Search tips
Search criteria

Results 1-25 (1019081)

Clipboard (0)

Related Articles

1.  Preservation of Spectrotemporal Tuning Between the Nucleus Laminaris and the Inferior Colliculus of the Barn Owl 
Journal of neurophysiology  2007;97(5):3544-3553.
Performing sound recognition is a task that requires an encoding of the time-varying spectral structure of the auditory stimulus. Similarly, computation of the interaural time difference (ITD) requires knowledge of the precise timing of the stimulus. Consistent with this, low-level nuclei of birds and mammals implicated in ITD processing encode the ongoing phase of a stimulus. However, the brain areas that follow the binaural convergence for the computation of ITD show a reduced capacity for phase locking. In addition, we have shown that in the barn owl there is a pooling of ITD-responsive neurons to improve the reliability of ITD coding. Here we demonstrate that despite two stages of convergence and an effective loss of phase information, the auditory system of the anesthetized barn owl displays a graceful transition to an envelope coding that preserves the spectrotemporal information throughout the ITD pathway to the neurons of the core of the central nucleus of the inferior colliculus.
PMCID: PMC2532515  PMID: 17314241
2.  Binaural Gain Modulation of Spectrotemporal Tuning in the Interaural Level Difference-Coding Pathway 
The Journal of Neuroscience  2013;33(27):11089-11099.
In the brainstem, the auditory system diverges into two pathways that process different sound localization cues, interaural time differences (ITDs) and level differences (ILDs). We investigated the site where ILD is detected in the auditory system of barn owls, the posterior part of the lateral lemniscus (LLDp). This structure is equivalent to the lateral superior olive in mammals. The LLDp is unique in that it is the first place of binaural convergence in the brainstem where monaural excitatory and inhibitory inputs converge. Using binaurally uncorrelated noise and a generalized linear model, we were able to estimate the spectrotemporal tuning of excitatory and inhibitory inputs to these cells. We show that the response of LLDp neurons is highly locked to the stimulus envelope. Our data demonstrate that spectrotemporally tuned, temporally delayed inhibition enhances the reliability of envelope locking by modulating the gain of LLDp neurons' responses. The dependence of gain modulation on ILD shown here constitutes a means for space-dependent coding of stimulus identity by the initial stages of the auditory pathway.
PMCID: PMC3718367  PMID: 23825414
3.  Neuronal specializations for the processing of interaural difference cues in the chick 
Sound information is encoded as a series of spikes of the auditory nerve fibers (ANFs), and then transmitted to the brainstem auditory nuclei. Features such as timing and level are extracted from ANFs activity and further processed as the interaural time difference (ITD) and the interaural level difference (ILD), respectively. These two interaural difference cues are used for sound source localization by behaving animals. Both cues depend on the head size of animals and are extremely small, requiring specialized neural properties in order to process these cues with precision. Moreover, the sound level and timing cues are not processed independently from one another. Neurons in the nucleus angularis (NA) are specialized for coding sound level information in birds and the ILD is processed in the posterior part of the dorsal lateral lemniscus nucleus (LLDp). Processing of ILD is affected by the phase difference of binaural sound. Temporal features of sound are encoded in the pathway starting in nucleus magnocellularis (NM), and ITD is processed in the nucleus laminaris (NL). In this pathway a variety of specializations are found in synapse morphology, neuronal excitability, distribution of ion channels and receptors along the tonotopic axis, which reduces spike timing fluctuation in the ANFs-NM synapse, and imparts precise and stable ITD processing to the NL. Moreover, the contrast of ITD processing in NL is enhanced over a wide range of sound level through the activity of GABAergic inhibitory systems from both the superior olivary nucleus (SON) and local inhibitory neurons that follow monosynaptic to NM activity.
PMCID: PMC4023016  PMID: 24847212
brainstem auditory nucleus; interaural difference cues; SON; tonic inhibition; phasic inhibition
4.  The representation of sound localization cues in the barn owl's inferior colliculus 
The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation.
PMCID: PMC3394089  PMID: 22798945
sound localization; central nucleus of the inferior colliculus; auditory; plasticity; adaptation; interaural time difference; interaural level difference; frequency tuning
5.  Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl 
Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation.
