Search tips
Search criteria

Results 1-25 (553911)

Clipboard (0)

Related Articles

1.  Structure and Specificity of the Bacterial Cysteine Methyltransferase Effector NleE Suggests a Novel Substrate in Human DNA Repair Pathway 
PLoS Pathogens  2014;10(11):e1004522.
Enteropathogenic E. coli (EPEC) and related enterobacteria rely on a type III secretion system (T3SS) effector NleE to block host NF-κB signaling. NleE is a first in class, novel S-adenosyl-L-methionine (SAM)-dependent methyltransferase that methylates a zinc-coordinating cysteine in the Npl4-like Zinc Finger (NZF) domains in TAB2/3 adaptors in the NF-κB pathway, but its mechanism of action and other human substrates are unknown. Here we solve crystal structure of NleE-SAM complex, which reveals a methyltransferase fold different from those of known ones. The SAM, cradled snugly at the bottom of a deep and narrow cavity, adopts a unique conformation ready for nucleophilic attack by the methyl acceptor. The substrate NZF domain can be well docked into the cavity, and molecular dynamic simulation indicates that Cys673 in TAB2-NZF is spatially and energetically favorable for attacking the SAM. We further identify a new NleE substrate, ZRANB3, that functions in PCNA binding and remodeling of stalled replication forks at the DNA damage sites. Specific inactivation of the NZF domain in ZRANB3 by NleE offers a unique opportunity to suggest that ZRANB3-NZF domain functions in DNA repair processes other than ZRANB3 recruitment to DNA damage sites. Our analyses suggest a novel and unexpected link between EPEC infection, virulence proteins and genome integrity.
Author Summary
Pathogens often manipulate host functions by posttranslational modifications such as ubiquitination and methylation. The NF-κB pathway is most critical for immune defense against infection, thereby frequently targeted by bacterial virulence factors. NleE, a virulence effector from EPEC, is a SAM-dependent methyltransferase that modifies a zinc-finger cysteine in TAB2/3 in the NF-κB pathway. NleE is not homologous to any known methyltransferases. We present the crystal structure of SAM-bound NleE that shows a novel methyltransferase fold with a unique SAM-binding mode. Computational docking and molecular dynamics simulation illustrate a structural and chemical mechanism underlying NleE recognition of the NZF and catalyzing site-specific cysteine methylation. Subsequent substrate specificity analyses identify an N-terminal region in TAB3 required for efficient NleE recognition as well as another NZF protein ZRANB3 being a new substrate of NleE. NleE-catalyzed cysteine methylation also disrupts the ubiquitin chain-binding of ZRANB3-NZF domain, providing new insights into ZRANB3-NZF functioning in DNA damage repair. These results reinforce the idea of harnessing bacterial effectors as a tool for dissecting eukaryotic functions.
PMCID: PMC4239114  PMID: 25412445
2.  How Metal Substitution Affects the Enzymatic Activity of Catechol-O-Methyltransferase 
PLoS ONE  2012;7(10):e47172.
Catechol-O-methyltransferase (COMT) degrades catecholamines, such as dopamine and epinephrine, by methylating them in the presence of a divalent metal cation (usually Mg(II)), and S-adenosyl-L-methionine. The enzymatic activity of COMT is known to be vitally dependent on the nature of the bound metal: replacement of Mg(II) with Ca(II) leads to a complete deactivation of COMT; Fe(II) is slightly less than potent Mg(II), and Fe(III) is again an inhibitor. Considering the fairly modest role that the metal plays in the catalyzed reaction, this dependence is puzzling, and to date remains an enigma. Using a quantum mechanical / molecular mechanical dynamics method for extensive sampling of protein structure, and first principle quantum mechanical calculations for the subsequent mechanistic study, we explicate the effect of metal substitution on the rate determining step in the catalytic cycle of COMT, the methyl transfer. In full accord with experimental data, Mg(II) bound to COMT is the most potent of the studied cations and it is closely followed by Fe(II), whereas Fe(III) is unable to promote catalysis. In the case of Ca(II), a repacking of the protein binding site is observed, leading to a significant increase in the activation barrier and higher energy of reaction. Importantly, the origin of the effect of metal substitution is different for different metals: for Fe(III) it is the electronic effect, whereas in the case of Ca(II) it is instead the effect of suboptimal protein structure.
PMCID: PMC3466255  PMID: 23056605
3.  Serotonin-Induced Hypersensitivity via Inhibition of Catechol O-Methyltransferase Activity 
Molecular Pain  2012;8:25.
