PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (941878)

Clipboard (0)
None

Related Articles

1.  The development of MDA-7/IL-24 as a cancer therapeutic 
Pharmacology & therapeutics  2010;128(2):375-384.
The cytokine melanoma differentiation associated gene 7 (mda-7) was identified by subtractive hybridization as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Based on conserved structure, chromosomal location and cytokine-like properties, MDA-7, was classified as a member of the interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have demonstrated that expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in corresponding equivalent non-transformed cells, causes their growth arrest and rapid cell death. In addition, MDA-7/IL-24 has been noted to radiosensitize tumor cells which in part is due to the generation of reactive oxygen species (ROS) and ceramide that cause endoplasmic reticulum stress and suppress protein translation. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 (Ad.mda-7 (INGN-241)) was safe and had measurable tumoricidal effects in over 40% of patients, strongly arguing that MDA-7/IL-24 could have significant therapeutic value. This review describes what is presently known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
doi:10.1016/j.pharmthera.2010.08.001
PMCID: PMC2947573  PMID: 20732354
MDA-7; IL-24; Apoptosis; Autophagy; Ceramide; ROS; Ca2+; Clinical trial; Signal transduction; PERK; ER stress; MCL-1
2.  Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24): novel gene therapeutic for metastatic melanoma 
Toxicology and applied pharmacology  2006;224(3):300-307.
A potentially less toxic approach for cancer therapy comprises induction of tumor cells to lose growth potential irreversibly and terminally differentiate. Combining this scheme termed ‘differentiation therapy of cancer’ with subtraction hybridization to human melanoma cells resulted in the cloning of melanoma differentiation associated (mda) genes displaying elevated expression as a consequence of induction of terminal differentiation. One originally novel gene, mda-7, was found to display elevated expression in normal melanocytes and nevi with progressive loss of expression as a consequence of melanoma development and progression to metastasis. Based on structure, biochemical properties and chromosomal location, mda-7 has now been reclassified as interleukin (IL)-24 a member of the expanding IL-10 family of cytokines. In vitro cell culture and in vivo animal studies indicate that mda-7/IL-24 selectively induces programmed cell death (apoptosis) in multiple human cancers (including melanomas), without harming normal cells, and promotes profound anti-tumor activity in nude mice containing human tumor xenografts. Based on these remarkable properties, a Phase I Clinical trial was conducted to test the safety of administration of mda-7/IL-24 by a replication incompetent adenovirus (Ad.mda-7; INGN 241) in patients with advanced solid cancers including melanoma. mda-7/IL-24 was found to be safe and to promote significant clinical activity, particularly in the context of patients with metastatic melanoma. These results provide an impetus for further clinical studies, and document a central paradigm of cancer therapy, namely translation of basic science from the “bench to the bedside.”
doi:10.1016/j.taap.2006.11.021
PMCID: PMC2739016  PMID: 17208263
mda-7/IL-24; apoptosis; metastatic melanoma; Phase I Clinical Trial
3.  PERK-dependent regulation of MDA-7/IL-24-induced autophagy in primary human glioma cells 
Autophagy  2008;4(4):513-515.
Melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The studies by further defines the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that were dependent on activation of JNK1-3 with subsequent activation of BAX and the induction of mitochondrial dysfunction. Activation of JNK1-3 was dependent upon protein kinase R-like endoplasmic reticulum kinase (PERK) and GST-MDA-7 lethality was suppressed in PERK-/- cells. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methyladenine, expression of HSP70 or of BiP/GRP78, or by knockdown of ATG5 or Beclin 1 expression, but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin 1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data demonstrate that GST-MDA-7 induces an ER stress response that, via the induction of autophagy, is causal in the activation of pro-apoptotic pathways that converge on the mitochondrion and ultimately culminate in decreased glioma cell survival.