PMCID: PMC3821004  PMID: 24265615
phase-locking; sound localization; auditory brainstem; periodic signals; oscillation; owl
6.  Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl 
A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1–8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz).
PMCID: PMC3821005  PMID: 24265616
phase-locking; sound localization; auditory brainstem; periodic signals; oscillation; owl
7.  Understanding Auditory Spectro-Temporal Receptive Fields and Their Changes with Input Statistics by Efficient Coding Principles 
PLoS Computational Biology  2011;7(8):e1002123.
Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on statistical attributes of the stimuli, such as sound intensity, is usually explained by nonlinear mechanisms and models. Here, we apply an efficient coding principle which has been successfully used to understand receptive fields in early stages of visual processing, in order to provide a computational understanding of the STRFs. According to this principle, STRFs result from an optimal tradeoff between maximizing the sensory information the brain receives, and minimizing the cost of the neural activities required to represent and transmit this information. Both terms depend on the statistical properties of the sensory inputs and the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the signal-to-noise ratio, which is assumed to increase with input intensity. We analytically derive the optimal STRFs when signal and noise are approximated as Gaussians. Under the constraint that they should be spectro-temporally local, the STRFs are predicted to adapt from being band-pass to low-pass filters as the input intensity reduces, or the input correlation becomes longer range in sound frequency or time. These predictions qualitatively match physiological observations. Our prediction as to how the STRFs should be determined by the input power spectrum could readily be tested, since this spectrum depends on the stimulus ensemble. The potentials and limitations of the efficient coding principle are discussed.
Author Summary
Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations of the signal transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on the ensemble of input stimuli has usually been examined mechanistically as a possibly complex nonlinear process. We propose that the STRFs and their dependence on the input ensemble can be understood by an efficient coding principle, according to which the responses of the encoding neurons report the maximum amount of information about the sensory input, subject to limits on the neural cost in representing and transmitting information. This proposal is inspired by the success of the same principle in accounting for receptive fields in the early stages of the visual pathway and their adaptation to input statistics. The principle can account for the STRFs that have been observed, and the way they change with sound intensity. Further, it predicts how the STRFs should change with input correlations, an issue that has not been extensively investigated. In sum, our study provides a computational understanding of the neural transformations of auditory inputs, and makes testable predictions for future experiments.
PMCID: PMC3158037  PMID: 21887121
8.  Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs 
The interaural level difference (ILD) cue to sound location is first encoded in the lateral superior olive (LSO). ILD sensitivity results because the LSO receives excitatory input from the ipsilateral cochlear nucleus and inhibitory input indirectly from the contralateral cochlear nucleus via glycinergic neurons of the ipsilateral medial nucleus of the trapezoid body (MNTB). It is hypothesized that in order for LSO neurons to encode ILDs, the sound spectra at both ears must be accurately encoded via spike rate by their afferents. This spectral-coding hypothesis has not been directly tested in MNTB, likely because MNTB neurons have been mostly described and studied recently in regards to their abilities to encode temporal aspects of sounds, not spectral. Here, we test the hypothesis that MNTB neurons and their inputs from the cochlear nucleus and auditory nerve code sound spectra via discharge rate. The Random Spectral Shape (RSS) method was used to estimate how the levels of 100-ms duration spectrally stationary stimuli were weighted, both linearly and non-linearly, across a wide band of frequencies. In general, MNTB neurons, and their globular bushy cell inputs, were found to be well-modeled by a linear weighting of spectra demonstrating that the pathways through the MNTB can accurately encode sound spectra including those resulting from the acoustical cues to sound location provided by head-related directional transfer functions (DTFs). Together with the anatomical and biophysical specializations for timing in the MNTB-LSO complex, these mechanisms may allow ILDs to be computed for complex stimuli with rapid spectrotemporally-modulated envelopes such as speech and animal vocalizations and moving sound sources.
PMCID: PMC4267272  PMID: 25565971
calyx of held; medial nucleus of the trapezoid body; lateral superior olive; spectrotemporal receptive field; sound localization; temporal processing
9.  Emergence of Multiplicative Auditory Responses in the Midbrain of the Barn Owl 
Journal of neurophysiology  2007;98(3):1181-1193.