The subcutaneous and systemic injection of serotonin reduces cutaneous and visceral pain thresholds and increases responses to noxious stimuli. Different subtypes of 5-hydroxytryptamine (5-HT) receptors are suggested to be associated with different types of pain responses. Here we show that serotonin also inhibits catechol O-methyltransferase (COMT), an enzyme that contributes to modultion the perception of pain, via non-competitive binding to the site bound by catechol substrates with a binding affinity comparable to the binding affinity of catechol itself (Ki = 44 μM). Using computational modeling, biochemical tests and cellular assays we show that serotonin actively competes with the methyl donor S-adenosyl-L-methionine (SAM) within the catalytic site. Binding of serotonin to the catalytic site inhibits the access of SAM, thus preventing methylation of COMT substrates. The results of in vivo animal studies show that serotonin-induced pain hypersensitivity in mice is reduced by either SAM pretreatment or by the combined administration of selective antagonists for β2- and β3-adrenergic receptors, which have been previously shown to mediate COMT-dependent pain signaling. Our results suggest that inhibition of COMT via serotonin binding contributes to pain hypersensitivity, providing additional strategies for the treatment of clinical pain conditions.
PMCID: PMC3495668  PMID: 22500608
4.  SAM Recognition and Conformational Switching Mechanism in the Bacillus subtilis yitJ S Box/SAM-I Riboswitch 
Journal of molecular biology  2010;404(5):803-818.
S-box (SAM-I) riboswitches are a widespread class of riboswitches involved in the regulation of sulfur metabolism in Gram-positive bacteria. We report here the 3.0-Å crystal structure of the aptamer domain of the Bacillus subtilis yitJ S-box (SAM-I) riboswitch bound to S-adenosyl-L-methionine (SAM). The RNA folds into two sets of helical stacks spatially arranged by tertiary interactions including a K-turn and a pseudoknot at a four-way junction. The tertiary structure is further stabilized by metal coordination, extensive ribose zipper interactions, and SAM-mediated tertiary interactions. Despite structural differences in the peripheral regions, the SAM-binding core of the B. subtilis yitJ riboswitch is virtually superimposable with the previously determined Thermoanaerobacter tengcongensis yitJ riboswitch structure, suggesting that a highly conserved ligand-recognition mechanism is utilized by all S-box riboswitches. SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemical probing analysis further revealed that the alternative base-pairing element in the expression platform controls the conformational switching process. In the absence of SAM, the apo yitJ aptamer domain folds predominantly into a pre-binding conformation that resembles, but is not identical with, the SAM-bound state. We propose that SAM enters the ligand-binding site through the “J1/2–J3/4” gate and “locks” down the SAM-bound conformation through an induced-fit mechanism. Temperature-dependent SHAPE revealed that the tertiary interaction-stabilized SAM-binding core is extremely stable, likely due to the cooperative RNA folding behavior. Mutational studies revealed that certain modifications in the SAM-binding region result in loss of SAM binding and constitutive termination, which suggests that these mutations lock the RNA into a form that resembles the SAM-bound form in the absence of SAM.
PMCID: PMC3222078  PMID: 20951706
riboswitch; S-box; SAM-I; SHAPE; SAM
5.  Structure and Function of Flavivirus NS5 Methyltransferase▿  
Journal of Virology  2007;81(8):3891-3903.
The plus-strand RNA genome of flavivirus contains a 5′ terminal cap 1 structure (m7GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2′-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA → m7GpppA → m7GpppAm. The 2′-O methylation can be uncoupled from the N-7 methylation, since m7GpppA-RNA can be readily methylated to m7GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 Å resolution showed a single binding site for S-adenosyl-l-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2′-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2′-O cap methylations require distinct buffer conditions and different side chains within the K61-D146-K182-E218 motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2′-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.
PMCID: PMC1866096  PMID: 17267492
6.  A New Structural Form in the SAM/Metal-Dependent O-methyltransferase Family: MycE from the Mycinamycin Biosynthetic Pathway 
Journal of molecular biology  2011;413(2):438-450.
O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products, and is catalyzed by multiple families of S-adenosyl-L-methioine (SAM or AdoMet) dependent methyltransferases. Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent methyltransferase. Crystal structures were determined for MycE bound to the product S-adenosyl-L-homocysteine (SAH or AdoHcy) and magnesium, both with and without the natural substrate, mycinamicin VI. This represents the first structure of a natural product sugar methyltransferase in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic methyltransferase domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel methyltransferase organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor, and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the SAH complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.
PMCID: PMC3193595  PMID: 21884704
7.  West Nile Virus Methyltransferase Catalyzes Two Methylations of the Viral RNA Cap through a Substrate-Repositioning Mechanism▿  
Journal of Virology  2008;82(9):4295-4307.