PMCID: PMC2674579  PMID: 18299661
autophagy; caspase; ER stress; cell death
4.  MDA-7/IL-24–induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK–dependent mechanism 
Molecular cancer therapeutics  2009;8(5):1280-1291.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on clarifying the mechanism(s) by which glutathione S-transferase (GST)-MDA-7 altered cell survival of human renal carcinoma cells in vitro. GST-MDA-7 caused plasma membrane clustering of CD95 and the association of CD95 with procaspase-8. GST-MDA-7 lethality was suppressed by inhibition of caspase-8 or by overexpression of short-form cellular FLICE inhibitory protein, but only weakly by inhibition of cathepsin proteases. GST-MDA-7–induced CD95 clustering (and apoptosis) was blocked by knockdown of acidic sphingomyelinase or, to a greater extent, ceramide synthase-6 expression. GST-MDA-7 killing was, in parallel, dependent on inactivation of extracellular signal–regulated kinase 1/2 and on CD95-induced p38 mitogen-activated protein kinase and c-jun NH2-terminal kinase-1/2 signaling. Knockdown of CD95 expression abolished GST-MDA-7–induced phosphorylation of protein kinase R–like endoplasmic reticulum kinase. GST-MDA-7 lethality was suppressed by knockout or expression of a dominant negative protein kinase R–like endoplasmic reticulum kinase that correlated with reduced c-jun NH2-terminal kinase-1/2 and p38 mitogen-activated protein kinase signaling and maintained extracellular signal–regulated kinase-1/2 phosphorylation. GST-MDA-7 caused vacuolization of LC3 through a mechanism that was largely CD95 dependent and whose formation was suppressed by knockdown of ATG5 expression. Knockdown of ATG5 suppressed GST-MDA-7 toxicity. Our data show that in kidney cancer cells GST-MDA-7 induces ceramide-dependent activation of CD95, which is causal in promoting an endoplasmic reticulum stress response that activates multiple proapoptotic pathways to decrease survival.
doi:10.1158/1535-7163.MCT-09-0073
PMCID: PMC2889018  PMID: 19417161
5.  mda-7/IL-24: Multifunctional cancer-specific apoptosis-inducing cytokine 
Pharmacology & therapeutics  2006;111(3):596-628.
“Differentiation therapy” provides a unique and potentially effective, less toxic treatment paradigm for cancer. Moreover, combining “differentiation therapy” with molecular approaches presents an unparalleled opportunity to identify and clone genes mediating cancer growth control, differentiation, senescence, and programmed cell death (apoptosis). Subtraction hybridization applied to human melanoma cells induced to terminally differentiate by treatment with fibroblast interferon (IFN-β) plus mezerein (MEZ) permitted cloning of melanoma differentiation associated (mda) genes. Founded on its novel properties, one particular mda gene, mda-7, now classified as a member of the interleukin (IL)-10 gene family (IL-24) because of conserved structure, chromosomal location, and cytokine-like properties has become the focus of attention of multiple laboratories. When administered by transfection or adenovirus-transduction into a spectrum of tumor cell types, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) induces apoptosis, whereas no toxicity is apparent in normal cells. mda-7/IL-24 displays potent “bystander antitumor” activity and also has the capacity to enhance radiation lethality, to induce immune-regulatory activities, and to inhibit tumor angiogenesis. Based on these remarkable attributes and effective antitumor therapy in animal models, this cytokine has taken the important step of entering the clinic. In a Phase I clinical trial, intratumoral injections of adenovirus-administered mda-7/IL-24 (Ad.mda-7) was safe, elicited tumor-regulatory and immune-activating processes, and provided clinically significant activity. This review highlights our current understanding of the diverse activities and properties of this novel cytokine, with potential to become a prominent gene therapy for cancer.
doi:10.1016/j.pharmthera.2005.11.005
PMCID: PMC1781515  PMID: 16464504
mda-7/IL-24; Differentiation therapy of cancer; Programmed cell death; Antitumor bystander activity; Radiosensitization; Angiogenesis; Cell signaling; Phase I clinical trial
6.  Ionizing Radiation Enhances Adenoviral Vector Expressing mda-7/IL-24-mediated Apoptosis in Human Ovarian Cancer 
Journal of cellular physiology  2006;208(2):298-306.
Ovarian cancer is the fifth most common cause of cancer-related death in women. Current interventional approaches, including debulking surgery, chemotherapy, and/or radiation have proven minimally effective in preventing the recurrence and/or mortality associated with this malignancy. Subtraction hybridization applied to terminally differentiating human melanoma cells identified melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), whose unique properties include the ability to selectively induce growth suppression, apoptosis, and radiosensitization in diverse cancer cells, without causing any harmful effects in normal cells. Previously, it has been shown that adenovirus-mediated mda-7/IL-24 therapy (Ad.mda-7) induces apoptosis in ovarian cancer cells, however, the apoptosis induction was relatively low. We now document that apoptosis can be enhanced by treating ovarian cancer cells with ionizing radiation (IR) in combination with Ad.mda-7. Additionally, we demonstrate that mda-7/IL-24 gene delivery, under the control of a minimal promoter region of progression elevated gene-3 (PEG-3), which functions selectively in diverse cancer cells with minimal activity in normal cells, displays a selective radiosensitization effect in ovarian cancer cells. The present studies support the use of IR in combination with mda-7/IL-24 as a means of augmenting the therapeutic benefit of this gene in ovarian cancer, particularly in the context of tumors displaying resistance to radiation therapy.
