Search tips
Search criteria

Results 1-25 (829683)

Clipboard (0)

Related Articles

1.  Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning 
Neuroscience  2007;151(4):1099-1103.
Remote ischemic preconditioning is an emerging concept for stroke treatment, but its protection against focal stroke has not been established. We tested whether remote preconditioning, performed in the ipsilateral hind limb, protects against focal stroke and explored its protective parameters. Stroke was generated by a permanent occlusion of the left distal middle cerebral artery (MCA) combined with a 30 minute occlusion of the bilateral common carotid arteries (CCA) in male rats. Limb preconditioning was generated by 5 or 15 minute occlusion followed with the same period of reperfusion of the left hind femoral artery, and repeated for 2 or 3 cycles. Infarct was measured 2 days later. The results showed that rapid preconditioning with 3 cycles of 15 minutes performed immediately before stroke reduced infarct size from 47.7±7.6% of control ischemia to 9.8±8.6%; at 2 cycles of 15 minutes, infarct was reduced to 24.7±7.3%; at 2 cycles of 5 minutes, infarct was not reduced. Delayed preconditioning with 3 cycles of 15 minutes conducted 2 days before stroke also reduced infarct to 23.0 ±10.9%, but with 2 cycles of 15 minutes it offered no protection. The protective effects at these two therapeutic time windows of remote preconditioning are consistent with those of conventional preconditioning, in which the preconditioning ischemia is induced in the brain itself. Unexpectedly, intermediate preconditioning with 3 cycles of 15 minutes performed 12 hours before stroke also reduced infarct to 24.7±4.7%, which contradicts the current dogma for therapeutic time windows for the conventional preconditioning that has no protection at this time point. In conclusion, remote preconditioning performed in one limb protected against ischemic damage after focal cerebral ischemia.
PMCID: PMC2696348  PMID: 18201834
preconditioning; remote preconditioning; limb preconditioning; cerebral ischemia; focal ischemia
2.  Preconditionin effects of dexmedetomidine on myocardial ischemia/reperfusion injury in rats 
Background: Preconditioning might protect the myocardium against ischemia/ reperfusion injury by reducing infarct size and preventing arrhythmias. Dexmedetomidine (DEX) is a highly selective α2-agonist used for sedoanalgesia in daily anesthetic practice. The cardioprotective effects of DEX on infarct size and on the incidence of arrhythmias observed after regional ischemia/reperfusion injury in vivo have not been reported.
Objective: The aim of this study was to determine whether DEX exhibits a preconditioning effect and reduces infarct size and the incidence and duration of arrhythmias in a regional cardiac ischemia/reperfusion model in rats.
Methods: Adult male Sprague-Dawley rats were anesthetized with sodium thiopental and mechanically ventilated (0.9 mL/100 g at 60 strokes/min) through a cannula inserted into the trachea after tracheotomy. Cardiac ischemia was then produced by ligating the left main coronary artery for 30 minutes, followed by a reperfusion period of 120 minutes. Blood pressure (BP) and heart rate (HR) were monitored and echocardiograms (ECGs) were performed. Arrhythmia was scored based on incidence and duration. The animals were randomly divided into 3 groups. The ischemic preconditioning (IPC) group underwent 5 minutes of ischemia followed by 5 minutes of reperfusion before the 30-minute ischemia/120-minute reperfusion period. In the DEX group, intraperitoneal (IP) DEX 1 mL (100 μg/kg) was administered 30 minutes before the ischemia/ reperfusion period. In the control group, IP saline 1 mL was administered 30 minutes before the ischemia/reperfusion period. After reperfusion, the heart was excised, demarcated with saline and ethanol to identify the occluded and nonoccluded myocardium, and cut into slices ~2 mm thick, that were then stained and placed between 2 glass plates. The risk zone and the infarct zone were compared between groups. The investigator assessing the infarcts was blinded to the study group.
Results: Twenty-one adult (aged 4-6 months) male Sprague-Dawley rats weighing 280 to 360 g were included in the study; 7 rats were assigned to each group. BP, HR, and ECG readings were not significantly different between groups and did not change during the study. Arrythmias occurred during ischemia and reperfusion in all groups. The duration of the arrhythmias was significantly shorter and the arrhythmia score was significantly lower in the IPC group (all, P<0.05), compared with the control group; however, they were not significantly different in the DEX group. During the ischemic period, duration of ventricular tachycardia (VT) and ventricular premature contractions (VPC) in the DEX group was significantly longer than that observed in the IPC group (all, P<0.05). The duration of VPC was also significantly shorter than that observed in the control group (both, P<0.05). Duration of VT during the reperfusion period in the DEX group was significantly longer than that observed in both IPC and control groups (both, P<0.05). The mean (SD) percentage of damage was significantly lower in the IPC group (44.1% [2.0%]) and the DEX group (26.7% [2.0%]) compared with the control group (69.0% [3.0%]; both, P<0.05). The percentage of damage in the DEX group was also significantly lower compared with the IPC group (P<0.05).
Conclusions: This small, experimental in vivo study found that DEX was associated with reduced infarct size in ischemia/reperfusion injury in regional ischemia in this rat model but had no effect on the incidence of arrhythmias. Future studies are needed to clarify these findings.
PMCID: PMC3969917  PMID: 24692794
dexmedetomidine; preconditioning; cardiac ischemia/reperfusion
3.  Delayed Postconditioning Protects against Focal Ischemic Brain Injury in Rats 
PLoS ONE  2008;3(12):e3851.
We and others have reported that rapid ischemic postconditioning, interrupting early reperfusion after stroke, reduces infarction in rats. However, its extremely short therapeutic time windows, from a few seconds to minutes after reperfusion, may hinder its clinical translation. Thus, in this study we explored if delayed postconditioning, which is conducted a few hours after reperfusion, offers protection against stroke.