Flaviviruses encode a single methyltransferase domain that sequentially catalyzes two methylations of the viral RNA cap, GpppA-RNA→m7GpppA-RNA→m7GpppAm-RNA, by using S-adenosyl-l-methionine (SAM) as a methyl donor. Crystal structures of flavivirus methyltransferases exhibit distinct binding sites for SAM, GTP, and RNA molecules. Biochemical analysis of West Nile virus methyltransferase shows that the single SAM-binding site donates methyl groups to both N7 and 2′-O positions of the viral RNA cap, the GTP-binding pocket functions only during the 2′-O methylation, and two distinct sets of amino acids in the RNA-binding site are required for the N7 and 2′-O methylations. These results demonstrate that flavivirus methyltransferase catalyzes two cap methylations through a substrate-repositioning mechanism. In this mechanism, guanine N7 of substrate GpppA-RNA is first positioned to SAM to generate m7GpppA-RNA, after which the m7G moiety is repositioned to the GTP-binding pocket to register the 2′-OH of the adenosine with SAM, generating m7GpppAm-RNA. Because N7 cap methylation is essential for viral replication, inhibitors designed to block the pocket identified for the N7 cap methylation could be developed for flavivirus therapy.
PMCID: PMC2293060  PMID: 18305027
8.  Using S-adenosyl-L-homocysteine capture compounds to characterize S-adenosyl-L-methionine and S-adenosyl-L-homocysteine binding proteins 
Analytical biochemistry  2014;467:14-21.
S -Adenosyl-L-methionine (SAM) is recognized as an important cofactor in a variety of biochemical reactions. As more proteins and pathways that require SAM are discovered, it is important to establish a method to quickly identify and characterize SAM binding proteins. The affinity of S-adenosyl-L-homocysteine (SAH) for SAM binding proteins was used to design two SAH-derived capture compounds (CCs). We demonstrate interactions of the proteins COMT and SAHH with SAH–CC with biotin used in conjunction with streptavidin–horseradish peroxidase. After demonstrating SAH-dependent photo-crosslinking of the CC to these proteins, we used a CC labeled with a fluorescein tag to measure binding affinity via fluorescence anisotropy. We then used this approach to show and characterize binding of SAM to the PR domain of PRDM2, a lysine methyltransferase with putative tumor suppressor activity. We calculated the Kd values for COMT, SAHH, and PRDM2 (24.1 ± 2.2 μM, 6.0 ± 2.9 μM, and 10.06 ± 2.87 μM, respectively) and found them to be close to previously established Kd values of other SAM binding proteins. Here, we present new methods to discover and characterize SAM and SAH binding proteins using fluorescent CCs.
PMCID: PMC4315328  PMID: 25172130
Capture compound; Fluorescence anisotropy; S-Adenosyl-L-homocysteine; S-Adenosyl-L-methionine
9.  The Crystal Structure of the Novobiocin Biosynthetic Enzyme NovP: The First Representative Structure for the TylF O-Methyltransferase Superfamily 
Journal of molecular biology  2009;395(2):390.
NovP is an S-adenosyl-L-methionine-dependent O-methyltransferase that catalyses the penultimate step in the biosynthesis of the aminocoumarin antibiotic novobiocin. Specifically, it methylates at the 4-OH of the noviose moiety, and the resultant methoxy group is important for the potency of the mature antibiotic: previous crystallographic studies have shown that this group interacts directly with the target enzyme DNA gyrase, which is a validated drug target. We have determined the high resolution crystal structure of NovP from Streptomyces spheroides as a binary complex with its desmethylated co-substrate, S-adenosyl-L-homocysteine. The structure displays a typical class I methyltransferase fold, in addition to motifs that are consistent with a divalent metal-dependent mechanism. This is the first representative structure of a methyltransferase from the TylF superfamily, which includes a number of enzymes implicated in the biosynthesis of antibiotics and other therapeutics. The NovP structure reveals a number of distinctive structural features that, based on sequence conservation, are likely to be characteristic of the superfamily. These include a helical 'lid' region that gates access to the co-substrate binding pocket, and an active centre that contains a 3-Asp putative metal-binding site. A further conserved Asp likely acts as the general base that initiates the reaction by deprotonating the 4-OH group of the noviose unit. Using in silico docking we have generated models of the enzyme-substrate complex that are consistent with the proposed mechanism. Furthermore, these models suggest that NovP is unlikely to tolerate significant modifications at the noviose moiety, but could show increasing substrate promiscuity as a function of the distance of the modification from the methylation site. These observations could inform future attempts to utilise NovP for methylating a range of glycosylated compounds.
PMCID: PMC2813333  PMID: 19857499
O-methyltransferase; Streptomyces spheroides; novobiocin; TylF superfamily; crystal structure
10.  Identification and Characterization of a Novel Triplet-Point-Mutation Form of the Human Catechol-O-methyltransferase Gene1 
Pharmacogenetics and genomics  2009;19(1):87-89.