doi:10.1002/jcp.20663
PMCID: PMC2203216  PMID: 16646087
7.  Mechanism by Which Mcl-1 Regulates Cancer-Specific Apoptosis Triggered by mda-7/IL-24, an IL-10-Related Cytokine 
Cancer research  2010;70(12):5034-5045.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a cytokine belonging to the IL-10 family, selectively induces apoptosis in cancer cells without harming normal cells by promoting an endoplasmic reticulum (ER) stress response. The precise molecular mechanism by which the ER stress response culminates in cell death requires further clarification. The present study shows that in prostate carcinoma cells, the mda-7/IL-24-induced ER stress response causes apoptosis by translational inhibition of the antiapoptotic protein myeloid cell leukemia-1 (Mcl-1). Forced expression of Mcl-1 blocked mda-7/IL-24 lethality, whereas RNA interference or gene knockout of Mcl-1 markedly sensitized transformed cells to mda-7/IL-24. Mcl-1 downregulation by mda-7/IL-24 relieved its association with the proapoptotic protein Bak, causing oligomerization of Bak and leading to cell death. These observations show the profound role of the Bcl-2 protein family member Mcl-1 in regulating cancer-specific apoptosis induced by this cytokine. Thus, our studies provide further insights into the molecular mechanism of ER stress-induced cancer-selective apoptosis by mda-7/IL-24. As Mcl-1 is overexpressed in the majority of prostate cancers, mda-7/IL-24 might provide an effective therapeutic for this disease.
doi:10.1158/0008-5472.CAN-10-0563
PMCID: PMC3171699  PMID: 20501829
8.  mda-7/IL-24 differentially regulates soluble and nuclear clusterin in prostate cancer 
Journal of Cellular Physiology  2012;227(5):1805-1813.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a unique member of the IL-10 gene family, displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis, and modulation of anti-tumor immune responses. Here we identify clusterin (CLU) as a MDA-7/IL-24 interacting protein in DU-145 cells and investigate the role of MDA-7/IL-24 in regulating CLU expression and mediating the antitumor properties of mda-7/IL-24 in prostate cancer. Ad.mda-7 decreased expression of soluble CLU (sCLU) and increased expression of nuclear CLU (nCLU). In the initial phase of Ad.mda-7 infection sCLU expression increased and CLU interacted with MDA-7/IL-24 producing a cytoprotective effect. Infection of stable clones of DU-145 prostate cancer cells expressing sCLU with Ad.mda-7 resulted in generation of nCLU that correlated with decreased cell viability and increased apoptosis. In the presence of mda-7/IL-24, sCLU-DU-145 cells displayed G2/M phase arrest followed by apoptosis. Similarly, Ad.mda-7 infection decreased cell migration by altering cytoskeleton in sCLU-DU-145 cells. Ad.mda-7-treated sCLU-DU-145 cells displayed a significant reduction in tumor growth in mouse xenograft models and reduced angiogenesis when compared to the vector control group. Tumor tissue lysates demonstrated enhanced nCLU generated from sCLU with increased apoptosis in the presence of MDA-7/IL-24. Our findings reveal novel aspects relative to the role of sCLU/nCLU in regulating the anticancer properties of MDA-7/IL-24 that may be exploited for developing enhanced therapies for prostate cancer.
doi:10.1002/jcp.22904
PMCID: PMC3228882  PMID: 21732348
MDA-7/IL-24; soluble clusterin; nuclear clusterin; G2/M arrest; apoptosis
9.  Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells 
Molecular cancer therapeutics  2008;7(2):297-313.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that correlated with inactivation of ERK1/2 and activation of JNK1-3. Activation of JNK1-3 was dependent on protein kinase R–like endoplasmic reticulum kinase (PERK), and GST-MDA-7 lethality was suppressed in PERK−/− cells. JNK1-3 signaling activated BAX, whereas inhibition of JNK1-3, deletion of BAX, or expression of dominant-negative caspase-9 suppressed lethality. GST-MDA-7 also promoted a PERK-, JNK-, and cathepsin B–dependent cleavage of BID; loss of BID function promoted survival. GST-MDA-7 suppressed BAD and BIM phosphorylation and heat shock protein 70 (HSP70) expression. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methylade-nine, expression of HSP70 or BiP/GRP78, or knockdown of ATG5 or Beclin-1 expression but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin-1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data show that GST-MDA-7 induces an endoplasmic reticulum stress response that is causal in the activation of multiple proapoptotic pathways, which converge on the mitochondrion and highlight the complexity of signaling pathways altered by mda-7/IL-24 in glioma cells that ultimately culminate in decreased tumor cell survival.
doi:10.1158/1535-7163.MCT-07-2166
PMCID: PMC3204355  PMID: 18281515
10.  MDA-7/IL-24 suppresses human ovarian carcinoma growth in vitro and in vivo 
Molecular Cancer  2007;6:11.