Methods and Results
Focal ischemia was generated by 30 min occlusion of bilateral common carotid artery (CCA) combined with permanent occlusion of middle cerebral artery (MCA); delayed postconditioning was performed by repetitive, brief occlusion and release of the bilateral CCAs, or of the ipsilateral CCA alone. As a result, delayed postconditioning performed at 3h and 6h after stroke robustly reduced infarct size, with the strongest protection achieved by delayed postconditioning with 6 cycles of 15 min occlusion/15 min release of the ipsilateral CCA executed from 6h. We found that this delayed postconditioning provided long-term protection for up to two months by reducing infarction and improving outcomes of the behavioral tests; it also attenuated reduction in 2-[18F]-fluoro-2-deoxy-D-glucose (FDG)-uptake therefore improving metabolism, and reduced edema and blood brain barrier leakage. Reperfusion in ischemic stroke patients is usually achieved by tissue plasminogen activator (tPA) application, however, t-PA's side effect may worsen ischemic injury. Thus, we tested whether delayed postconditioning counteracts the exacerbating effect of t-PA. The results showed that delayed postconditioning mitigated the worsening effect of t-PA on infarction.
Delayed postconditioning reduced ischemic injury after focal ischemia, which opens a new research avenue for stroke therapy and its underlying protective mechanisms.
PMCID: PMC2588536  PMID: 19066627
4.  ASIC1a contributes to neuroprotection elicited by ischemic preconditioning and postconditioning 
Acid-sensing ion channels, ASICs, are proton-gated cation channels widely expressed in peripheral sensory neurons and in neurons of the central nervous system that play an important role in a variety of physiological and pathological processes. To further confirm the role played by ASIC1a in cerebral ischemia, here we examined the involvement of this channel in two endogenous recently characterized neuroprotective strategies: brain ischemic preconditioning and postconditioning. The main aim of this study was to elucidate whether ASIC1a might take part as effector in the neuroprotection evoked by brain ischemic preconditioning and postconditioning. For this purpose we investigated the effect of ischemic preconditioning and postconditioning on (1) ASIC1a mRNA and protein expression in the temporoparietal cortex of rats at different time intervals; and (2) the effect of p-AKT inhibition on ASIC1a expression during ischemic preconditioning and postconditioning. Ischemic preconditioning and postconditioning were experimentally induced in adult male rats by subjecting them to different protocols of middle cerebral artery occlusion and reperfusion. ASIC1a expression was dramatically reduced in both the neuroprotective processes. These changes in ASIC expression were p-AKT mediated, since LY-294002, a specific p-AKT inhibitor, was able to prevent variations in ASIC1a expression. The results of the present study support the idea that the downregulation of ASIC1a expression and activity might be a reasonable strategy to reduce the infarct extension after stroke.
PMCID: PMC3068848  PMID: 21479097
ASIC1a; preconditioning; postconditioning; stroke; neuroprotection
5.  Lithium Treatment Reduces Brain Injury Induced by Focal Ischemia with Partial Reperfusion and the Protective Mechanisms Dispute the Importance of Akt Activity 
Aging and Disease  2012;3(3):226-233.
Lithium is a mood stabilizer shown to have neuroprotective effects against several chronic and acute neuronal injuries, including stroke. However, it is unknown whether lithium treatment protects against brain injury post-stroke in a rat model of permanent distal middle cerebral artery occlusion (MCAo) combined with transient bilateral common carotid artery occlusion (CCAo), a model that mimics human stroke with partial reperfusion. In addition, whether lithium treatment alters Akt activity as measured by the kinase activity assay has not been reported, although it is known to inhibit GSK3β activity. After stroke, Akt activity contributes to neuronal survival while GSK3β activity causes neuronal death. We report that a bolus of lithium injection at stroke onset robustly reduced infarct size measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 48 h post-stroke and inhibited cell death in the ischemic penumbra, but not in the ischemic core, as shown by TUNEL staining performed 24 h post-stroke. However, lithium treatment did not alter the reduction in Akt activity as measured by Akt kinase assay. We further showed that lithium did not alter phosphorylated GSK3β protein levels, or the degradation of β-catenin, a substrate of GSK3β, which is consistent with previous findings that long-term treatment is required for lithium to alter GSK3β phosphorylation. In summary, we show innovative data that lithium protects against stroke in a focal ischemia model with partial reperfusion, however, our results dispute the importance of Akt activity in the protective effects of lithium.
PMCID: PMC3375079  PMID: 22724081
Lithium; Akt; Cerebral focal ischemia; GSK3β; β-catenin
6.  Ischemic Postconditioning Fails to Protect against Neonatal Cerebral Stroke 
PLoS ONE  2012;7(12):e49695.
The lack of efficient neuroprotective strategies for neonatal stroke could be ascribed to pathogenic ischemic processes differentiating adults and neonates. We explored this hypothesis using a rat model of neonatal ischemia induced by permanent occlusion of the left distal middle cerebral artery combined with 50 min of occlusion of both common carotid arteries (CCA). Postconditioning was performed by repetitive brief release and occlusion (30 s, 1 and/or 5 min) of CCA after 50 min of CCA occlusion. Alternative reperfusion was generated by controlled release of the bilateral CCA occlusion. Blood-flow velocities in the left internal carotid artery were measured using color-coded pulsed Doppler ultrasound imaging. Cortical perfusion was measured using laser Doppler. Cerebrovascular vasoreactivity was evaluated after inhalation with the hypercapnic gas or inhaled nitric oxide (NO). Whatever the type of serial mechanical interruptions of blood flow at reperfusion, postconditioning did not reduce infarct volume after 72 hours. A gradual perfusion was found during early re-flow both in the left internal carotid artery and in the cortical penumbra. The absence of acute hyperemia during early CCA re-flow, and the lack of NO-dependent vasoreactivity in P7 rat brain could in part explain the inefficiency of ischemic postconditioning after ischemia-reperfusion.
PMCID: PMC3520965  PMID: 23251348
7.  Limb remote ischemic postconditioning protects against focal ischemia in rats 
Brain research  2009;1288:88-94.
Remote ischemic postconditioning (RIP) refers to an ischemia conducted in a distant organ that protects against a prior ischemia in another organ. We tested whether RIP protects against focal ischemia in the rat brain. Stroke was generated by a permanent occlusion of the left distal middle cerebral artery combined with a 30 min occlusion of the bilateral common carotid arteries (CCA) in male rats. After CCA release, RIP was generated by 3 cycles of 15 min occlusion/15 min release of the left hind femoral artery. The results showed that rapid RIP performed immediately after CCA release reduced infarction by 67% measured at 2 d after stroke. In addition, delayed RIP initiated as late as 3 h, but not 6 h, still robustly reduced infarction by 43% 2 d after stroke. RIP's protective effect was abolished by injecting the protein synthesis inhibitor, cycloheximide, and the afferent nerve blocker, capsaicin, suggesting that RIP blocks ischemic injury by modulating protein synthesis and nerve activity. Nevertheless, rapid RIP did not reduce infarction size 2 months after stroke while it ameliorated the outcome of the behavioral test. In conclusion, RIP attenuates brain injury after focal ischemia.
