. Our findings are in contrast to a recent survey that placed Boolean networks on the low end of the “faithfulness to biological reality” and “ability to model dynamics” spectra. Further, contrary to the common argument in favor of Boolean networks, we find that a relatively large number of time points in the time-series data is required to learn good Boolean networks for certain data sets. Last but not least, while methods have been proposed for inferring Boolean networks, as discussed above, missing still are publicly available implementations thereof. Here, we make our implementation of the methods available publicly in open source at http://bioinfo.cs.rice.edu/.

doi:10.1371/journal.pone.0066031

PMCID: PMC3689729
PMID: 23805196

Random Boolean networks (RBNs) are models of genetic regulatory networks. It is useful to describe RBNs as self-organizing systems to study how changes in the nodes and connections affect the global network dynamics. This article reviews eight different methods for guiding the self-organization of RBNs. In particular, the article is focused on guiding RBNs toward the critical dynamical regime, which is near the phase transition between the ordered and dynamical phases. The properties and advantages of the critical regime for life, computation, adaptability, evolvability, and robustness are reviewed. The guidance methods of RBNs can be used for engineering systems with the features of the critical regime, as well as for studying how natural selection evolved living systems, which are also critical.

doi:10.1007/s12064-011-0144-x

PMCID: PMC3414703
PMID: 22127955

Guided self-organization; Random Boolean networks; Phase transitions; Criticality; Adaptability; Evolvability; Robustness

Background

The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed.

Results

In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes.

Conclusions

A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 ≤ q ≤ 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.

doi:10.1186/1752-0509-5-61

PMCID: PMC3117729
PMID: 21545720

Boolean networks have been used as a discrete model for several biological systems, including metabolic and genetic regulatory networks. Due to their simplicity they offer a firm foundation for generic studies of physical systems. In this work we show, using a measure of context-dependent information, set complexity, that prior to reaching an attractor, random Boolean networks pass through a transient state characterized by high complexity. We justify this finding with a use of another measure of complexity, namely, the statistical complexity. We show that the networks can be tuned to the regime of maximal complexity by adding a suitable amount of noise to the deterministic Boolean dynamics. In fact, we show that for networks with Poisson degree distributions, all networks ranging from subcritical to slightly supercritical can be tuned with noise to reach maximal set complexity in their dynamics. For networks with a fixed number of inputs this is true for near-to-critical networks. This increase in complexity is obtained at the expense of disruption in information flow. For a large ensemble of networks showing maximal complexity, there exists a balance between noise and contracting dynamics in the state space. In networks that are close to critical the intrinsic noise required for the tuning is smaller and thus also has the smallest effect in terms of the information processing in the system. Our results suggest that the maximization of complexity near to the state transition might be a more general phenomenon in physical systems, and that noise present in a system may in fact be useful in retaining the system in a state with high information content.

doi:10.1371/journal.pone.0056523

PMCID: PMC3596377
PMID: 23516395

Critical dynamics are assumed to be an attractive mode for normal brain functioning as information processing and computational capabilities are found to be optimal in the critical state. Recent experimental observations of neuronal activity patterns following power-law distributions, a hallmark of systems at a critical state, have led to the hypothesis that human brain dynamics could be poised at a phase transition between ordered and disordered activity. A so far unresolved question concerns the medical significance of critical brain activity and how it relates to pathological conditions. Using data from invasive electroencephalogram recordings from humans we show that during epileptic seizure attacks neuronal activity patterns deviate from the normally observed power-law distribution characterizing critical dynamics. The comparison of these observations to results from a computational model exhibiting self-organized criticality (SOC) based on adaptive networks allows further insights into the underlying dynamics. Together these results suggest that brain dynamics deviates from criticality during seizures caused by the failure of adaptive SOC.