Background
Previous studies showed that the human melanoma differentiation-associated gene-7 (mda-7), also known as interleukin-24 (IL-24), has potent antitumor activity against human and murine cancer cells. However, the majority of these studies were limited to in vitro testing. In the present study, we investigated the antitumor activity of mda-7/IL-24 against human ovarian cancer cells both in vitro and in vivo.
Results
In vitro, treatment of ovarian cancer cells with an adenoviral vector carrying the mda-7 gene (Ad-mda7) resulted in inhibition of cell proliferation and induction of cell cycle arrest, leading to apoptosis. We did not observe inhibitory activity in Ad-mda7-treated normal cells. In vivo, treatment of subcutaneous tumor xenografts with Ad-mda7 resulted in significant tumor growth inhibition when compared with that in control groups (p < 0.001). Molecular analysis of ovarian tumor tissue lysates treated with Ad-mda7 showed that MDA-7 protein expression was associated with activation of the caspase cascade.
Conclusion
Our results show that treatment of ovarian cancer cells with mda-7/IL-24 results in growth suppression both in vitro and in vivo.
doi:10.1186/1476-4598-6-11
PMCID: PMC1796895  PMID: 17274815
11.  Combinatorial Effect of Non-Steroidal Anti-inflammatory Drugs and NF-κB Inhibitors in Ovarian Cancer Therapy 
PLoS ONE  2011;6(9):e24285.
Several epidemiological studies have correlated the use of non-steroidal anti-inflammatory drugs (NSAID) with reduced risk of ovarian cancer, the most lethal gynecological cancer, diagnosed usually in late stages of the disease. We have previously established that the pro-apoptotic cytokine melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24) is a crucial mediator of NSAID-induced apoptosis in prostate, breast, renal and stomach cancer cells. In this report we evaluated various structurally different NSAIDs for their efficacies to induce apoptosis and mda-7/IL-24 expression in ovarian cancer cells. While several NSAIDs induced apoptosis, Sulindac Sulfide and Diclofenac most potently induced apoptosis and reduced tumor growth. A combination of these agents results in a synergistic effect. Furthermore, mda-7/IL-24 induction by NSAIDs is essential for programmed cell death, since inhibition of mda-7/IL-24 by small interfering RNA abrogates apoptosis. mda-7/IL-24 activation leads to upregulation of growth arrest and DNA damage inducible (GADD) 45 α and γ and JNK activation. The NF-κB family of transcription factors has been implicated in ovarian cancer development. We previously established NF-κB/IκB signaling as an essential step for cell survival in cancer cells and hypothesized that targeting NF-κB could potentiate NSAID-mediated apoptosis induction in ovarian cancer cells. Indeed, combining NSAID treatment with NF-κB inhibitors led to enhanced apoptosis induction. Our results indicate that inhibition of NF-κB in combination with activation of mda-7/IL-24 expression may lead to a new combinatorial therapy for ovarian cancer.
doi:10.1371/journal.pone.0024285
PMCID: PMC3171406  PMID: 21931671
12.  Inhibitory Effect of Melanoma Differentiation Associated Gene-7/Interleukin-24 on Invasion In Vitro of Human Melanoma Cancer Cells 
Journal of Korean Medical Science  2013;28(6):833-839.
The acquisition of metastasis potential is a critical point for malignant tumors. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a potential tumor suppress gene and frequently down-regulated in malignant tumors. It has been implicated that overexpression of MDA-7 led to proliferation inhibition in many types of human tumor. Invasion is an important process which is potential to promote tumor metastasis. However, the role and potential molecular mechanism of mda-7/IL-24 to inhibit the invasion of human melanoma cancer is not fully clear. In this report, we identified a solid role for mda-7/IL-24 in invasion inhibition of human melanoma cancer LiBr cells, including decreasing of adhesion and invasion in vitro, blocking cell cycle, down-regulating the expression of ICAM-1, MMP-2/9, CDK1, the phosphorylation of ERK and Akt, NF-κB and AP-1 transcription activity. Meanwhile, there was an increased expression of PTEN in mda-7/IL-24 over-expression LiBr cells. Our results demonstrated that mda-7/IL-24 is a potential invasion suppress gene, which inhibits the invasion of LiBr cells by the down-regulation of ICAM-1, MMP-2/9, PTEN, and CDK1 expression. The molecular pathways involved were the MAPK/ERK, PI3K-Akt, NF-κB, and AP-1. These findings suggest that mda-7/IL-24 may be used as a possible therapeutic strategy for human melanoma cancer.
doi:10.3346/jkms.2013.28.6.833
PMCID: PMC3677998  PMID: 23772146
Melanoma; mda-7; Invasion
13.  MDA-7 results in downregulation of AKT concomitant with apoptosis and cell cycle arrest in breast cancer cells 
Cancer gene therapy  2011;18(7):10.1038/cgt.2011.20.