PMCID: PMC2744502  PMID: 19631625
stroke; cerebral ischemia; preconditioning; remote postconditioning
8.  The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways 
Journal of neurochemistry  2008;105(3):943-955.
We previously reported that ischemic postconditioning with a series of mechanical interruptions of reperfusion reduced infarct volume 2 days after focal ischemia in rats. Here, we extend this data by examining long-term protection and exploring underlying mechanisms involving the Akt, mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways. Post-conditioning reduced infarct and improved behavioral function assessed 30 days after stroke. Additionally, postconditioning increased levels of phosphorylated Akt (Ser473) as measured by western blot and Akt activity as measured by an in vitro kinase assay. Inhibiting Akt activity by a phosphoinositide 3-kinase inhibitor, LY294002, enlarged infarct in postconditioned rats. Postconditioning did not affect protein levels of phosphorylated-phosphatase and tensin homologue deleted on chromosome 10 or -phosphoinositide-dependent protein kinase-1 (molecules upstream of Akt) but did inhibit an increase in phosphorylated-glycogen synthase kinase 3β, an Akt effector. In addition, postconditioning blocked β-catenin phosphorylation subsequent to glycogen synthase kinase, but had no effect on total or non-phosphorylated active β-catenin protein levels. Furthermore, postconditioning inhibited increases in the amount of phosphorylated-c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 in the MAPK pathway. Finally, postconditioning blocked death-promoting δPKC cleavage and attenuated reduction in phosphorylation of survival-promoting εPKC. In conclusion, our data suggest that postconditioning provides long-term protection against stroke in rats. Additionally, we found that Akt activity contributes to postconditioning’s protection; furthermore, increases in εPKC activity, a survival-promoting pathway, and reductions in MAPK and δPKC activity; two putative death-promoting pathways correlate with postconditioning’s protection.
PMCID: PMC2746404  PMID: 18182053
Akt; cerebral ischemia; mitogen-activated protein kinase; postconditioning; protein kinase C; β-catenin
9.  Isoflurane preconditioning increases B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain 
European journal of pharmacology  2008;586(1-3):106-113.
We and others have shown that prior exposure to the volatile anesthetic isoflurane induces ischemic tolerance in the brain. Our results also suggest that isoflurane preconditioning reduces cell apoptosis in the penumbral region of rat brain. We designed this study to determine whether isoflurane preconditioning decreased mitochondria-dependent cell apoptosis. Adult male Sprague-Dawley rats were exposed to or not exposed to 2% isoflurane for 30 min at 24 h before the permanent middle cerebral arterial occlusion. Western blotting was used to quantify protein expression in the cytosolic and mitochondrial fractions of non-ischemic brain cortex and brain cortex in the ischemic core and penumbra. Isoflurane preconditioning significantly decreased the infarct volume of cerebral cortex and improved neurological outcome. Isoflurane increased the expression of the antiapoptotic B-cell lymphoma-2 (Bcl-2) proteins in the cerebral cortex of rats without brain ischemia. Rats preconditioned with isoflurane before brain ischemia had increased Bcl-2 expression in the penumbra. Isoflurane preconditioning reduced the release of cytochrome c from the mitochondria and the activation of caspase 3 in the penumbra. However, isoflurane preconditioning did not alter the translocation of Bid and Bax from the cytosol to the mitochondria, identified mechanisms for Bcl-2 to block the release of cytochrome c from the mitochondria. Our results suggest that isoflurane preconditioning increases Bcl-2 expression to block the release of cytochrome c from the mitochondria to decrease the cell apoptosis in the penumbra.
PMCID: PMC2429852  PMID: 18355806
isoflurane; preconditioning; neuroprotection; cytochrome c; Bcl-2; mitochondria
10.  The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke 
We recently showed that intraischemic moderate hypothermia (30°C) reduces ischemic damage through the Akt pathway after permanent distal middle cerebral artery occlusion in rats. The only Akt pathway component preserved by hypothermia is phosphorylated phosphatase and tensin homolog deleted on chromosome 10 (p-PTEN), which suggests that p-PTEN may have a central role in neuroprotection. Reactive oxygen species (ROS) are critically involved in mediating ischemic damage after stroke by interacting with signaling molecules, including Akt, PTEN, and δ-protein kinase C (PKC). We investigated the protective mechanisms of moderate hypothermia on these signaling proteins after transient focal ischemia in rats. Early moderate hypothermia (3 h) was administered 15 mins before reperfusion, and delayed moderate hypothermia (3 h) was applied 15 mins after reperfusion. Our results indicate that early hypothermia reduced infarction, whereas delayed hypothermia did not. However, both early and delayed hypothermia maintained levels of Mn-SOD (superoxide dismutase) and phosphorylated Akt and blocked δ-PKC cleavage, suggesting that these factors may not be critical to the protection of hypothermia. Nevertheless, early hypothermia preserved p-PTEN levels after reperfusion, whereas delayed hypothermia did not. Furthermore, ROS inhibition maintained levels of p-PTEN after stroke. Together, these findings suggest that phosphorylation levels of PTEN are closely associated with the protective effect of early hypothermia against stroke.
PMCID: PMC3221613  PMID: 19553907
focal ischemia; hypothermia; neuroprotection; stroke
11.  The Reno-Vascular A2B Adenosine Receptor Protects the Kidney from Ischemia 
PLoS Medicine  2008;5(6):e137.
Acute renal failure from ischemia significantly contributes to morbidity and mortality in clinical settings, and strategies to improve renal resistance to ischemia are urgently needed. Here, we identified a novel pathway of renal protection from ischemia using ischemic preconditioning (IP).