Human catechol-O-methyltransferase (COMT; EC catalyzes the transfer of the methyl group to a variety of endogenous and exogenous catechol substrates using S-adenosyl-L-methionine as the methyl donor. This enzymatic O-methylation plays an important role in the inactivation of biologically-active and toxic catechols. A number of studies in recent years have sought to characterize the polymorphism of human COMTs, and also to determine the catalytic activity of polymorphic enzymes. We report here the identification of a new mutant form of the human COMT gene with triplet point mutations, which encodes the D51G/S60F/K162R mutant of the soluble COMT and the D101G/S110F/K212R mutant of the membrane-bound COMT. Kinetic analysis showed that these new mutant COMTs had essentially the same kinetic characteristics and catalytic activity as the wild-type COMTs for the O-methylation of 2-hydroxyestradiol and 4-hydroxyestradiol in vitro, but the mutants have a significantly reduced thermostability at 37°C. In addition, the mutant enzymes have different binding affinities for S-adenosyl-L-methionine compared with the wild-type COMTs. In agreement with our biochemical observations, molecular modeling studies also showed that the mutant human COMT proteins shared nearly the same overall structures as the wild-type proteins. The binding energy values of the mutant COMTs in complex with catechol estrogen substrates were similar to those of the wild-type COMTs bound with the same substrates.
PMCID: PMC4417470  PMID: 19077667
11.  Cofactor-Dependence in Reduction Potentials for [4Fe–4S]2+/1+ in Lysine 2,3-Aminomutase† 
Biochemistry  2006;45(10):3219-3225.
Lysine 2,3-aminomutase (LAM) catalyzes the interconversion of l-lysine and l-β-lysine by a free radical mechanism. The 5′-deoxyadenosyl radical derived from the reductive cleavage of S-adenosyl-l-methionine (SAM) initiates substrate-radical formation. The [4Fe–4S]1+ cluster in LAM is the one-electron source in the reductive cleavage of SAM, which is directly ligated to the unique iorn site in the cluster. We here report the midpoint reduction potentials of the [4Fe–4S]2+/1+ couple in the presence of SAM, S-adenosyl-l-homocysteine (SAH), or 5′-[N-[(3S)-3-amino-carboxypropyl]-N-methylamino]-5′-deoxyadenosine (azaSAM) as measured by spectroelectrochemistry. The reduction potentials are −430 ± 2 mV in the presence of SAM, −460 ± 3 mV in the presence of SAH, and −497 ± 10 mV in the presence of azaSAM. In the absence of SAM or an analog and the presence of dithiothreitol, dihydrolipoate, or cysteine as ligands to the unique iron, the midpoint potentials are −479 ± 5 mV, −516 ± 5 mV, or −484 ± 3 mV, respectively. LAM is a member of the Radical SAM superfamily of enzymes, in which the CxxxCxxC modif donates three thiolate ligands to iron in the [4Fe–4S] cluster and SAM donates the α-amino and α-carboxylate groups of the methionyl moiety as ligands to the fourth iron. The results show the reduction potentials in the midrange for ferredoxin-like [4Fe–4S] clusters. They show that SAM elevates the reduction potential by 86 mV relative to dihydrolipoate as the cluster ligand. This difference accounts for the SAM-dependent reduction of the [4Fe–4S]2+ cluster by dithionite reported earlier. Analogs of SAM have a diminished capacity to raise the potential. It is concluded that the midpoint reduction potential of the cluster ligated to SAM is 1.2 V less negative than the half-wave potential for the one-electron reductive cleavage of simple alkylsulfonium ions in aqueous solution. The energetic barrier in the reductive cleavage of SAM may be overcome through the use of binding energy.
PMCID: PMC2532065  PMID: 16519516
12.  Structural and functional studies of S-adenosyl-L-methionine binding proteins: a ligand-centric approach 
The post-genomic era poses several challenges. The biggest is the identification of biochemical function for protein sequences and structures resulting from genomic initiatives. Most sequences lack a characterized function and are annotated as hypothetical or uncharacterized. While homology-based methods are useful, and work well for sequences with sequence identities above 50%, they fail for sequences in the twilight zone (<30%) of sequence identity. For cases where sequence methods fail, structural approaches are often used, based on the premise that structure preserves function for longer evolutionary time-frames than sequence alone. It is now clear that no single method can be used successfully for functional inference. Given the growing need for functional assignments, we describe here a systematic new approach, designated ligand-centric, which is primarily based on analysis of ligand-bound/unbound structures in the PDB. Results of applying our approach to S-adenosyl-L-methionine (SAM) binding proteins are presented.
Our analysis included 1,224 structures that belong to 172 unique families of the Protein Information Resource Superfamily system. Our ligand-centric approach was divided into four levels: residue, protein/domain, ligand, and family levels. The residue level included the identification of conserved binding site residues based on structure-guided sequence alignments of representative members of a family, and the identification of conserved structural motifs. The protein/domain level included structural classification of proteins, Pfam domains, domain architectures, and protein topologies. The ligand level included ligand conformations, ribose sugar puckering, and the identification of conserved ligand-atom interactions. The family level included phylogenetic analysis.
We found that SAM bound to a total of 18 different fold types (I-XVIII). We identified 4 new fold types and 11 additional topological arrangements of strands within the well-studied Rossmann fold Methyltransferases (MTases). This extends the existing structural classification of SAM binding proteins. A striking correlation between fold type and the conformation of the bound SAM (classified as types) was found across the 18 fold types. Several site-specific rules were created for the assignment of functional residues to families and proteins that do not have a bound SAM or a solved structure.