Author Summary

Over the recent years it has become apparent that the concept of phase transitions is not only applicable to the systems classically considered in physics. It applies to a much wider class of complex systems exhibiting phases, characterized by qualitatively different types of long-term behavior. In the critical states, which are located directly at the transition, small changes can have a large effect on the system. This and other properties of critical states prove to be advantageous for computation and memory. It is therefore suspected that also cerebral neural networks operate close to criticality. This is supported by the in vitro and in vivo measurements of power-laws of certain scaling relationships that are the hallmarks of phase transitions. While critical dynamics is arguably an attractive mode of normal brain functioning, its relation to pathological brain conditions is still unresolved. Here we show that brain dynamics deviates from a critical state during epileptic seizure attacks in vivo. Furthermore, insights from a computational model suggest seizures to be caused by the failure of adaptive self-organized criticality, a mechanism of self-organization to criticality based on the interplay between network dynamics and topology.

doi:10.1371/journal.pcbi.1002312

PMCID: PMC3252275
PMID: 22241971

The inference of reaction rate parameters in biochemical network models from time series concentration data is a central task in computational systems biology. Under the assumption of well mixed conditions the network dynamics are typically described by the chemical master equation, the Fokker Planck equation, the linear noise approximation or the macroscopic rate equation. The inverse problem of estimating the parameters of the underlying network model can be approached in deterministic and stochastic ways, and available methods often compare individual or mean concentration traces obtained from experiments with theoretical model predictions when maximizing likelihoods, minimizing regularized least squares functionals, approximating posterior distributions or sequentially processing the data. In this article we assume that the biological reaction network can be observed at least partially and repeatedly over time such that sample moments of species molecule numbers for various time points can be calculated from the data. Based on the chemical master equation we furthermore derive closed systems of parameter dependent nonlinear ordinary differential equations that predict the time evolution of the statistical moments. For inferring the reaction rate parameters we suggest to not only compare the sample mean with the theoretical mean prediction but also to take the residual of higher order moments explicitly into account. Cost functions that involve residuals of higher order moments may form landscapes in the parameter space that have more pronounced curvatures at the minimizer and hence may weaken or even overcome parameter sloppiness and uncertainty. As a consequence both deterministic and stochastic parameter inference algorithms may be improved with respect to accuracy and efficiency. We demonstrate the potential of moment fitting for parameter inference by means of illustrative stochastic biological models from the literature and address topics for future research.

doi:10.1371/journal.pone.0043001

PMCID: PMC3416831
PMID: 22900079

The pancreatic islets of Langerhans are multicellular micro-organs integral to maintaining glucose homeostasis through secretion of the hormone insulin. β-cells within the islet exist as a highly coupled electrical network which coordinates electrical activity and insulin release at high glucose, but leads to global suppression at basal glucose. Despite its importance, how network dynamics generate this emergent binary on/off behavior remains to be elucidated. Previous work has suggested that a small threshold of quiescent cells is able to suppress the entire network. By modeling the islet as a Boolean network, we predicted a phase-transition between globally active and inactive states would emerge near this threshold number of cells, indicative of critical behavior. This was tested using islets with an inducible-expression mutation which renders defined numbers of cells electrically inactive, together with pharmacological modulation of electrical activity. This was combined with real-time imaging of intracellular free-calcium activity [Ca2+]i and measurement of physiological parameters in mice. As the number of inexcitable cells was increased beyond ∼15%, a phase-transition in islet activity occurred, switching from globally active wild-type behavior to global quiescence. This phase-transition was also seen in insulin secretion and blood glucose, indicating physiological impact. This behavior was reproduced in a multicellular dynamical model suggesting critical behavior in the islet may obey general properties of coupled heterogeneous networks. This study represents the first detailed explanation for how the islet facilitates inhibitory activity in spite of a heterogeneous cell population, as well as the role this plays in diabetes and its reversal. We further explain how islets utilize this critical behavior to leverage cellular heterogeneity and coordinate a robust insulin response with high dynamic range. These findings also give new insight into emergent multicellular dynamics in general which are applicable to many coupled physiological systems, specifically where inhibitory dynamics result from coupled networks.