Methods and Findings
For this purpose, we utilized a recently developed model of renal ischemia and IP via a hanging weight system that allows repeated and atraumatic occlusion of the renal artery in mice, followed by measurements of specific parameters or renal functions. Studies in gene-targeted mice for each individual adenosine receptor (AR) confirmed renal protection by IP in A1−/−, A2A−/−, or A3AR−/− mice. In contrast, protection from ischemia was abolished in A2BAR−/− mice. This protection was associated with corresponding changes in tissue inflammation and nitric oxide production. In accordance, the A2BAR-antagonist PSB1115 blocked renal protection by IP, while treatment with the selective A2BAR-agonist BAY 60–6583 dramatically improved renal function and histology following ischemia alone. Using an A2BAR-reporter model, we found exclusive expression of A2BARs within the reno-vasculature. Studies using A2BAR bone-marrow chimera conferred kidney protection selectively to renal A2BARs.
These results identify the A2BAR as a novel therapeutic target for providing potent protection from renal ischemia.
Using gene-targeted mice, Holger Eltzschig and colleagues identify the A2B adenosine receptor as a novel therapeutic target for providing protection from renal ischemia.
Editors' Summary
Throughout life, the kidneys perform the essential task of filtering waste products and excess water from the blood to make urine. Each kidney contains about a million small structures called nephrons, each of which contains a filtration unit consisting of a glomerulus (a small blood vessel) intertwined with a urine-collecting tube called a tubule. If the nephrons stop working for any reason, the rate at which the blood is filtered (the glomerular filtration rate or GFR) decreases and dangerous amounts of waste products such as creatinine build up in the blood. Most kidney diseases destroy the nephrons slowly over years, producing an irreversible condition called chronic renal failure. But the kidneys can also stop working suddenly because of injury or poisoning. One common cause of “acute” renal failure in hospital patients is ischemia—an inadequate blood supply to an organ that results in the death of part of that organ. Heart surgery and other types of surgery in which the blood supply to the kidneys is temporarily disrupted are associated with high rates of acute renal failure.
Why Was This Study Done?
Although the kidneys usually recover from acute failure within a few weeks if the appropriate intensive treatment (for example, dialysis) is provided, acute renal failure after surgery can be fatal. Thus, new strategies to protect the kidneys from ischemia are badly needed. Like other organs, the kidneys can be protected from lethal ischemia by pre-exposure to several short, nonlethal episodes of ischemia. It is not clear how this “ischemic preconditioning” increases renal resistance to ischemia but some data suggest that the protection of tissues from ischemia might involve a signaling molecule called extracellular adenosine. This molecule binds to proteins called receptors on the surface of cells and sends signals into them that change their behavior. There are four different adenosine receptor—A1AR, A2AAR, A2BAR, and A3AR—and in this study, the researchers use ischemic preconditioning as an experimental strategy to investigate which of these receptors protects the kidneys from ischemia in mice, information that might provide clues about how to protect the kidneys from ischemia.
What Did the Researchers Do and Find?
The researchers first asked whether ischemic preconditioning protects the kidneys of mice strains that lack the genes for individual adenosine receptors (A1AR−/−, A2AAR−/−, A2BAR−/−, and A3AR−/− mice) from subsequent ischemia. Using a hanging-weight system, they intermittently blocked the renal artery of these mice before exposing them to a longer period of renal ischemia. Twenty-four hours later, they assessed the renal function of the mice by measuring their blood creatinine levels, GFRs, and urine production. Ischemic preconditioning protected all the mice from ischemia-induced loss of kidney function except the A2BAR−/− mice. It also prevented ischemia-induced structural damage and inflammation in the kidneys of wild-type but not A2BAR−/− mice. These results suggest that A2BAR may help to protect the kidneys from ischemia. Consistent with this idea, ischemic preconditioning did not prevent ischemia-induced renal damage in wild-type mice treated with a compound that specifically blocks the activity of A2BAR. However, wild-type mice (but not A2BAR−/− mice) treated with an A2BAR agonist (which activates the receptor) retained their kidney function after renal ischemia without ischemic preconditioning. Finally, the researchers report that A2BAR has to be present on the blood vessels in the kidney to prevent ischemia-induced acute renal failure.
What Do These Findings Mean?
These findings suggest that the protection of the kidneys from ischemia and the renal resistance to ischemia that is provided by ischemic preconditioning involve adenosine signaling through A2BAR. They also suggest that adenosine might provide protection against ischemia-induced damage by blocking inflammation in the kidney although other possible mechanisms of action need to be investigated. Importantly, these findings suggest that A2BAR might be a therapeutic target for the prevention of renal ischemia. However, results obtained in animals do not always reflect the situation in people, so before A2BAR agonists can be used to reduce the chances of patients developing acute renal failure after surgery, these results need confirming in people and the safety of A2BAR agonists need to be thoroughly investigated.
Additional Information.
Please access these Web sites via the online version of this summary at
The US National Institute of Diabetes and Digestive and Kidney Diseases provides information on how the kidneys work and what can go wrong with them, including a list of links to further information about kidney disease
The MedlinePlus encyclopedia has a page on acute kidney failure (in English and Spanish)
Wikipedia has pages on acute renal failure, ischemia, ischemic preconditioning, and adenosine (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2504049  PMID: 18578565
12.  Ischemic postconditioning facilitates brain recovery after stroke by promoting Akt/mTOR activity in nude rats 
Journal of neurochemistry  2013;127(5):723-732.
While preconditioning is induced before stroke onset, ischemic postconditioning (IPostC) is performed after reperfusion, which typically refers to a series of mechanical interruption of blood reperfusion after stroke. IPostC is known to reduce infarction in wild type animals. We investigated if IPostC protects against brain injury induced by focal ischemia in T-cell-deficient nude rats and to examine its effects on Akt and the mammalian target of rapamycin (mTOR) pathway. Although IPostC reduced infarct size at 2 days post-stroke in wild type rats, it did not attenuate infarction in nude rats. Despite the unaltered infarct size in nude rats, IPostC increased levels of phosphorylated Akt (p-Akt) and Akt isoforms (Akt1, Akt2, Akt3), and p-mTOR, p-S6K and p-4EBP1 in the mTOR pathway, as well as GAP-43, both in the peri-infarct area and core, 24 hours after stroke. IPostC improved neurological function in nude rats 1–30 days after stroke and reduced the extent of brain damage 30 days after stroke. The mTOR inhibitor rapamycin abolished the long-term protective effects of IPostC. We determined that IPostC did not inhibit acute infarction in nude rats but did provide long-term protection by enhancing Akt and mTOR activity during the acute post-stroke phase.