PMCID: PMC3662625  PMID: 23617634
13.  Screening of commercial cyclic peptide as inhibitor NS5 methyltransferase of Dengue virus through Molecular Docking and Molecular Dynamics Simulation 
Bioinformation  2014;10(1):23-27.
Dengue has become a major global health threat, especially in tropical and subtropical regions. The development of antiviral agent targeting viral replication is really needed at this time. NS5 methyltransferase presents as a novel antiviral target. This enzyme plays an important role in the methylation of 5'-cap mRNA. Inhibition of the NS5 methyltransferase could inhibit dengue virus replication. In this research, two sites of NS5 methyltransferase (S-Adenosyl methionine/SAM binding site and RNA-cap site) were used as targets for inhibition. As much as 300 commercial cyclic peptides were screened to these target sites by means of molecular docking. Analysis of ligand-enzyme binding free energy and pharmacological prediction revealed two best ligands, namely [Tyr123] Prepro Endothelin (110-130), amide, human and Urotensin II, human. According to molecular dynamic simulation, both ligands maintain a stable complex conformation between enzyme and ligand at temperature 310 K and 312 K. Hence, Urotensin II, human is more reactive at 312 K than at 310 K. However, both ligands can be used as potential inhibitor candidates against NS5 methyltransferase of dengue virus with Urotensin II, human exposes more promising activity at 312 K.
PMCID: PMC3916815  PMID: 24516322
Dengue virus; NS5 methyltransferase; commercial cyclic peptides; molecular dynamics
14.  The V119I polymorphism in protein L-isoaspartate O-methyltransferase alters the substrate-binding interface 
Protein L-isoaspartate O-methyltransferase (PIMT) repairs isoaspartate residues in damaged proteins, and it contains a Val–Ile polymorphismin in α5, ∼13 Å from its active site. Val119 has lower activity and thermal stability but increased affinity for endogenous substrates. Studies suggest that heterozygosity for Val/Ile favors efficient isoaspartate repair. We have performed multiple molecular dynamics simulations of 119I and 119V PIMT. Both V119 and I119 interact with the same residues throughout all of the simulations. However, the larger Ile altered the orientations of α5 and β5, both of which have co-substrate binding residues on their distal ends. I119 increases the flexibility of several residues, loosening up the S-adenosylmethionine (SAM)-binding site. These subtle changes are propagated towards the isoaspartate-docking site via residues common to both active sites. The increased mobility in 119I PIMT reorients α3, resulting in a salt-bridge network at the substrate-binding interface that disrupts several key side-chain interactions in the isoaspartate site. In contrast, 119V PIMT remains quite rigid with little change to the co-substrate binding site, which could hinder SAM's binding and release, accounting for the decreased activity. These results shed light on the molecular basis behind the decreased activity and increased specificity for endogenous substrates of 119V PIMT relative to the 119I variant. 119I PIMT catalyzes the methylation reaction but may have difficulties recognizing and orienting specific substrates due to its distorted substrate-binding site. Heterozygosity for both the Ile and Val alleles may provide the best of both worlds, allowing the fast and specific methylation of damaged proteins.
PMCID: PMC2777021  PMID: 19801578
aging; molecular dynamics; polymorphisms; protein isoaspartate O-methyltransferase; protein repair
15.  Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase 
PLoS ONE  2013;8(10):e79003.
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair.
PMCID: PMC3804486  PMID: 24205358
16.  Characterization of an Inducible Chlorophenol O-Methyltransferase from Trichoderma longibrachiatum Involved in the Formation of Chloroanisoles and Determination of Its Role in Cork Taint of Wines 
A novel S-adenosyl-l-methionine (SAM)-dependent methyltransferase catalyzing the O methylation of several chlorophenols and other halogenated phenols was purified 220-fold to apparent homogeneity from mycelia of Trichoderma longibrachiatum CECT 20431. The enzyme could be identified in partially purified protein preparations by direct photolabeling with [methyl-3H]SAM, and this reaction was prevented by previous incubation with S-adenosylhomocysteine. Gel filtration indicated that the Mr was 112,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme was composed of two subunits with molecular weights of approximately 52,500. The enzyme had a pH optimum between 8.2 and 8.5 and an optimum temperature of 28°C, with a pI of 4.9. The Km values for 2,4,6-trichlorophenol and SAM were 135.9 ± 12.8 and 284.1 ± 35.1 μM, respectively. S-Adenosylhomocysteine acted as a competitive inhibitor, with a Ki of 378.9 ± 45.4 μM. The methyltransferase was also strongly inhibited by low concentrations of several metal ions, such as Cu2+, Hg2+, Zn2+, and Ag+, and to a lesser extent by p-chloromercuribenzoic acid, but it was not significantly affected by several thiols or other thiol reagents. The methyltransferase was specifically induced by several chlorophenols, especially if they contained three or more chlorine atoms in their structures. Substrate specificity studies showed that the activity was also specific for halogenated phenols containing fluoro, chloro, or bromo substituents, whereas other hydroxylated compounds, such as hydroxylated benzoic acids, hydroxybenzaldehydes, phenol, 2-metoxyphenol, and dihydroxybenzene, were not methylated.