Author Summary

As science has successfully broken down the elements of many biological systems, the network dynamics of large-scale cellular interactions has emerged as a new frontier. One way to understand how dynamical elements within large networks behave collectively is via mathematical modeling. Diabetes, which is of increasing international concern, is commonly caused by a deterioration of these complex dynamics in a highly coupled micro-organ called the islet of Langerhans. Therefore, if we are to understand diabetes and how to treat it, we must understand how coupling affects ensemble dynamics. While the role of network connectivity in islet excitation under stimulatory conditions has been well studied, how connectivity also suppresses activity under fasting conditions remains to be elucidated. Here we use two network models of islet connectivity to investigate this process. Using genetically altered islets and pharmacological treatments, we show how suppression of islet activity is solely dependent on a threshold number of inactive cells. We found that the islet exhibits critical behavior in the threshold region, rapidly transitioning from global activity to inactivity. We therefore propose how the islet and multicellular systems in general can generate a robust stimulated response from a heterogeneous cell population.

doi:10.1371/journal.pcbi.1003819

PMCID: PMC4154652
PMID: 25188228

Background

The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used.

Results

This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the dynamic patterns present in the network.

Conclusions

Boolean polynomial dynamical systems provide a powerful modeling framework for the reverse engineering of gene regulatory networks, that enables a rich mathematical structure on the model search space. A C++ implementation of the method, distributed under LPGL license, is available, together with the source code, at http://www.paola-vera-licona.net/Software/EARevEng/REACT.html.

doi:10.1186/1752-0509-8-37

PMCID: PMC4022379
PMID: 24669835

Reverse-engineering; network inference; Boolean networks; molecular networks; gene regulatory networks; polynomial dynamical systems; algebraic dynamic models; evolutionary computation; DNA microarray data; time series data; data noise

Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., for the yeast cell cycle process [1]), considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix , which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for derived from Boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with . We show how to generate Derrida plots based on . We show that -based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on . We motivate all of these results in terms of a popular molecular biology Boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for , for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses.

doi:10.1371/journal.pone.0059046

PMCID: PMC3614996
PMID: 23565141

Network inference deals with the reconstruction of biological networks from experimental data. A variety of different reverse engineering techniques are available; they differ in the underlying assumptions and mathematical models used. One common problem for all approaches stems from the complexity of the task, due to the combinatorial explosion of different network topologies for increasing network size. To handle this problem, constraints are frequently used, for example on the node degree, number of edges, or constraints on regulation functions between network components. We propose to exploit topological considerations in the inference of gene regulatory networks. Such systems are often controlled by a small number of hub genes, while most other genes have only limited influence on the network's dynamic. We model gene regulation using a Bayesian network with discrete, Boolean nodes. A hierarchical prior is employed to identify hub genes. The first layer of the prior is used to regularize weights on edges emanating from one specific node. A second prior on hyperparameters controls the magnitude of the former regularization for different nodes. The net effect is that central nodes tend to form in reconstructed networks. Network reconstruction is then performed by maximization of or sampling from the posterior distribution. We evaluate our approach on simulated and real experimental data, indicating that we can reconstruct main regulatory interactions from the data. We furthermore compare our approach to other state-of-the art methods, showing superior performance in identifying hubs. Using a large publicly available dataset of over 800 cell cycle regulated genes, we are able to identify several main hub genes. Our method may thus provide a valuable tool to identify interesting candidate genes for further study. Furthermore, the approach presented may stimulate further developments in regularization methods for network reconstruction from data.