PMCID: PMC3875603  PMID: 23777415
Stroke; Ischemic postconditioning; T cells; Akt; mTOR
13.  From Rapid to Delayed and Remote Postconditioning: the Evolving Concept of Ischemic Postconditioning in Brain Ischemia 
Current Drug Targets  2012;13(2):173-187.
Ischemic postconditioning is a concept originally defined to contrast with that of ischemic preconditioning. While both preconditioning and postconditioning confer a neuroprotective effect on brain ischemia, preconditioning is a sublethal insult performed in advance of brain ischemia, and postconditioning, which conventionally refers to a series of brief occlusions and reperfusions of the blood vessels, is conducted after ischemia/reperfusion. In this article, we first briefly review the history of preconditioning, including the experimentation that initially uncovered its neuroprotective effects and later revealed its underlying mechanisms-of-action. We then discuss how preconditioning research evolved into that of postconditioning – a concept that now represents a broad range of stimuli or triggers, including delayed postconditioning, pharmacological postconditioning, remote postconditioning – and its underlying protective mechanisms involving the Akt, MAPK, PKC and KATP channel cell-signaling pathways. Because the concept of postconditioning is so closely associated with that of preconditioning, and both share some common protective mechanisms, we also discuss whether a combination of preconditioning and postconditioning offers greater protection than preconditioning or postconditioning alone.
PMCID: PMC3346695  PMID: 22204317
postconditioning; preconditioning; stroke; cerebral ischemia; focal ischemia; neuroprotection
14.  Ischemic tolerance modulates TRAIL expression and its receptors and generates a neuroprotected phenotype 
Cell Death & Disease  2014;5(7):e1331-.
TNF-related apoptosis inducing ligand (TRAIL), a member of the TNF superfamily released by microglia, appears to be involved in the induction of apoptosis following focal brain ischemia. Indeed, brain ischemia is associated with progressive enlargement of damaged areas and prominent inflammation. As ischemic preconditioning reduces inflammatory response to brain ischemia and ameliorates brain damage, the purpose of the present study was to evaluate the role of TRAIL and its receptors in stroke and ischemic preconditioning and to propose, by modulating TRAIL pathway, a new therapeutic strategy in stroke. In order to achieve this aim a rat model of harmful focal ischemia, obtained by subjecting animals to 100 min of transient occlusion of middle cerebral artery followed by 24 h of reperfusion and a rat model of ischemic preconditioning in which the harmful ischemia was preceded by 30 mins of tMCAO, which represents the preconditioning protective stimulus, were used. Results show that the neuroprotection elicited by ischemic preconditioning occurs through both upregulation of TRAIL decoy receptors and downregulation of TRAIL itself and of its death receptors. As a counterproof, immunoneutralization of TRAIL in tMCAO animals resulted in significant restraint of tissue damage and in a marked functional recovery. Our data shed new light on the mechanisms that propagate ongoing neuronal damage after ischemia in the adult mammalian brain and provide new molecular targets for therapeutic intervention. Strategies aimed to repress the death-inducing ligands TRAIL, to antagonize the death receptors, or to activate the decoy receptors open new perspectives for the treatment of stroke.
PMCID: PMC4123080  PMID: 25032854
15.  Redox Signaling Triggers Protection During The Reperfusion Rather Than The Ischemic Phase Of Preconditioning 
Basic research in cardiology  2008;103(4):378-384.
In ischemic preconditioning (IPC) brief ischemia/reperfusion renders the heart resistant to infarction from any subsequent ischemic insult. Protection results from binding of surface receptors by ligands released during the preconditioning ischemia. The downstream pathway involves redox signaling as IPC will not protect in the presence of a free radical scavenger. To determine when the redox signaling occurs, five groups of isolated rabbit hearts were studied. All hearts underwent 30 min of coronary branch occlusion and 2 h of reperfusion. IPC groups were subjected to 5 min of regional ischemia followed by 10 min of reperfusion prior to the 30-min coronary occlusion. The Control group had only the 30-min occlusion and 2-h reperfusion. The second group had IPC alone. The third group was also preconditioned, but the free radical scavenger N-2-mercaptopropionyl glycine (MPG, 300 µM) was infused during the 10-min reperfusion and therefore was present in the myocardium in the distribution of the snared coronary artery during the entire reperfusion phase and also during the subsequent 30-min ischemia. In another preconditioned group MPG was added to the perfusate before the preconditioning ischemia and therefore was present in the tissue only during the preconditioning ischemia and then was washed out during reperfusion. In the fifth group MPG was added to the perfusate for only the last 5 min of the preconditioning reperfusion and therefore was present in the tissue during the last minutes of the reperfusion phase and the 30 min of ischemia. Infarct size and risk size were measured by triphenyltetrazolium staining and fluorescent microspheres, resp. IPC reduced infarct size from 31.3±2.7% of the ischemic zone in control hearts to only 8.4±1.9%. MPG completely blocked IPC’s protection in the 3rd group (39.4±2.8%) but did not affect its protection in groups 4 (8.1±1.5%) or 5 (7.8±1.1%). Hence redox signaling occurs during the reperfusion phase of IPC.
PMCID: PMC2670099  PMID: 18347834
16.  Identical MicroRNAs Regulate Liver Protection during Anaesthetic and Ischemic Preconditioning in Rats: An animal study 
PLoS ONE  2015;10(5):e0125866.