The melanoma differentiation-associated gene-7 (mda-7) is a known mediator of apoptosis in cancer cells but not in normal cells. We hypothesized that MDA-7 interferes with the prosurvival signaling pathways that are commonly altered in cancer cells to induce growth arrest and apoptosis. We also identified the cell signaling pathways that are antagonized by MDA-7 leading to apoptosis. Using an adenoviral expression system, mda-7 was introduced into the breast cancer cell lines SKBr3, MCF-7 and MDA-MB-468, each with a different estrogen receptor (ER) and HER-2 receptor status. Downstream targets of MDA-7 were assessed by reverse phase protein array analysis, western blot analysis and immunofluorescence confocal microscopy. Our results show that MDA-7-induced apoptosis was mediated by caspases in all cell lines tested. However, MDA-7 modulates additional pathways in SKBr3 (HER-2 positive) and MCF-7 (ER positive) cells including downregulation of AKT-GSK3β and upregulation of cyclin-dependent kinase inhibitors in the nucleus. This leads to cell cycle arrest in addition to apoptosis. In conclusion, MDA-7 abrogates tumor-promoting pathways including the activation of caspase-dependent signaling pathways ultimately leading to apoptosis. In addition, depending on the phenotype of the breast cancer cell, MDA-7 modulates cell cycle regulating pathways to mediate cell cycle arrest.
doi:10.1038/cgt.2011.20
PMCID: PMC3875403  PMID: 21546925
MDA-7; IL-24; breast cancer and AKT
14.  MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma 
Cancer research  2012;73(2):844-854.
Melanoma differentiation associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacological approaches were employed to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, CAM assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several pro-angiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the ECM activating Src and FAK resulting in activation by phosphorylation of Akt, which induces HIF-1α. The HIF-1α activates transcription of Insulin Growth Factor Binding Protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell non-autonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (non-autonomous).
doi:10.1158/0008-5472.CAN-12-1681
PMCID: PMC3548987  PMID: 23233738
mda-9/syntenin; melanoma; angiogenesis; IGFBP-2; HuVECs; CAM assay
15.  Combining histone deacetylase inhibitors with MDA-7/IL-24 enhances killing of renal carcinoma cells 
Cancer Biology & Therapy  2013;14(11):1039-1049.
In the present study we show that histone deacetylase inhibitors (HDACIs) enhance the anti-tumor effects of melanoma differentiation associated gene-7/interleukin 24 (mda-7/IL-24) in human renal carcinoma cells. Similar data were obtained in other GU tumor cells. Combination of these two agents resulted in increased autophagy that was dependent on expression of ceramide synthase 6, with HDACIs enhancing MDA-7/IL-24 toxicity by increasing generation of ROS and Ca2+. Knock down of CD95 protected cells from HDACI and MDA-7/IL-24 lethality. Sorafenib treatment further enhanced (HDACI + MDA-7/IL-24) lethality. Anoikis resistant renal carcinoma cells were more sensitive to MDA-7/IL-24 that correlated with elevated SRC activity and tyrosine phosphorylation of CD95. We employed a recently constructed serotype 5/3 adenovirus, which is more effective than a serotype 5 virus in delivering mda-7/IL-24 to renal carcinoma cells and which conditionally replicates (CR) in tumor cells expressing MDA-7/IL-24 by virtue of placing the adenoviral E1A gene under the control of the cancer-specific promoter progression elevated gene-3 (Ad.5/3-PEG-E1A-mda-7; CRAd.5/3-mda-7, Ad.5/3-CTV), to define efficacy in renal carcinoma cells. Ad.5/3-CTV decreased the growth of renal carcinoma tumors to a significantly greater extent than did a non-replicative virus Ad.5/3-mda-7. In contralateral uninfected renal carcinoma tumors Ad.5/3-CTV also decreased the growth of tumors to a greater extent than did Ad.5/3-mda-7. In summation, our data demonstrates that HDACIs enhance MDA-7/IL-24-mediated toxicity and tumor specific adenoviral delivery and viral replication of mda-7/IL-24 is an effective pre-clinical renal carcinoma therapeutic.
doi:10.4161/cbt.26110
PMCID: PMC3925659  PMID: 24025359
MDA-7/IL-24; HDACI; ceramide; apoptosis; bystander; cytokine; ROS; caspase; animal study
16.  Tumour suppressor function of MDA-7/IL-24 in human breast cancer 
Introduction
Melanoma differentiation associated gene-7 (MDA-7), also known as interleukin (IL)-24, is a tumour suppressor gene associated with differentiation, growth and apoptosis. However, the mechanisms underlying its anti-neoplastic activity, tumour-specificity and efficacy across a spectrum of human cancers have yet to be fully elucidated. In this study, the biological impact of MDA-7 on the behavior of breast cancer (BC) cells is evaluated. Furthermore, mRNA expression of MDA-7 is assessed in a cohort of women with BC and correlated with established pathological parameters and clinical outcome.