doi:10.1371/journal.pone.0035077

PMCID: PMC3343044
PMID: 22570688

Computational modeling of genomic regulation has become an important focus of systems biology and genomic signal processing for the past several years. It holds the promise to uncover both the structure and dynamical properties of the complex gene, protein or metabolic networks responsible for the cell functioning in various contexts and regimes. This, in turn, will lead to the development of optimal intervention strategies for prevention and control of disease. At the same time, constructing such computational models faces several challenges. High complexity is one of the major impediments for the practical applications of the models. Thus, reducing the size/complexity of a model becomes a critical issue in problems such as model selection, construction of tractable subnetwork models, and control of its dynamical behavior. We focus on the reduction problem in the context of two specific models of genomic regulation: Boolean networks with perturbation (BNP) and probabilistic Boolean networks (PBN). We also compare and draw a parallel between the reduction problem and two other important problems of computational modeling of genomic networks: the problem of network inference and the problem of designing external control policies for intervention/altering the dynamics of the model.

doi:10.2174/138920209789177584

PMCID: PMC2766789
PMID: 20190953

Background

A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general.

Results

This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author.

Conclusions

The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.

doi:10.1186/1471-2105-15-221

PMCID: PMC4230806
PMID: 24965213

Steady state computation; Boolean model; Discrete model

Background

There exist several computational tools which allow for the optimisation and inference of biological networks using a Boolean formalism. Nevertheless, the results from such tools yield only limited quantitative insights into the complexity of biological systems because of the inherited qualitative nature of Boolean networks.

Results

We introduce optPBN, a Matlab-based toolbox for the optimisation of probabilistic Boolean networks (PBN) which operates under the framework of the BN/PBN toolbox. optPBN offers an easy generation of probabilistic Boolean networks from rule-based Boolean model specification and it allows for flexible measurement data integration from multiple experiments. Subsequently, optPBN generates integrated optimisation problems which can be solved by various optimisers.

In term of functionalities, optPBN allows for the construction of a probabilistic Boolean network from a given set of potential constitutive Boolean networks by optimising the selection probabilities for these networks so that the resulting PBN fits experimental data. Furthermore, the optPBN pipeline can also be operated on large-scale computational platforms to solve complex optimisation problems. Apart from exemplary case studies which we correctly inferred the original network, we also successfully applied optPBN to study a large-scale Boolean model of apoptosis where it allows identifying the inverse correlation between UVB irradiation, NFκB and Caspase 3 activations, and apoptosis in primary hepatocytes quantitatively. Also, the results from optPBN help elucidating the relevancy of crosstalk interactions in the apoptotic network.

Summary

The optPBN toolbox provides a simple yet comprehensive pipeline for integrated optimisation problem generation in the PBN formalism that can readily be solved by various optimisers on local or grid-based computational platforms. optPBN can be further applied to various biological studies such as the inference of gene regulatory networks or the identification of the interaction's relevancy in signal transduction networks.

doi:10.1371/journal.pone.0098001

PMCID: PMC4077690
PMID: 24983623

Attractors represent the long-term behaviors of Random Boolean Networks. We study how the amount of information propagated between the nodes when on an attractor, as quantified by the average pairwise mutual information (), relates to the robustness of the attractor to perturbations (). We find that the dynamical regime of the network affects the relationship between and . In the ordered and chaotic regimes, is anti-correlated with , implying that attractors that are highly robust to perturbations have necessarily limited information propagation. Between order and chaos (for so-called “critical” networks) these quantities are uncorrelated. Finite size effects cause this behavior to be visible for a range of networks, from having a sensitivity of 1 to the point where is maximized. In this region, the two quantities are weakly correlated and attractors can be almost arbitrarily robust to perturbations without restricting the propagation of information in the network.