Space-specific neurons in the barn owl’s auditory space map gain spatial selectivity through tuning to combinations of the interaural time difference (ITD) and interaural level difference (ILD). The combination of ITD and ILD in the subthreshold responses of space-specific neurons in the external nucleus of the inferior colliculus (ICx) is well described by a multiplication of ITD- and ILD-dependent components. It is unknown, however, how ITD and ILD are combined at the site of ITD and ILD convergence in the lateral shell of the central nucleus of the inferior colliculus (ICcl) and therefore whether ICx is the first site in the auditory pathway where multiplicative tuning to ITD-and ILD-dependent signals occurs. We used extracellular re-cording of single neurons to determine how ITD and ILD are combined in ICcl of the anesthetized barn owl (Tyto alba). A comparison of additive, multiplicative, and linear-threshold models of neural responses shows that ITD and ILD are combined nonlinearly in ICcl, but the interaction of ITD and ILD is not uniformly multiplicative over the sample. A subset (61%) of the neural responses is well described by the multiplicative model, indicating that ICcl is the first site where multiplicative tuning to ITD- and ILD-dependent signals occurs. ICx, however, is the first site where multiplicative tuning is observed consistently. A network model shows that a linear combination of ICcl responses to ITD–ILD pairs is sufficient to produce the multiplicative subthreshold responses to ITD and ILD seen in ICx.
PMCID: PMC2532518  PMID: 17615132
10.  Comparison of Midbrain and Thalamic Space-Specific Neurons in Barn Owls 
Journal of neurophysiology  2006;95(2):783-790.
Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory space is synthesized. The first nuclei that belong exclusively to either the forebrain or the tectal pathways are the nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. Both receive projections from the lateral shell subdivision of the inferior colliculus but are not interconnected. Previous studies indicate that the owl’s tectal representation of auditory space is different from those found in the owl’s forebrain and the mammalian brain. We addressed the question of whether the computation of spatial cues in both pathways is the same by comparing the ITD tuning of Ov and ICx neurons. Unlike in ICx, the relationship between frequency and ITD tuning had not been studied in single Ov units. In contrast to the conspicuous frequency independent ITD tuning of space-specific neurons of ICx, ITD selectivity varied with frequency in Ov. We also observed that the spatially tuned neurons of Ov respond to lower frequencies and are more broadly tuned to ITD than in ICx. Thus there are differences in the integration of frequency and ITD in the two sound-localization pathways. Thalamic neurons integrate spatial information not only within a broader frequency band but also across ITD channels.
PMCID: PMC2532520  PMID: 16424454
11.  Computational Diversity in the Cochlear Nucleus Angularis of the Barn Owl 
Journal of Neurophysiology  2002;89(4):2313-2329.
The cochlear nucleus angularis (NA) is widely assumed to form the starting point of a brain stem pathway for processing sound intensity in birds. Details of its function are unclear, however, and its evolutionary origin and relationship to the mammalian cochlear-nucleus complex are obscure. We have carried out extracellular single-unit recordings in the NA of ketamine-anesthetized barn owls. The aim was to re-evaluate the extent of heterogeneity in NA physiology because recent studies of cellular morphology had established several distinct types. Extensive characterization, using tuning curves, phase locking, peristimulus time histograms and rate-level functions for pure tones and noise, revealed five major response types. The most common one was a primary-like pattern that was distinguished from auditory-nerve fibers by showing lower vector strengths of phase locking and/or lower spontaneous rates. Two types of chopper responses were found (chopper-transient and a rare chopper-sustained), as well as onset units. Finally, we routinely encountered a complex response type with a pronounced inhibitory component, similar to the mammalian typeIV. Evidence is presented that this range of response types is representative for birds and that earlier conflicting reports may be due to methodological differences. All five response types defined were similar to well-known types in the mammalian cochlear nucleus. This suggests convergent evolution of neurons specialized for encoding different behaviorally relevant features of the auditory stimulus. It remains to be investigated whether the different response types correlate with morphological types and whether they establish different processing streams in the auditory brain stem of birds.
PMCID: PMC3259745  PMID: 12612008
12.  A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds 
PLoS ONE  2011;6(1):e16104.