Anaesthetic preconditioning (APC) and ischemic preconditioning (IPC) ameliorate liver ischemia–reperfusion (I/R) injury and are important for regulating hepatic I/R injury. MicroRNAs (miRNAs) are short, noncoding RNA molecules of 21–23 nucleotides in length, and are currently under intensive investigation regarding their ability to regulate gene expression in a wide range of species. miRNA activity is involved in controlling a wide range of biological functions and processes. We evaluated whether APC and IPC are mediated by the same miRNAs by performing comprehensive miRNA screening experiments in a rat model of hepatic I/R injury. Twenty-one rats were randomly divided into three groups (n = 7/group): control (mock preconditioning), APC, and IPC. Control rats were subjected to 60 min of hepatic ischemia followed by 4 h of reperfusion, whereas the APC and IPC groups were preconditioned with 2% sevoflurane and hepatic ischemia for 10 min prior to ischemia-reperfusion, respectively. Liver samples were collected to measure miRNA levels after 3 h of reperfusion, and gene networks and canonical pathways were identified using Ingenuity Pathway Analysis (IPA). Blood samples were collected to measure the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Although haemodynamic parameters did not vary among the groups, AST and ALT levels were significantly higher in the control group than in the APC and IPC groups. Comprehensive miRNA screening experiments revealed that most miRNAs altered in the APC group were common to those in the IPC group. IPA identified five miRNAs related to the Akt–glycogen synthase kinase-3β (GSK-3β)–cyclin D1 pathway that were significantly affected by both preconditioning strategies. The application of either APC or IPC to ameliorate hepatic I/R injury results in expression of several common miRNAs that are related to the Akt–GSK–cyclin D1 pathway.
PMCID: PMC4431739  PMID: 25974021
17.  Cardioprotection by postconditioning in conscious rats is limited to coronary occlusions <45 min 
Brief episodes of ischemia and reperfusion after a lethal ischemic insult confer cardioprotection, a phenomenon termed “ischemic postconditioning.” However, all studies reported to date have been conducted in open-chest animal models. We sought to determine whether postconditioning occurs in conscious animals and whether it protects against severe myocardial injury.
Chronically instrumented rats were assigned to a 30- (Subset 1), 45- (Subset 2), or 60-min (Subset 3) coronary occlusion followed by 24 h of reperfusion. In each subset, rats received no further intervention (control), were preconditioned with 12 cycles of 2-min occlusion/2-min reperfusion immediately (early preconditioning; EPC) or 24 h (late preconditioning; LPC) before myocardial infarction, or were postconditioned with 20 cycles of 10-s occlusion/10-s reperfusion immediately after myocardial infarction (20-10 PostC).
With a 30-min occlusion, infarct size (54.4 ± 2.3% of risk region in control-30) was significantly reduced in EPC-30, LPC-30, and 20-10 PostC-30 groups (by 72, 70, and 47%, respectively; all P < 0.05 vs. control-30). With a 45-min occlusion, infarct size (62.2 ± 2.4% in control-45) was reduced in EPC-45 and LPC-45 groups (by 47 and 41%, respectively; all P < 0.05 vs. control-45) but not in the 20-10 PostC-45 group [55.4 ± 2.3%, P = not significant (NS) vs. control-45]. With a 60-min occlusion, infarct size (72.7 ± 2.2% in control-60) was reduced in the EPC-60 (by 20%, P < 0.05) but not in the LPC-60 (63.6 ± 2.5%, P = NS) or in the 20-20 PostC group (71.5 ± 3.4%, P = NS).
Both early and late ischemic preconditioning as well as ischemic postconditioning confer protection in conscious rats; however, unlike early preconditioning, postconditioning protects only against coronary occlusions <45 min. In the conscious rat, the cardioprotection afforded by postconditioning is limited to mild to moderate myocardial injury.
PMCID: PMC3741072  PMID: 16815986
myocardium; ischemia; infarct size; preconditioning
18.  Inhibition of Autophagy Contributes to Ischemic Postconditioning-Induced Neuroprotection against Focal Cerebral Ischemia in Rats 
PLoS ONE  2012;7(9):e46092.
Ischemic postconditioning (IPOC), or relief of ischemia in a stuttered manner, has emerged as an innovative treatment strategy to reduce programmed cell death, attenuate ischemic injuries, and improve neurological outcomes. However, the mechanisms involved have not been completely elucidated. Recent studies indicate that autophagy is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. This study aims to determine the role of autophagy in IPOC-induced neuroprotection against focal cerebral ischemia in rats.
Methodology/Principal Findings
A focal cerebral ischemic model with permanent middle cerebral artery (MCA) occlusion plus transient common carotid artery (CCA) occlusion was established. The autophagosomes and the expressions of LC3/Beclin 1/p62 were evaluated for their contribution to the activation of autophagy. We found that autophagy was markedly induced with the upregulation of LC3/Beclin 1 and downregulation of p62 in the penumbra at various time intervals following ischemia. IPOC, performed at the onset of reperfusion, reduced infarct size, mitigated brain edema, inhibited the induction of LC3/Beclin 1 and reversed the reduction of p62 simultaneously. Rapamycin, an inducer of autophagy, partially reversed all the aforementioned effects induced by IPOC. Conversely, autophagy inhibitor 3-methyladenine (3-MA) attenuated the ischemic insults, inhibited the activation of autophagy, and elevated the expression of anti-apoptotic protein Bcl-2, to an extent comparable to IPOC.
The present study suggests that inhibition of the autophagic pathway plays a key role in IPOC-induced neuroprotection against focal cerebral ischemia. Thus, pharmacological inhibition of autophagy may provide a novel therapeutic strategy for the treatment of stroke.
PMCID: PMC3461004  PMID: 23029398
19.  Remote postconditioning by humoral factors in effluent from ischemic preconditioned rat hearts is mediated via PI3K/Akt-dependent cell-survival signaling at reperfusion 
Basic Research in Cardiology  2010;106(1):135-145.
Short non-lethal ischemic episodes administered to hearts prior to (ischemic preconditioning, IPC) or directly after (ischemic postconditioning, IPost) ischemic events facilitate myocardial protection. Transferring coronary effluent collected during IPC treatment to un-preconditioned recipient hearts protects from lethal ischemic insults. We propose that coronary IPC effluent contains hydrophobic cytoprotective mediators acting via PI3K/Akt-dependent pro-survival signaling at ischemic reperfusion. Ex vivo rat hearts were subjected to 30 min of regional ischemia and 120 min of reperfusion. IPC effluent administered for 10 min prior to index ischemia attenuated infarct size by ≥55% versus control hearts (P < 0.05). Effluent administration for 10 min at immediate reperfusion (reperfusion therapy) or as a mimetic of pharmacological postconditioning (remote postconditioning, RIPost) significantly reduced infarct size compared to control (P < 0.05). The IPC effluent significantly increased Akt phosphorylation in un-preconditioned hearts when administered before ischemia or at reperfusion, while pharmacological inhibition of PI3K/Akt-signaling at reperfusion completely abrogated the cardioprotection offered by effluent administration. Fractionation of coronary IPC effluent revealed that cytoprotective humoral mediator(s) released during the conditioning phase were of hydrophobic nature as all hydrophobic fractions with molecules under 30 kDa significantly reduced infarct size versus the control and hydrophilic fraction-treated hearts (P < 0.05). The total hydrophobic effluent fraction significantly reduced infarct size independently of temporal administration (before ischemia, at reperfusion or as remote postconditioning). In conclusion, the IPC effluent retains strong cardioprotective properties, containing hydrophobic mediator(s) < 30 kDa offering cytoprotection via PI3K/Akt-dependent signaling at ischemic reperfusion.