Methods
The human BC cell line MDA MB-231 was used to evaluate the in-vitro impact of recombinant human (rh)-MDA-7 on cell growth and motility, using a growth assay, wounding assay and electric cell impedance sensing (ECIS). Localisation of MDA-7 in mammary tissues was assessed with standard immuno-histochemical methodology. BC tissues (n = 127) and normal tissues (n = 33) underwent RNA extraction and reverse transcription, MDA-7 transcript levels were determined using real-time quantitative PCR. Transcript levels were analyzed against tumour size, grade, oestrogen receptor (ER) status, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI) and clinical outcome over a 10 year follow-up period.
Results
Exposure to rh-MDA-7 significantly reduced wound closure rates for human BC cells in-vitro. The ECIS model demonstrated a significantly reduced motility and migration following rh-MDA-7 treatment (p = 0.024). Exposure to rh-MDA-7 was only found to exert a marginal effect on growth. Immuno-histochemical staining of human breast tissues revealed substantially greater MDA-7 positivity in normal compared to cancer cells. Significantly lower MDA-7 transcript levels were identified in those predicted to have a poorer prognosis by the NPI (p = 0.049) and those with node positive tumours. Significantly lower expression was also noted in tumours from patients who died of BC compared to those who remained disease free (p = 0.035). Low levels of MDA-7 were significantly correlated with a shorter disease free survival (mean = 121.7 vs. 140.4 months, p = 0.0287) on Kaplan-Meier survival analysis.
Conclusion
MDA-7 significantly inhibits the motility and migration of human BC cells in-vitro. MDA-7 expression is substantially reduced in malignant breast tissue and low transcript levels are significantly associated with unfavourable pathological parameters, including nodal positivity; and adverse clinical outcomes including poor prognosis and shorter disease free survival. MDA-7 offers utility as a prognostic marker and potential for future therapeutic strategies.
doi:10.1186/1475-2867-10-29
PMCID: PMC2936285  PMID: 20735832
17.  mda-7/IL-24: A Unique Member of the IL-10 Gene Family Promoting Cancer-Targeted Toxicity 
Cytokine & growth factor reviews  2010;21(5):381-391.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect anti-tumor activity through inhibition of angiogenesis, stimulation of an anti-tumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
doi:10.1016/j.cytogfr.2010.08.004
PMCID: PMC3164830  PMID: 20926331
mda-7/IL-24; apoptosis; autophagy; bystander antitumor activity; cancer terminator virus
18.  PERK–Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24–Induced Killing of Primary Human Glioblastoma Multiforme Cells 
Cancer research  2010;70(3):1120-1129.
Melanoma differentiation associated gene-7(mda-7) encodes IL-24, a cytokine that can selectively trigger apoptosis in transformed cells. Recombinant mda-7 adenovirus (Ad.mda-7) effectively kills glioma cells, offering a novel gene therapy strategy to address deadly brain tumors. In this study, we defined the proximal mechanisms by which Ad-mda-7 kills glioma cells. Key factors implicated included activation of the endoplasmic reticulum stress kinase protein kinase R–like endoplasmic reticulum kinase (PERK), Ca++ elevation, ceramide generation and reactive oxygen species (ROS) production. PERK inhibition blocked ceramide or dihydroceramide generation, which were critical for Ca++ induction and subsequent ROS formation. Activation of autophagy and cell death relied upon ROS formation, the inhibition of which ablated Ad.mda-7–killing activity. In contrast, inhibiting TRX induced by Ad.MDA-7 enhanced tumor cytotoxicity and improved animal survival in an orthotopic tumor model. Our findings indicate that mda-7/IL-24 induces an endoplasmic reticulum stress response that triggers production of ceramide, Ca2+, and ROS, which in turn promote glioma cell autophagy and cell death.