In the auditory system, the stimulus-response properties of single neurons are often described in terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been used to estimate STRFs from responses to natural stimuli; these algorithms differ in their functional models, cost functions, and regularization methods. Here, we characterize the stimulus-response function of auditory neurons using a generalized linear model (GLM). In this model, each cell's input is described by: 1) a stimulus filter (STRF); and 2) a post-spike filter, which captures dependencies on the neuron's spiking history. The output of the model is given by a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs) and modulation limited (ml) noise. We compare this model to normalized reverse correlation (NRC), the traditional method for STRF estimation, in terms of predictive power and the basic tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs from the two models derived from the same responses can differ substantially and that GLM STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal tuning than does the NRC method when responses to complex sounds are studied in these neurons.
PMCID: PMC3019175  PMID: 21264310
13.  Connections of the Auditory Brainstem in a Songbird, Taeniopygia guttata. I. Projections of Nucleus Angularis and Nucleus Laminaris to the Auditory Torus 
The Journal of comparative neurology  2010;518(11):10.1002/cne.22334.
Auditory information is important for social and reproductive behaviors in birds generally, but is crucial for oscine species (songbirds), in particular because in these species auditory feedback ensures the learning and accurate maintenance of song. While there is considerable information on the auditory projections through the forebrain of songbirds, there is no information available for projections through the brainstem. At the latter levels the prevalent model of auditory processing in birds derives from an auditory specialist, the barn owl, which uses time and intensity parameters to compute the location of sounds in space, but whether the auditory brainstem of songbirds is similarly functionally organized is unknown. To examine the songbird auditory brainstem we charted the projections of the cochlear nuclei angularis (NA) and magnocellularis (NM) and the third-order nucleus laminaris (NL) in zebra finches using standard tract-tracing techniques. As in other avian species, the projections of NM were found to be confined to NL, and NL and NA provided the ascending projections. Here we report on differential projections of NA and NL to the torus semicircularis, known in birds as nucleus mesencephalicus lateralis, pars dorsalis (MLd), and in mammals as the central nucleus of the inferior colliculus (ICc). Unlike the case in nonsongbirds, the projections of NA and NL to MLd in the zebra finch showed substantial overlap, in agreement with the projections of the cochlear nuclei to the ICc in mammals. This organization could suggest that the “what” of auditory stimuli is as important as “where.”
PMCID: PMC3862038  PMID: 20394061
cochlear nuclei; central nucleus of inferior colliculus; MLd; zebra finch; avian
14.  Noise Reduction of Coincidence Detector Output by the Inferior Colliculus of the Barn Owl 
A recurring theme in theoretical work is that integration over populations of similarly tuned neurons can reduce neural noise. However, there are relatively few demonstrations of an explicit noise reduction mechanism in a neural network. Here we demonstrate that the brainstem of the barn owl includes a stage of processing apparently devoted to increasing the signal-to-noise ratio in the encoding of the interaural time difference (ITD), one of two primary binaural cues used to compute the position of a sound source in space. In the barn owl, the ITD is processed in a dedicated neural pathway that terminates at the core of the inferior colliculus (ICcc). The actual locus of the computation of the ITD is before ICcc in the nucleus laminaris (NL), and ICcc receives no inputs carrying information that did not originate in NL. Unlike in NL, the rate-ITD functions of ICcc neurons require as little as a single stimulus presentation per ITD to show coherent ITD tuning. ICcc neurons also displayed a greater dynamic range with a maximal difference in ITD response rates approximately double that seen in NL. These results indicate that ICcc neurons perform a computation functionally analogous to averaging across a population of similarly tuned NL neurons.
PMCID: PMC2492673  PMID: 16738236
interaural time difference; sound localization; inferior colliculus; nucleus laminaris; barn owl; pooling
15.  Commissural Gain Control Enhances the Midbrain Representation of Sound Location 
The Journal of Neuroscience  2016;36(16):4470-4481.