PMCID: PMC3012213  PMID: 21103992
Postconditioning; Preconditioning; Cardioprotection; Ischemia; Reperfusion; Akt
20.  Involvement of Akt in preconditioning-induced tolerance to ischemia in PC12 cells 
The serine–threonine protein kinase Akt has been identified as an important mediator of cell survival able to counteract apoptotic stimuli. However, hibernation, a model of natural tolerance to cerebral ischemia, is associated with downregulation of Akt. We previously established a model of ischemic tolerance in a PC12 cell line and using this model we now addressed the question whether ischemic tolerance also downregulates Akt in PC12 cells. Kinetic studies showed decreased Akt phosphorylation in tolerized cells. Similarly, phosphorylated levels of three major targets of Akt and well-known proapoptotic factors, the glycogen synthase kinase 3 (GSK-3), a Forkhead family member, FoxO4, and the protein murine double minute 2 (MDM2), all inactivated upon phosphorylation by Akt, were decreased in preconditioned cells. In addition, pharmacological blockade of the phosphoinositide 3-kinase (PI3K)/Akt pathway reduced cell death induced by oxygen and glucose deprivation (OGD) and increased the protective effect of preconditioning (PC). Furthermore, decreasing availability of P-Akt by transfecting PC12 cells with constructs of inactive Akt also resulted in protection against OGD and potentiation of the protective effect of PC. Depending on the environment, GSK-3, FOXO-4, and MDM2 can trigger apoptotic responses or cell cycle arrest, and thus, in a situation of reduced energy, driving the cells into a state of quiescence might be neuroprotective. This work suggests that in the context of tolerance downregulation of Akt is beneficial.
PMCID: PMC1855183  PMID: 16511503
Akt; FoxO4; GSK-3; ischemic tolerance; MDM2; PC12 cells
21.  Ischemic preconditioning reduces ischemic brain injury by suppressing nuclear factor kappa B expression and neuronal apoptosis☆ 
Neural Regeneration Research  2013;8(7):633-638.
Ischemic stroke induces a series of complex pathophysiological events including blood-brain barrier disruption, inflammatory response and neuronal apoptosis. Previous studies demonstrate that ischemic preconditioning attenuates ischemic brain damage via inhibiting blood-brain barrier disruption and the inflammatory response. Rats underwent transient (15 minutes) occlusion of the bilateral common carotid artery with 48 hours of reperfusion, and were subjected to permanent middle cerebral artery occlusion. This study explored whether ischemic preconditioning could reduce ischemic brain injury and relevant molecular mechanisms by inhibiting neuronal apoptosis. Results found that at 72 hours following cerebral ischemia, myeloperoxidase activity was enhanced, malondialdehyde levels increased, and neurological function was obviously damaged. Simultaneously, neuronal apoptosis increased, and nuclear factor-κB and cleaved caspase-3 expression was significantly increased in ischemic brain tissues. Ischemic preconditioning reduced the cerebral ischemia-induced inflammatory response, lipid peroxidation, and neurological function injury. In addition, ischemic preconditioning decreased nuclear factor-κB p65 and cleaved caspase-3 expression. These results suggested that ischemic preconditioning plays a protective effect against ischemic brain injury by suppressing the inflammatory response, reducing lipid peroxidation, and neuronal apoptosis via inhibition of nuclear factor-κB and cleaved caspase-3 expression.
PMCID: PMC4145988  PMID: 25206708
neural regeneration; brain injury; ischemic preconditioning; neural cells; apoptosis; nuclear factor kappa-B; cleaved caspase-3; grants-supported paper; photographs-containing paper; neuroregeneration
22.  Isoflurane postconditioning induces neuroprotection via Akt activation and attenuation of increased mitochondrial membrane permeability 
Neuroscience  2011;199:44-50.
We have shown that isoflurane application at the onset of reperfusion (postconditioning) reduces brain ischemic injury in rats. This study was designed to determine whether this protection involved activation of prosurvival protein kinases and maintenance of normal mitochondrial membrane permeability. Two-month old male rats were subjected to a 90-min middle cerebral arterial occlusion. They then were exposed or were not exposed to 2% isoflurane for 1 h. Ischemic penumbral cerebral cortex was harvested immediately and separated into the mitochondrial and cytosolic fractions. We showed that the mitochondrial nicotinamide adenine dinucleotide content in the ischemic penumbral cortex was significantly reduced, suggesting an increased mitochondrial membrane permeability. This increase was partly attenuated by isoflurane postconditioning. The mitochondrial adenosine diphosphate content in the penumbral cortex was reduced no matter whether the animals were postconditioned with isoflurane. The mitochondrial adenosine triphosphate concentration was not different among various experimental conditions. The phospho-Akt in the cytosolic and mitochondrial fractions of the ischemic penumbral cortex was higher than that in the control cortex. This increase trended to be higher in animals with isoflurane postconditioning. A similar change pattern was observed in the mitochondrial phospho-glycogen synthase kinase 3β, an Akt substrate that can regulate the mitochondrial membrane permeability. Isoflurane postconditioning reduced oxygen-glucose deprivation-induced injury of rat cortical neuronal cultures and increased phospho-Akt in these cells. The isoflurane postconditioning-induced protection in the neuronal cultures was decreased by the Akt inhibitor LY294002. These results suggest that isoflurane postconditioning effects may be mediated by Akt and involve reduced mitochondrial membrane permeability.
PMCID: PMC3237819  PMID: 22040798
Akt; glycogen synthase kinase 3β; isoflurane; neuroprotection; mitochondrial membrane permeability; postconditioning
23.  Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning. 
Journal of Clinical Investigation  1994;94(6):2193-2199.