doi:10.1371/journal.pone.0042018

PMCID: PMC3408442
PMID: 22860048

Self-organized criticality is an attractive model for human brain dynamics, but there has been little direct evidence for its existence in large-scale systems measured by neuroimaging. In general, critical systems are associated with fractal or power law scaling, long-range correlations in space and time, and rapid reconfiguration in response to external inputs. Here, we consider two measures of phase synchronization: the phase-lock interval, or duration of coupling between a pair of (neurophysiological) processes, and the lability of global synchronization of a (brain functional) network. Using computational simulations of two mechanistically distinct systems displaying complex dynamics, the Ising model and the Kuramoto model, we show that both synchronization metrics have power law probability distributions specifically when these systems are in a critical state. We then demonstrate power law scaling of both pairwise and global synchronization metrics in functional MRI and magnetoencephalographic data recorded from normal volunteers under resting conditions. These results strongly suggest that human brain functional systems exist in an endogenous state of dynamical criticality, characterized by a greater than random probability of both prolonged periods of phase-locking and occurrence of large rapid changes in the state of global synchronization, analogous to the neuronal “avalanches” previously described in cellular systems. Moreover, evidence for critical dynamics was identified consistently in neurophysiological systems operating at frequency intervals ranging from 0.05–0.11 to 62.5–125 Hz, confirming that criticality is a property of human brain functional network organization at all frequency intervals in the brain's physiological bandwidth.

Author Summary

Systems in a critical state are poised on the cusp of a transition between ordered and random behavior. At this point, they demonstrate complex patterning of fluctuations at all scales of space and time. Criticality is an attractive model for brain dynamics because it optimizes information transfer, storage capacity, and sensitivity to external stimuli in computational models. However, to date there has been little direct experimental evidence for critical dynamics of human brain networks. Here, we considered two measures of functional coupling or phase synchronization between components of a dynamic system: the phase lock interval or duration of synchronization between a specific pair of time series or processes in the system and the lability of global synchronization among all pairs of processes. We confirmed that both synchronization metrics demonstrated scale invariant behaviors in two computational models of critical dynamics as well as in human brain functional systems oscillating at low frequencies (<0.5 Hz, measured using functional MRI) and at higher frequencies (1–125 Hz, measured using magnetoencephalography). We conclude that human brain functional networks demonstrate critical dynamics in all frequency intervals, a phenomenon we have described as broadband criticality.

doi:10.1371/journal.pcbi.1000314

PMCID: PMC2647739
PMID: 19300473

Background

One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory.

Results

In this paper we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements concern S. cerevisiae cell cycle, E. coli SOS pathways and a recently developed network for in vivo assessment of reverse engineering algorithms. Our results are compared with ARACNE itself and with the ones of two previously published algorithms: Dynamic Bayesian Networks and systems of ODEs, showing that TimeDelay-ARACNE has good accuracy, recall and F-score for the network reconstruction task.

Conclusions

Here we report the adaptation of the ARACNE algorithm to infer gene regulatory networks from time-course data, so that, the resulting network is represented as a directed graph. The proposed algorithm is expected to be useful in reconstruction of small biological directed networks from time course data.

doi:10.1186/1471-2105-11-154

PMCID: PMC2862045
PMID: 20338053

Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.

Synopsis

One of the challenges in the area of brain research is to decipher networks describing the flow of information among communicating neurons in the form of electrophysiological signals. These networks are thought to be responsible for perceiving and learning about the environment, as well as producing behavior. Monitoring these networks is limited by the number of electrodes that can be placed in the brain of an awake animal, while inferring and reasoning about these networks is limited by the availability of appropriate computational tools. Here, Smith and Yu and colleagues begin to address these issues by implanting microelectrode arrays in the auditory pathway of freely moving songbirds and by analyzing the data using new computational tools they have designed for deciphering networks. The authors find that a dynamic Bayesian network algorithm they developed to decipher gene regulatory networks from gene expression data effectively infers putative information flow networks in the brain from microelectrode array data. The networks they infer conform to known anatomy and other biological properties of the auditory system and offer new insight into how the auditory system processes natural and synthetic sound. The authors believe that their results represent the first validated study of the inference of information flow networks in the brain.

doi:10.1371/journal.pcbi.0020161

PMCID: PMC1664702
PMID: 17121460