Accurate localization of sound sources is essential for survival behavior in many species. The inferior colliculi (ICs) are the first point in the auditory pathway where cues used to locate sounds, ie, interaural time differences (ITDs), interaural level differences (ILDs), and pinna spectral cues, are all represented in the same location. These cues are first extracted separately on each side of the midline in brainstem nuclei that project to the ICs. Because of this segregation, each IC predominantly represents stimuli in the contralateral hemifield. We tested the hypothesis that commissural connections between the ICs mediate gain control that enhances sound localization acuity. We recorded IC neurons sensitive to either ITDs or ILDs in anesthetized guinea pig, before, during, and following recovery from deactivation of the contralateral IC by cryoloop cooling or microdialysis of procaine. During deactivation, responses were rescaled by divisive gain change and additive shifts, which reduced the dynamic range of ITD and ILD response functions and the ability of neurons to signal changes in sound location. These data suggest that each IC exerts multiplicative gain control and subtractive shifts over the other IC that enhances the neural representation of sound location. Furthermore, this gain control operates in a similar manner on both ITD- and ILD-sensitive neurons, suggesting a shared mechanism operates across localization cues. Our findings reveal a novel dependence of sound localization on commissural processing.
SIGNIFICANCE STATEMENT Sound localization, a fundamental process in hearing, is dependent on bilateral computations in the brainstem. How this information is transmitted from the brainstem to the auditory cortex, through several stages of processing, without loss of signal fidelity, is not clear. We show that the ability of neurons in the auditory midbrain to encode azimuthal sound location is dependent on gain control mediated by the commissure of the inferior colliculi. This finding demonstrates that commissural processing between homologous auditory nuclei, on either side of the midline, enhances the precision of sound localization.
PMCID: PMC4837682  PMID: 27098691
commissural projections; deactivation; inferior colliculus; interaural level difference; interaural time difference; sound localization
16.  Resolution of interaural time differences in the avian sound localization circuit—a modeling study 
Interaural time differences (ITDs) are a main cue for sound localization and sound segregation. A dominant model to study ITD detection is the sound localization circuitry in the avian auditory brainstem. Neurons in nucleus laminaris (NL) receive auditory information from both ears via the avian cochlear nucleus magnocellularis (NM) and compare the relative timing of these inputs. Timing of these inputs is crucial, as ITDs in the microsecond range must be discriminated and encoded. We modeled ITD sensitivity of single NL neurons based on previously published data and determined the minimum resolvable ITD for neurons in NL. The minimum resolvable ITD is too large to allow for discrimination by single NL neurons of naturally occurring ITDs for very low frequencies. For high frequency NL neurons (>1 kHz) our calculated ITD resolutions fall well within the natural range of ITDs and approach values of below 10 μs. We show that different parts of the ITD tuning function offer different resolution in ITD coding, suggesting that information derived from both parts may be used for downstream processing. A place code may be used for sound location at frequencies above 500 Hz, but our data suggest the slope of the ITD tuning curve ought to be used for ITD discrimination by single NL neurons at the lowest frequencies. Our results provide an important measure of the necessary temporal window of binaural inputs for future studies on the mechanisms and development of neuronal computation of temporally precise information in this important system. In particular, our data establish the temporal precision needed for conduction time regulation along NM axons.
PMCID: PMC4143899  PMID: 25206329
sound localization; interaural time differences; avian brainstem; nucleus laminaris; ITD resolution
17.  Developmental Changes Underlying the Formation of the Specialized Time Coding Circuits in Barn Owls (Tyto alba) 
The Journal of Neuroscience  2002;22(17):7671-7679.
Barn owls are capable of great accuracy in detecting the interaural time differences (ITDs) that underlie azimuthal sound localization. They compute ITDs in a circuit in nucleus laminaris (NL) that is reorganized with respect to birds like the chicken. The events that lead to the reorganization of the barn owl NL take place during embryonic development, shortly after the cochlear and laminaris nuclei have differentiated morphologically. At first the developing owl’s auditory brainstem exhibits morphology reminiscent of that of the developing chicken. Later, the two systems diverge, and the owl’s brainstem auditory nuclei undergo a secondary morphogenetic phase during which NL dendrites retract, the laminar organization is lost, and synapses are redistributed. These events lead to the restructuring of the ITD coding circuit and the consequent reorganization of the hindbrain map of ITDs and azimuthal space.