PMCID: PMC194934  PMID: 12957890
17.  Formulating Fluorogenic Assay to Evaluate S-adenosyl-L-methionine Analogues as Protein Methyltransferase Cofactors 
Molecular bioSystems  2011;7(11):2970-2981.
Protein methyltransferases (PMTs) catalyze arginine and lysine methylation of diverse histone and nonhistone targets. These posttranslational modifications play essential roles in regulating multiple cellular events in an epigenetic manner. In the recent process of defining PMT targets, S-adenosyl-L-methionine (SAM) analogues have emerged as powerful small molecule probes to label and profile PMT targets. To examine efficiently the reactivity of PMTs and their variants on SAM analogues, we transformed a fluorogenic PMT assay into a ready high throughput screening (HTS) format. The reformulated fluorogenic assay is featured by its uncoupled but more robust character with the first step of accumulation of the commonly-shared reaction byproduct S-adenosyl-L-homocysteine (SAH), followed by SAH-hydrolyase-mediated fluorogenic quantification. The HTS readiness and robustness of the assay were demonstrated by its excellent Z′ values of 0.83–0.95 for the so-far-examined 8 human PMTs with SAM as a cofactor (PRMT1, PRMT3, CARM1, SUV39H2, SET7/9, SET8, G9a and GLP1). The fluorogenic assay was further implemented to screen the PMTs against five SAM analogues (allyl-SAM, propargyl-SAM, (E)-pent-2-en-4-ynyl-SAM (EnYn-SAM), (E)-hex-2-en-5-ynyl-SAM (Hey-SAM) and 4-propargyloxy-but-2-enyl-SAM (Pob-SAM)). Among the examined 8×5 pairs of PMTs and SAM analogues, native SUV39H2, G9a and GLP1 showed promiscuous activity on allyl-SAM. In contrast, the bulky SAM analogues, such as EnYn-SAM, Hey-SAM and Pob-SAM are inert toward the panel of human PMTs. These findings therefore provide the useful structure-activity guidance to further evolve PMTs and SAM analogues for substrate labeling. The current assay format is ready to screen methyltransferase variants on structurally-diverse SAM analogues.
PMCID: PMC3575546  PMID: 21866297
18.  Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria 
Nucleic Acids Research  2009;38(5):1652-1663.
The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase RlmN that methylates the C-2 position. Database searches with the Cfr sequence have revealed a large group of closely related sequences from all domains of life that contain the conserved CX3CX2C motif characteristic of radical S-adenosyl-l-methionine (SAM) enzymes. Phylogenetic analysis of the Cfr/RlmN family suggests that the RlmN subfamily is likely the ancestral form, whereas the Cfr subfamily arose via duplication and horizontal gene transfer. A structural model of Cfr has been calculated and used as a guide for alanine mutagenesis studies that corroborate the model-based predictions of a 4Fe–4S cluster, a SAM molecule coordinated to the iron–sulfur cluster (SAM1) and a SAM molecule that is the putative methyl group donor (SAM2). All mutations at predicted functional sites affect Cfr activity significantly as assayed by antibiotic susceptibility testing and primer extension analysis. The investigation has identified essential amino acids and Cfr variants with altered reaction mechanisms and represents a first step towards understanding the structural basis of Cfr activity.
PMCID: PMC2836569  PMID: 20007606
19.  Variable sequences outside the SAM-binding core critically influence the conformational dynamics of the SAM-III/SMK box riboswitch 
Journal of molecular biology  2011;409(5):786-799.
The SMK box (SAM-III) translational riboswitches were identified in S-adenosyl-L-methionine (SAM) synthetase metK genes in members of the Lactobacillales. This riboswitch switches between two alternative conformations in response to the intracellular SAM concentration and controls metK expression at the level of translation initiation. We previously reported the crystal structure of the SAM-bound SMK box riboswitch. In this study we combined SHAPE chemical probing with mutagenesis to probe the ligand-induced conformational switching mechanism. We revealed that while the majority of the apo SMK box RNA molecules exist in an alternatively base paired (ON) conformation, a subset of them pre-organize into a SAM-bound-like (READY) conformation, which upon SAM exposure is selectively stabilized into the SAM-bound (OFF) conformation through an induced-fit mechanism. Mutagenesis showed that the ON state is only slightly more stable than the READY state, as several single-nucleotide substitutions in a hypervariable region outside the SAM-binding core can alter the folding landscape to favor the READY state. Such SMK variants display a “constitutively-OFF” behavior both in vitro and in vivo. Time-resolved and temperature-dependent SHAPE analyses revealed adaptation of the SMK box RNA to its mesothermal working environment. The latter analysis revealed that the SAM-bound SMK box RNA follows a two-step folding/unfolding process.