Manganese superoxide dismutase (Mn-SOD) is induced in ischemic hearts 24 h after ischemic preconditioning, when tolerance to ischemia is acquired. We examined the relationship between Mn-SOD induction and the protective effect of preconditioning using cultured rat cardiac myocytes. Exposure of cardiac myocytes to brief hypoxia (1 h) decreased creatine kinase release induced by sustained hypoxia (3 h) that follows when the sustained hypoxia was applied 24 h after hypoxic preconditioning (57% of that in cells without preconditioning). The activity and content of Mn-SOD in cardiac myocytes were increased 24 h after hypoxic preconditioning (activity, 170%; content, 139% compared with cells without preconditioning) coincidentally with the acquisition of tolerance to hypoxia. Mn-SOD mRNA was also increased 20-40 min after preconditioning. Antisense oligodeoxyribonucleotides corresponding to the initiation site of Mn-SOD translation inhibited the increases in the Mn-SOD content and activity and abolished the expected decrease in creatine kinase release induced by sustained hypoxia after 24 h of hypoxic preconditioning. Sense oligodeoxyribonucleotides did not abolish either Mn-SOD induction or tolerance to hypoxia. These results suggest that the induction of Mn-SOD in myocytes by preconditioning plays a pivotal role in the acquisition of tolerance to ischemia at a later phase (24 h) of ischemic preconditioning.
PMCID: PMC330044  PMID: 7989574
24.  Combination of early and delayed ischemic postconditioning enhances brain-derived neurotrophic factor production by upregulating the ERK-CREB pathway in rats with focal ischemia 
Molecular Medicine Reports  2015;12(5):6427-6434.
Ischemic postconditioning, including early and delayed ischemic postconditioning, has been recognized as a simple and promising strategy in the treatment of stroke. However, the effects of the combination of early and delayed ischemic postconditioning, and the mechanisms underlying these effects, remain unclear. The aim of the present study was to determine whether the combination of early and delayed ischemic postconditioning offers greater protection against stroke, and enhances the production of brain-derived neurotrophic factor (BDNF). A combination of early and delayed ischemic postconditioning was established by repeated, transient occlusion and reperfusion of the ipsilateral common carotid artery in a rat model of middle cerebral artery occlusion. Infarct size, motor function, cerebral blood flow and brain edema were then evaluated, in order to confirm the effects of combinative ischemic postconditioning. TUNEL staining was used to analyze the rate of apoptosis of cells in the penumbral area. BDNF, extracellular signal-regulated kinases 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) expression was detected using immunofluorescence staining and western blot analysis. The results of the present study indicated that the combination of early and delayed ischemic postconditioning further reduced the infarct volume, stabilized cerebral blood disturbance and attenuated neuronal apoptosis, compared with either alone. However, combinative postconditioning exerted the same effect on neurological function and brain edema, compared with early or delayed ischemic postconditioning alone. Further investigation indicated that combinative ischemic postconditioning increased the expression of BDNF, and a significantly higher number of BDNF-positive cells was observed in neurons and astrocytes from the combined group than in the early or delayed groups. Combinative ischemic postconditioning also induced the phosphorylation of ERK1/2 and CREB in the cortex, following focal ischemia. The results of the present study suggest that the combination of early and delayed ischemic postconditioning may further reduce brain ischemic reperfusion injury following focal ischemia, compared with either treatment alone. In addition, it induces the production of BDNF in neurons and astrocytes. Furthermore, the effects of combinative ischemic postconditioning may be mediated by the activation of ERK1/2 and CREB.
PMCID: PMC4626133  PMID: 26398857
combination; neuroprotection; brain-derived neurotrophic factor; ischemic postconditioning; focal brain ischemia
25.  Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia 
Estradiol has been shown to exert neuroprotective effects in several neurodegenerative conditions, including cerebral ischemia. The presence of this hormone prior to ischemia attenuates the damage associated with such events in a rodent model (middle cerebral artery occlusion (MCAO)), although its therapeutic value when administered post-ischemia has not been assessed. Hence, we evaluated the effects of estradiol treatment after permanent MCAO (pMCAO) was induced in rats, studying the PI3K/AKT/GSK3/β-catenin survival pathway and the activation of SAPK-JNK in two brain areas differently affected by pMCAO: the cortex and hippocampus. In addition, we analyzed the effect of estradiol on the glial response to injury.
Male rats were subjected to pMCAO and estradiol (0.04 mg/kg) was administered 6, 24, and 48 h after surgery. The animals were sacrificed 6 h after the last treatment, and brain damage was evaluated by immunohistochemical quantification of ‘reactive gliosis’ using antibodies against GFAP and Iba1. In addition, Akt, phospho-AktSer473, phospho-AktThr308, GSK3, phospho-GSK3Ser21/9, β-catenin, SAPK-JNK, and pSAPK-JNKThr183/Tyr185 levels were determined in western blots of the ipsilateral cerebral cortex and hippocampus, and regional differences in neuronal phospho-Akt expression were determined by immunohistochemistry.
The increases in the percentage of GFAP- (5.25-fold) and Iba1- (1.8-fold) labeled cells in the cortex and hippocampus indicate that pMCAO induced ‘reactive gliosis’. This effect was prevented by post-ischemic estradiol treatment; diminished the number of these cells to those comparable with control animals. pMCAO down-regulated the PI3K/AkT/GSK3/β-catenin survival pathway to different extents in the cortex and hippocampus, the activity of which was restored by estradiol treatment more efficiently in the cerebral cortex (the most affected region) than in the hippocampus. No changes in the phosphorylation of SAPK-JNK were observed 54 h after inducing pMCAO, whereas pMCAO did significantly decrease the phospho-AktSer473 in neurons, an effect that was reversed by estradiol.
The present study demonstrates that post-pMCAO estradiol treatment attenuates ischemic injury in both neurons and glia, events in which the PI3K/AKT/GSK3/β-catenin pathway is at least partly involved. These findings indicate that estradiol is a potentially useful treatment to enhance recovery after human ischemic stroke.
PMCID: PMC3414748  PMID: 22747981
MCAO; Focal ischemia; Rat; Estradiol; Brain; Estrogen; Neuroprotection; Stroke; Western blot; Immunohistochemistry; Akt

Results 1-25 (829683)