PMCID: PMC3260528  PMID: 12196590
avian development; morphogenesis; auditory; laminaris; evolution; interaural time difference
18.  Bilateral matching of frequency tuning in neural cross-correlators of the owl 
Biological cybernetics  2009;100(6):521-531.
Sound localization requires comparison between the inputs to the left and right ears. One important aspect of this comparison is the differences in arrival time to each side, also called interaural time difference (ITD).A prevalent model of ITD detection, consisting of delay lines and coincidence-detector neurons, was proposed by Jeffress (J Comp Physiol Psychol 41:35–39, 1948). As an extension of the Jeffress model, the process of detecting and encoding ITD has been compared to an effective cross-correlation between the input signals to the two ears. Because the cochlea performs a spectrotemporal decomposition of the input signal, this cross-correlation takes place over narrow frequency bands. Since the cochlear tonotopy is arranged in series, sounds of different frequencies will trigger neural activity with different temporal delays. Thus, the matching of the frequency tuning of the left and right inputs to the cross-correlator units becomes a ‘timing’ issue. These properties of auditory transduction gave theoretical support to an alternative model of ITD-detection based on a bilateral mismatch in frequency tuning, called the ‘stereausis’ model. Here we first review the current literature on the owl’s nucleus laminaris, the equivalent to the medial superior olive of mammals, which is the site where ITD is detected. Subsequently, we use reverse correlation analysis and stimulation with uncorrelated sounds to extract the effective monaural inputs to the cross-correlator neurons. We show that when the left and right inputs to the cross-correlators are defined in this manner, the computation performed by coincidence-detector neurons satisfies conditions of cross-correlation theory. We also show that the spectra of left and right inputs are matched, which is consistent with predictions made by the classic model put forth by Jeffress.
PMCID: PMC2719282  PMID: 19396457
Barn owl; Interaural time difference; Cross-correlation; Coincidence detection; Cochlear delays; Sound localization; Nucleus laminaris; Stereausis
19.  Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae) 
In the auditory system, precise encoding of temporal information is critical for sound localization, a task with direct behavioral relevance. Interaural timing differences are computed using axonal delay lines and cellular coincidence detectors in nucleus laminaris (NL). We present morphological and physiological data on the timing circuits in the emu, Dromaius novaehollandiae, and compare these results with those from the barn owl (Tyto alba) and the domestic chick (Gallus gallus). Emu NL was composed of a compact monolayer of bitufted neurons whose two thick primary dendrites were oriented dorsoventrally. They showed a gradient in dendritic length along the presumed tonotopic axis. The NL and nucleus magnocellularis (NM) neurons were strongly immunoreactive for parvalbumin, a calcium-binding protein. Antibodies against synaptic vesicle protein 2 and glutamic acid decarboxlyase revealed that excitatory synapses terminated heavily on the dendritic tufts, while inhibitory terminals were distributed more uniformly. Physiological recordings from brainstem slices demonstrated contralateral delay lines from NM to NL. During whole-cell patch-clamp recordings, NM and NL neurons fired single spikes and were doubly-rectifying. NL and NM neurons had input resistances of 30.0 ± 19.9 MΩ and 49.0 ± 25.6 MΩ, respectively, and membrane time constants of 12.8 ± 3.8 ms and 3.9 ± 0.2 ms. These results provide further support for the Jeffress model for sound localization in birds. The emu timing circuits showed the ancestral (plesiomorphic) pattern in their anatomy and physiology, while differences in dendritic structure compared to chick and owl may indicate specialization for encoding ITDs at low best frequencies.
PMCID: PMC2948976  PMID: 16435285
avian; nucleus laminaris; nucleus magnocellularis; dendrite; coincidence detection; sound localization
20.  Spectrotemporal Contrast Kernels for Neurons in Primary Auditory Cortex 
Auditory neurons are often described in terms of their spectrotemporal receptive fields (STRFs). These map the relationship between features of the sound spectrogram and neurons’ firing rates. Recently we showed that neurons in the primary fields of the ferret auditory cortex are also subject to gain control: when sounds undergo smaller fluctuations in their level over time, the neurons become more sensitive to small level changes (Rabinowitz et al., 2011). Just as STRFs measure the spectrotemporal features of a sound that lead to changes in neurons’ firing rates, in this study we sought to estimate the spectrotemporal regions in which sound statistics lead to changes in neurons’ gain. We designed a set of stimuli with complex contrast profiles to characterize these regions. This allowed us to estimate cortical neurons’ STRFs alongside a set of spectrotemporal contrast kernels. We find that these two sets of integration windows match up: the extent to which a stimulus feature causes a neuron’s firing rate to change is strongly correlated with the extent to which that feature’s contrast modulates the neuron’s gain. Adding contrast kernels to STRF models also yields considerable improvements in the ability to capture and predict how auditory cortical neurons respond to statistically complex sounds.