PMCID: PMC3479645  PMID: 21549712
20.  Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex 
PLoS Pathogens  2011;7(10):e1002294.
The 5′-cap structure is a distinct feature of eukaryotic mRNAs, and eukaryotic viruses generally modify the 5′-end of viral RNAs to mimic cellular mRNA structure, which is important for RNA stability, protein translation and viral immune escape. SARS coronavirus (SARS-CoV) encodes two S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTase) which sequentially methylate the RNA cap at guanosine-N7 and ribose 2′-O positions, catalyzed by nsp14 N7-MTase and nsp16 2′-O-MTase, respectively. A unique feature for SARS-CoV is that nsp16 requires non-structural protein nsp10 as a stimulatory factor to execute its MTase activity. Here we report the biochemical characterization of SARS-CoV 2′-O-MTase and the crystal structure of nsp16/nsp10 complex bound with methyl donor SAM. We found that SARS-CoV nsp16 MTase methylated m7GpppA-RNA but not m7GpppG-RNA, which is in contrast with nsp14 MTase that functions in a sequence-independent manner. We demonstrated that nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate and SAM cofactor. Structural analysis revealed that nsp16 possesses the canonical scaffold of MTase and associates with nsp10 at 1∶1 ratio. The structure of the nsp16/nsp10 interaction interface shows that nsp10 may stabilize the SAM-binding pocket and extend the substrate RNA-binding groove of nsp16, consistent with the findings in biochemical assays. These results suggest that nsp16/nsp10 interface may represent a better drug target than the viral MTase active site for developing highly specific anti-coronavirus drugs.
Author Summary
The distinctive feature of eukaryotic mRNAs is the presence of methylated cap structure that is required for mRNA stability and protein translation. As all viruses employ cellular ribosomes for protein translation, most cytoplasmically replicating eukaryotic viruses including coronaviruses have evolved strategies to cap their RNAs. It was shown very recently that ribose 2′-O-methylation in the cap structure of viral RNAs plays an important role in viral escape from innate immune recognition. The 2′-O-methyltransferase (2′-O-MTase) encoded by SARS coronavirus is composed of two subunits, the catalytic subunit nsp16 and the stimulatory subunit nsp10, which is different from all other known 2′-O-MTases that are partner-independent. Here we show that the role of nsp10 is to promote nsp16 to bind capped RNA substrate and the methyl donor S-adenosyl-L-methionine (SAM). We solved the crystal structure of the nsp16/nsp10/SAM complex, and the structural analysis revealed that the details of the inter-molecular interactions and indicated that nsp10 may stabilize the SAM-binding pocket and extend the capped RNA-binding groove. The interaction interface of nsp16/nsp10 is unique for coronaviruses and thus may provide an attractive target for developing specific antiviral drugs for control of coronaviruses including the deadly SARS coronavirus.
PMCID: PMC3192843  PMID: 22022266
21.  Escherichia coli TehB Requires S-Adenosylmethionine as a Cofactor To Mediate Tellurite Resistance 
Journal of Bacteriology  2000;182(22):6509-6513.
The Escherichia coli chromosomal determinant for tellurite resistance consists of two genes (tehA and tehB) which, when expressed on a multicopy plasmid, confer resistance to K2TeO3 at 128 μg/ml, compared to the MIC of 2 μg/ml for the wild type. TehB is a cytoplasmic protein which possesses three conserved motifs (I, II, and III) found in S-adenosyl-l-methionine (SAM)-dependent non-nucleic acid methyltransferases. Replacement of the conserved aspartate residue in motif I by asparagine or alanine, or of the conserved phenylalanine in motif II by tyrosine or alanine, decreased resistance to background levels. Our results are consistent with motifs I and II in TehB being involved in SAM binding. Additionally, conformational changes in TehB are observed upon binding of both tellurite and SAM. The hydrodynamic radius of TehB measured by dynamic light scattering showed a ∼20% decrease upon binding of both tellurite and SAM. These data suggest that TehB utilizes a methyltransferase activity in the detoxification of tellurite.
PMCID: PMC94800  PMID: 11053398
22.  Ontogenic aspects of liver and kidney catechol-O-methyltransferase sensitivity to tolcapone. 
British Journal of Pharmacology  1996;117(3):516-520.