doi:10.1158/0008-5472.CAN-09-4043
PMCID: PMC2890071  PMID: 20103619
19.  Enhanced Apoptosis-Inducing Function of MDA-7/IL-24 RGD Mutant Via the Increased Adhesion to Tumor Cells 
Melanoma differentiation-associated gene-7 (mda-7)/interleukin-24 (IL-24) has shown potent tumor cell apoptosis inducing capacity in multiple cancers. However, the apoptosis induction capacity of mda-7/IL-24 was low and directly correlated with the adhesion to tumor cells.Cell adhesion molecule integrin αvβ3 expressed on the surface of several types of solid tumor cells, and they bind to arginine-glycine-aspartic acid (RGD) which enhanced the adhesion to tumor cells. This rout was exploited to construct a tumor-targeting gene RGD-IL-24 which can express RGD-MDA-7/IL-24 protein that includes the cell adhesive sequence 164Arg-165Gly-166Asp (A Glycine residue was inserted into the recombinant MDA-7/IL-24 between Arg164 and Asp165 to form a RGD motif). We successfully got the MDA-7/IL-24 mutant by overlapping polymerase chain reaction (PCR) and evaluated its therapeutic efficacy for tumor cell lines MCF-7, HeLa, HepG2, and normal human lung fibroblast (NHLF) line. And we found that the expression of pCDNA3.1/RGD-IL-24 was same to the expression of pCDNA3.1/IL-24. The RGD-IL-24 enhanced the apoptosis-inducing function in tumor cells, but not in normal cells. In tumor cell lines, the apoptosis-inducing activities of RGD-IL-24 was significantly higher than IL-24 detecting by MTT assay, Annexin V, and Hoechst 33258 analysis. Further, pCDNA3.1/RGD-IL-24 showed a significant increase in the ratio of pro-apoptotic (bax) to anti-apoptotic (bcl-2) proteins in tumor cell lines, but not in NHLF cell line. Together, these results suggest that RGD-IL-24 can enhance the apoptosis of tumor cells and may provide a promising drug in tumor therapy.
doi:10.1089/jir.2011.0040
PMCID: PMC3275097  PMID: 22248086
20.  Raf kinase inhibitor RKIP inhibits MDA-9/syntenin-mediated metastasis in melanoma 
Cancer research  2012;72(23):6217-6226.
Melanoma differentiation associated gene-9 (MDA-9), also known as syntenin, functions as a positive regulator of melanoma progression and metastasis. In contrast, the Raf kinase inhibitor RKIP, a negative modulator of RAF-stimulated MEKK activation, is strongly downregulated in metastatic melanoma cells. In this study, we explored an hypothesized inverse relationship between MDA-9 and RKIP in melanoma. Tumor array and cell line analyses confirmed an inverse relationship between expression of MDA-9 and RKIP during melanoma progression. We found that MDA-9 transcriptionally downregulated RKIP in support of a suggested crosstalk between these two proteins. Further, MDA-9 and RKIP physically interacted in a manner that correlated with a suppression of FAK and c-Src phosphorylation, crucial steps necessary for MDA-9 to promote FAK/c-Src complex formation and initiate signaling cascades that drive the MDA-9-mediated metastatic phenotype. Lastly, ectopic RKIP expression in melanoma cells overrode MDA-9-mediated signaling, inhibiting cell invasion, anchorage-independent growth and in vivo dissemination of tumor cells. Taken together, these findings establish RKIP as an inhibitor of MDA-9-dependent melanoma metastasis, with potential implications for targeting this process therapeutically.
doi:10.1158/0008-5472.CAN-12-0402
PMCID: PMC3939082  PMID: 23066033
RKIP; MDA-9/syntenin, melanoma; c-Src; FAK
21.  IL-24 is Expressed During Wound Repair and Inhibits TGFα induced Migration and Proliferation of Keratinocytes 
Experimental dermatology  2010;19(8):714-722.
Interleukin (IL)-24 is the protein product of melanoma differentiation-associated gene 7 (MDA-7). Originally identified as a tumor suppressor molecule, MDA-7 was renamed IL-24 and classified as a cytokine because of its chromosomal location in the IL-10 locus, its mRNA expression in leukocytes, and its secretory sequence elements. We previously reported that IL-24 is expressed by cytokine-activated monocytes and T lymphocytes. Here, we show that IL-24 is expressed in keratinocytes during wound repair. Paraffin-embedded tissues prepared from human skin sampled at days 2, 6, and 10 after wounding were examined by immunohistochemistry for expression of IL-24. Protein expression was detected in the keratinocyte population with maximum expression at days 2 and 6; and no expression by day 10 (4 of 4 subjects). In vitro studies showed that cytokines involved in wound repair, most notably TGFα, TGFβ, IFNγ and IFNβ, upregulated IL-24 protein expression in normal human epidermal keratinocytes (NHEK). Examination of the function of IL-24 in both in vitro wound repair and migration assays demonstrated that IL-24 inhibits TGFα induced proliferation and migration of NHEKs. These data support the hypothesis that IL-24 functions during an inflammatory response in the skin by inhibiting the proliferation and migration of keratinocytes.
doi:10.1111/j.1600-0625.2010.01077.x
PMCID: PMC3161412  PMID: 20545760
Wound repair; keratinocyte; Interleukin-24; cytokines
22.  Splice Variants of mda-7/IL-24 Differentially Affect Survival and Induce Apoptosis in U2OS Cells 
Cytokine  2011;56(2):272-281.