PMCID: PMC3542625  PMID: 22895711
21.  Columnar Connectivity and Laminar Processing in Cat Primary Auditory Cortex 
PLoS ONE  2010;5(3):e9521.
Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between layers relates to laminar processing.
Methodology/Principal Findings
We studied the relationships between functional connectivity and receptive field properties in this columnar microcircuit by simultaneously recording from single neurons in cat AI in response to broadband dynamic moving ripple stimuli. We used spectrotemporal receptive fields (STRFs) to estimate the relationship between receptive field parameters and the functional connectivity between pairs of neurons. Interlaminar connectivity obtained through cross-covariance analysis reflected a consistent pattern of information flow from thalamic input layers to cortical output layers. Connection strength and STRF similarity were greatest for intralaminar neuron pairs and in supragranular layers and weaker for interlaminar projections. Interlaminar connection strength co-varied with several STRF parameters: feature selectivity, phase locking to the stimulus envelope, best temporal modulation frequency, and best spectral modulation frequency. Connectivity properties and receptive field relationships differed for vertical and horizontal connections.
Thus, the mode of local processing in supragranular layers differs from that in infragranular layers. Therefore, specific connectivity patterns in the auditory cortex shape the flow of information and constrain how spectrotemporal processing transformations progress in the canonical columnar auditory microcircuit.
PMCID: PMC2831079  PMID: 20209092
22.  Differences between Spectro-Temporal Receptive Fields Derived from Artificial and Natural Stimuli in the Auditory Cortex 
PLoS ONE  2012;7(11):e50539.
Spectro-temporal properties of auditory cortex neurons have been extensively studied with artificial sounds but it is still unclear whether they help in understanding neuronal responses to communication sounds. Here, we directly compared spectro-temporal receptive fields (STRFs) obtained from the same neurons using both artificial stimuli (dynamic moving ripples, DMRs) and natural stimuli (conspecific vocalizations) that were matched in terms of spectral content, average power and modulation spectrum. On a population of auditory cortex neurons exhibiting reliable tuning curves when tested with pure tones, significant STRFs were obtained for 62% of the cells with vocalizations and 68% with DMR. However, for many cells with significant vocalization-derived STRFs (STRFvoc) and DMR-derived STRFs (STRFdmr), the BF, latency, bandwidth and global STRFs shape differed more than what would be predicted by spiking responses simulated by a linear model based on a non-homogenous Poisson process. Moreover STRFvoc predicted neural responses to vocalizations more accurately than STRFdmr predicted neural response to DMRs, despite similar spike-timing reliability for both sets of stimuli. Cortical bursts, which potentially introduce nonlinearities in evoked responses, did not explain the differences between STRFvoc and STRFdmr. Altogether, these results suggest that the nonlinearity of auditory cortical responses makes it difficult to predict responses to communication sounds from STRFs computed from artificial stimuli.