1. The present work describes the catechol-O-methyltransferase (COMT) activities in the liver and kidney of developing and adult rats (aged 3, 6, 9, 18, 30 and 60 days; n = 5 per group) and evaluates the enzyme sensitivity to inhibition by tolcapone, a reversible COMT inhibitor. 2. COMT activity, evaluated by the ability to methylate adrenaline to metanephrine, was determined in liver and kidney homogenates prepared in 0.5 mM phosphate buffer (pH = 7.8) containing pargyline (0.1 mM), MgCl2 (0.1 mM), EGTA (1 mM) and S-adenosyl-L-methionine (0.1 mM). Vmax (in nmol mg-1 protein h-1) of liver COMT was found to decrease gradually with age, from 5.3 +/- 0.5 at the age of 3 days up to 2.9 +/- 0.2 at the age of 60 days; for the same age range, Km values (in microM; geometric means with 95% confidence limits) increased from 3.3 (1.0, 7.5) up to 13.1 (2.1, 24.1). At the age of 3 days, Vmax values for kidney COMT (2.6 +/- 0.1) were lower than those for the liver COMT. However, Vmax values for kidney COMT were found to increase up to 6.2 +/- 0.6 at the age of 18 days and then declined by 44% at the age of 30 and 60 days. In kidney, aging was also accompanied by an increase in Km values for COMT (from 2.7 [1.1, 4.3] up to 24.0 [11.7, 36.3]). 3. The sensitivity of liver and renal COMT activity to tolcapone was markedly dependent on the age, 3-days old rats being more sensitive to tolcapone than older animals. The IC50 values (in nM) for inhibition of liver COMT by tolcapone increased gradually with age, from 41 (26, 65) at the age of 3 days up to 720 (640, 800) at the age of 60 days. As was found in the liver, IC50 values (in nM) for inhibition of kidney COMT by tolcapone also increased with age, from 8 (6, 10) at the age of 3 days up to 177 (131, 240) at the age of 60 days. In all experimental groups, the IC50 values for inhibition of liver COMT by tolcapone was higher than those for kidney COMT. 4. In conclusion, these results suggest that aging is accompanied by a decrease in liver and kidney COMT affinity for the substrate (evidenced by the increase in Km values) and a decrease in sensitivity towards inhibition by tolcapone (evidenced by the increase in IC50 values). Furthermore, kidney COMT is shown to be more sensitive to inhibition by tolcapone than liver COMT, irrespective of the age of the animal.
PMCID: PMC1909301  PMID: 8821542
23.  Epigenetics and Breast Cancers 
Several of the active compounds in foods, poisons, drugs, and industrial chemicals may, by epigenetic mechanisms, increase or decrease the risk of breast cancers. Enzymes that are involved in DNA methylation and histone modifications have been shown to be altered in several types of breast and other cancers resulting in abnormal patterns of methylation and/or acetylation. Hypermethylation at the CpG islands found in estrogen response element (ERE) promoters occurs in conjunction with ligand-bonded alpha subunit estrogen receptor (Erα) dimers wherein the ligand ERα dimer complex acts as a transcription factor and binds to the ERE promoter. Ligands could be 17-β-estradiol (E2), phytoestrogens, heterocyclic amines, and many other identified food additives and heavy metals. The dimer recruits DNA methyltransferases which catalyze the transfer of methyl groups from S-adenosyl-L-methionine (SAM) to 5′-cytosine on CpG islands. Other enzymes are recruited to the region by ligand-ERα dimers which activate DNA demethylases to act simultaneously to increase gene expression of protooncogenes and growth-promoting genes. Ligand-ERα dimers also recruit histone acetyltransferase to the ERE promoter region. Histone demethylases such as JMJD2B and histone methyltransferases are enzymes which demethylate lysine residues on histones H3 and/or H4. This makes the chromatin accessible for transcription factors and enzymes.
PMCID: PMC3337495  PMID: 22567014
24.  The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity 
PLoS ONE  2013;8(11):e80967.
Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM) (Type IIG). The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN) increase the Vmax of the RM.BpuSI cleavage activity with a proportional change in Km, suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca2+, SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca2+, substrate or both) and MTase state (in the presence of SIN and substrate, SIN and product or product alone). Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca2+ and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI.
PMCID: PMC3817140  PMID: 24224063
25.  An In Silico Approach for Characterization of an Aminoglycoside Antibiotic-Resistant Methyltransferase Protein from Pyrococcus furiosus (DSM 3638) 
Pyrococcus furiosus is a hyperthermophilic archaea. A hypothetical protein of this archaea, PF0847, was selected for computational analysis. Basic local alignment search tool and multiple sequence alignment (MSA) tool were employed to search for related proteins. Both the secondary and tertiary structure prediction were obtained for further analysis. Three-dimensional model was assessed by PROCHECK and QMEAN6 programs. To get insights about the physical and functional associations of the protein, STRING network analysis was performed. Binding of the SAM (S-adenosyl-l-methionine) ligand with our protein, fetched from an antibiotic-related methyltransferase (PDB code: 3P2K: D), showed high docking energy and suggested the function of the protein as methyltransferase. Finally, we tried to look for a specific function of the proposed methyltransferase, and binding of the geneticin bound to the eubacterial 16S rRNA A-site (PDB code: 1MWL) in the active site of the PF0847 gave us the indication to predict the protein responsible for aminoglycoside antibiotic resistance.
PMCID: PMC3965365  PMID: 24683305
methyltransferase; aminoglycoside antibiotic resistance; 16S rRNA A-site; molecular docking

Results 1-25 (553911)