Interleukin-24 (mda-7/IL-24) is a cytokine in the IL-10 family that has received a great deal of attention for its properties as a tumor suppressor and as a potential treatment for cancer. In this study, we have identified and characterized five alternatively spliced isoforms of this gene. Several, but not all of these isoforms induce apoptosis in the osteosarcoma cell line U2OS, while none affect the survival of the non-cancerous NOK cell line. One of these isoforms, lacking three exons and encoding the N-terminal end of the mda-7/IL-24 protein sequence, caused levels of apoptosis that were higher than those caused by the full-length mda-7/IL-24 variant. Additionally, we found that the ratio of isoform expression can be modified by the splice factor SRp55. This regulation suggests that alternative splicing of mda-7/IL-24 is under tight control in the cell, and can be modified under various cellular conditions, such as DNA damage. In addition to providing new insights into the function of an important tumor suppressor gene, these findings may also point toward new avenues for cancer treatment.
doi:10.1016/j.cyto.2011.07.020
PMCID: PMC3185131  PMID: 21843952
mda-7; IL-24; mda-7/IL-24; alternative splicing; SRp55; apoptosis
23.  Recombinant adenovirus vector-mediated human MDA-7 gene transfection suppresses hepatocellular carcinoma growth in a mouse xenograft model☆ 
Journal of Biomedical Research  2012;26(1):53-58.
Hepatocellular carcinoma is one of the most common tumors in the world. The purpose of the present study was to investigate the inhibitory effects of adenoviral transduction of human melanoma differentiation-associated gene-7 (MDA-7) gene on hepatocellular carcinoma, so as to provide a theoretical basis for gene therapy of the disease. The human MDA-7 gene was cloned into replication-defective adenovirus specific to HepG2 cells using recombinant virus technology. RT-PCR and Western blotting assays were used to determine the expression of human MDA-7 mRNA and MDA-7 protein in HepG2 cells in vitro. Induction of apoptosis by overexpression of the human MDA-7 gene was determined by flow cytometry. In-vivo efficacy of adenoviral delivery of the human MDA-7 gene was assessed in nude mice bearing HepG2 cell lines in vivo by determining inhibition of tumor growth, VEGF and CD34 expression, and microvascular density (MVD). The results showed that AdGFP/MDA-7 induced apoptosis of HepG2 cells in vitro and significantly inhibited tumor growth in vivo (P < 0.05). The intratumoral MVD decreased significantly in the treated tumors (P < 0.05). We conclude the recombination adenovirus AdGFP/MDA-7 can effectively express biologically active human MDA-7, which leads to inhibition of hepatocellular carcinoma growth.
doi:10.1016/S1674-8301(12)60007-4
PMCID: PMC3596080  PMID: 23554730
MDA-7; adenovirus; hepatocellular carcinoma; gene therapy; angiogenesis
24.  Killing of Human Melanoma Cells Induced by Activation of Class I Interferon–Regulated Signaling Pathways via MDA-7/IL-24 
Cytokine  2008;43(1):34-44.
Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1–regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN alfa) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of Class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN beta induction followed by IRF regulation and TRAIL/FasL system activation.
doi:10.1016/j.cyto.2008.04.010
PMCID: PMC2582834  PMID: 18511292
MDA7; IL24; Melanoma; IFN; TRAIL
25.  A novel oncogenic pathway by TLS–CHOP involving repression of MDA-7/IL-24 expression 
British Journal of Cancer  2012;106(12):1976-1979.
Background:
Translocated in liposarcoma-CCAAT/enhancer binding protein homologous protein (TLS–CHOP) (also known as FUS-DDIT3) chimeric oncoprotein is found in the majority of human myxoid liposarcoma (MLS), but its molecular function remains unclear.
Methods:
We knockdowned TLS–CHOP expression in MLS-derived cell lines by a specific small interfering RNA, and analysed the gene expression profiles with microarray.
Results:
TLS-CHOP knockdown inhibited growth of MLS cells, and induced an anticancer cytokine, melanoma differentiation-associated gene 7 (MDA-7)/interleukin-24 (IL-24) expression. However, double knockdown of TLS–CHOP and MDA-7/IL-24 did not inhibit MLS cell growth.
Conclusion:
Repression of MDA-7/IL-24 expression by TLS–CHOP is required for MLS tumour growth, and TLS–CHOP may become a promising therapeutic target for MLS treatment.
doi:10.1038/bjc.2012.199
PMCID: PMC3388565  PMID: 22588557
TLS–CHOP; FUS-DDIT3; myxoid liposarcoma; MDA-7/IL-24

Results 1-25 (941878)