PMCID: PMC3507792  PMID: 23209771
23.  Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris 
Interaural time differences (ITDs) are an important cue for the localization of sounds in azimuthal space. Both birds and mammals have specialized, tonotopically organized nuclei in the brain stem for the processing of ITD: medial superior olive in mammals and nucleus laminaris (NL) in birds. The specific way in which ITDs are derived was long assumed to conform to a delay-line model in which arrays of systematically arranged cells create a representation of auditory space with different cells responding maximally to specific ITDs. This model was supported by data from barn owl NL taken from regions above 3 kHz and from chicken above 1 kHz. However, data from mammals often do not show defining features of the Jeffress model such as a systematic topographic representation of best ITDs or the presence of axonal delay lines, and an alternative has been proposed in which neurons are not topographically arranged with respect to ITD and coding occurs through the assessment of the overall response of two large neuron populations, one in each hemisphere. Modeling studies have suggested that the presence of different coding systems could be related to the animal’s head size and frequency range rather than their phylogenetic group. Testing this hypothesis requires data from across the tonotopic range of both birds and mammals. The aim of this study was to obtain in vivo recordings from neurons in the low-frequency range (<1000 Hz) of chicken NL. Our data argues for the presence of a modified Jeffress system that uses the slopes of ITD-selective response functions instead of their peaks to topographically represent ITD at mid- to high frequencies. At low frequencies, below several 100 Hz, the data did not support any current model of ITD coding. This is different to what was previously shown in the barn owl and suggests that constraints in optimal ITD processing may be associated with the particular demands on sound localization determined by the animal’s ecological niche in the same way as other perceptual systems such as field of best vision.
PMCID: PMC4542463  PMID: 26347616
interaural time differences; chickens; auditory brainstem; nucleus laminaris; in vivo electrophysiology
24.  Responses of Auditory Nerve and Anteroventral Cochlear Nucleus Fibers to Broadband and Narrowband Noise: Implications for the Sensitivity to Interaural Delays 
The quality of temporal coding of sound waveforms in the monaural afferents that converge on binaural neurons in the brainstem limits the sensitivity to temporal differences at the two ears. The anteroventral cochlear nucleus (AVCN) houses the cells that project to the binaural nuclei, which are known to have enhanced temporal coding of low-frequency sounds relative to auditory nerve (AN) fibers. We applied a coincidence analysis within the framework of detection theory to investigate the extent to which AVCN processing affects interaural time delay (ITD) sensitivity. Using monaural spike trains to a 1-s broadband or narrowband noise token, we emulated the binaural task of ITD discrimination and calculated just noticeable differences (jnds). The ITD jnds derived from AVCN neurons were lower than those derived from AN fibers, showing that the enhanced temporal coding in the AVCN improves binaural sensitivity to ITDs. AVCN processing also increased the dynamic range of ITD sensitivity and changed the shape of the frequency dependence of ITD sensitivity. Bandwidth dependence of ITD jnds from AN as well as AVCN fibers agreed with psychophysical data. These findings demonstrate that monaural preprocessing in the AVCN improves the temporal code in a way that is beneficial for binaural processing and may be crucial in achieving the exquisite sensitivity to ITDs observed in binaural pathways.
PMCID: PMC3123442  PMID: 21567250
coincidence detection; interaural time difference; discrimination; binaural; sound localization
25.  Responses of Auditory Nerve and Anteroventral Cochlear Nucleus Fibers to Broadband and Narrowband Noise: Implications for the Sensitivity to Interaural Delays 
The quality of temporal coding of sound waveforms in the monaural afferents that converge on binaural neurons in the brainstem limits the sensitivity to temporal differences at the two ears. The anteroventral cochlear nucleus (AVCN) houses the cells that project to the binaural nuclei, which are known to have enhanced temporal coding of low-frequency sounds relative to auditory nerve (AN) fibers. We applied a coincidence analysis within the framework of detection theory to investigate the extent to which AVCN processing affects interaural time delay (ITD) sensitivity. Using monaural spike trains to a 1-s broadband or narrowband noise token, we emulated the binaural task of ITD discrimination and calculated just noticeable differences (jnds). The ITD jnds derived from AVCN neurons were lower than those derived from AN fibers, showing that the enhanced temporal coding in the AVCN improves binaural sensitivity to ITDs. AVCN processing also increased the dynamic range of ITD sensitivity and changed the shape of the frequency dependence of ITD sensitivity. Bandwidth dependence of ITD jnds from AN as well as AVCN fibers agreed with psychophysical data. These findings demonstrate that monaural preprocessing in the AVCN improves the temporal code in a way that is beneficial for binaural processing and may be crucial in achieving the exquisite sensitivity to ITDs observed in binaural pathways.
PMCID: PMC3123442  PMID: 21567250
coincidence detection; interaural time difference; discrimination; binaural; sound localization

Results 1-25 (1019081)