PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1598412)

Clipboard (0)
None

Related Articles

1.  Predictors of Clinical Outcomes and Hospital Resource Use of Children After Tracheotomy 
Pediatrics  2009;124(2):563-572.
OBJECTIVES
The objectives are to describe health outcomes and hospital resource use of children after tracheotomy and identify patient characteristics that correlate with outcomes and hospital resource use.
PATIENTS AND METHODS
A retrospective analysis of 917 children aged 0 to 18 years undergoing tracheotomy from 36 children’s hospitals in 2002 with follow-up through 2007. Children were identified from ICD-9-CM tracheotomy procedure codes. Comorbid conditions (neurologic impairment [NI], chronic lung disease, upper airway anomaly, prematurity, and trauma) were identified with ICD-9-CM diagnostic codes. Patient characteristics were compared with in-hospital mortality, decannulation, and hospital resource use by using generalized estimating equations.
RESULTS
Forty-eight percent of children were ≤6 months old at tracheotomy placement. Chronic lung disease (56%), NI (48%), and upper airway anomaly (47%) were the most common underlying comorbid conditions. During hospitalization for tracheotomy placement, children with an upper airway anomaly experienced less mortality (3.3% vs 11.7%; P < .001) than children without an upper airway anomaly. Five years after tracheotomy, children with NI experienced greater mortality (8.8% vs 3.5%; P≤.01), less decannulation (5.0% vs 11.0%; P≤.01), and more total number of days in the hospital (mean [SE]: 39.5 [4.0] vs 25.6 [2.6] days; P≤.01) than children without NI. These findings remained significant (P < .01) in multivariate analysis after controlling for other significant cofactors.
CONCLUSIONS
Children with upper airway anomaly experienced less mortality, and children with NI experienced higher mortality rates and greater hospital resource use after tracheotomy. Additional research is needed to explore additional factors that may influence health outcomes in children with tracheotomy.
doi:10.1542/peds.2008-3491
PMCID: PMC3614342  PMID: 19596736
tracheotomy; children; mortality; hospitalization; health services; outcomes
2.  Pediatric tracheotomy: indications and decannulation outcomes 
The Laryngoscope  2014;124(8):1952-1958.
Objective
The objective of this study was to determine if there are differences in decannulation rates and duration of cannulation between pediatric patients undergoing tracheotomy for different indications.
Study Design
Retrospective chart review.
Methods
Medical records for pediatric patients (age 0–18 years) undergoing tracheotomy between January 1, 2003 and May 31, 2012 were retrospectively reviewed. Patients were assigned an indication for tracheotomy from five categories: neurological, cardiopulmonary, upper airway obstruction, craniofacial anomalies, and maxillofacial/laryngotracheal trauma.
Results
Initial chart review identified 124 patients, 113 for whom complete data was available. Of these patients, the indications for tracheotomy were cardiopulmonary disease in 24 (21.2%), craniofacial anomalies in 12 (10.6%), neurological impairment in 44 (38.9%), traumatic injury in 11 (9.7%), and upper airway obstruction in 22 (19.5%). The time to decannulation was shorter for trauma patients compared to cardiopulmonary (P = 0.044) and neurological patients (P = 0.001). A total of 32 (31.9%) patients were decannulated during the study period, with a higher rate in trauma patients (72.7%) and a lower rate in those with upper airway obstruction (36.4%) than would be expected under homogeneity. Of the 32 patients who were decannulated, 11 (30.6%) were decannulated during the same hospitalization in which the tracheotomy was performed.
Conclusion
This study demonstrates a difference in overall decannulation rates and a shorter time to decannulation in children undergoing tracheotomy for maxillofacial and laryngotracheal trauma compared to cardiopulmonary and neurological indications.
doi:10.1002/lary.24596
PMCID: PMC4099419  PMID: 24430892
pediatric tracheotomy; tracheostomy; decannulation; upper airway obstruction
3.  Health information management and perceptions of the quality of care for children with tracheotomy: A qualitative study 
Background
Children with tracheotomy receive health care from an array of providers within various hospital and community health system sectors. Previous studies have highlighted substandard health information exchange between families and these sectors. The aim of this study was to investigate the perceptions and experiences of parents and providers with regard to health information management, care plan development and coordination for children with tracheotomy, and strategies to improve health information management for these children.
Methods
Individual and group interviews were performed with eight parents and fifteen healthcare (primary and specialty care, nursing, therapist, equipment) providers of children with tracheotomy. The primary tracheotomy-associated diagnoses for the children were neuromuscular impairment (n = 3), airway anomaly (n = 2) and chronic lung disease (n = 3). Two independent reviewers conducted deep reading and line-by-line coding of all transcribed interviews to discover themes associated with the objectives.
Results
Children with tracheotomy in this study had healthcare providers with poorly defined roles and responsibilities who did not actively communicate with one another. Providers were often unsure where to find documentation relating to a child's tracheotomy equipment settings and home nursing orders, and perceived that these situations contributed to medical errors and delayed equipment needs. Parents created a home record that was shared with multiple providers to track the care that their children received but many considered this a burden better suited to providers. Providers benefited from the parent records, but questioned their accuracy regarding critical tracheotomy care plan information such as ventilator settings. Parents and providers endorsed potential improvement in this environment such as a comprehensive internet-based health record that could be shared among parents and providers, and between various clinical sites.
Conclusions
Participants described disorganized tracheotomy care and health information mismanagement that could help guide future investigations into the impact of improved health information systems for children with tracheotomy. Strategies with the potential to improve tracheotomy care delivery could include defined roles and responsibilities for tracheotomy providers, and improved organization and parent support for maintenance of home-based tracheotomy records with web-based software applications, personal health record platforms and health record data authentication techniques.
doi:10.1186/1472-6963-11-117
PMCID: PMC3127978  PMID: 21605385
4.  Oropharyngeal carriage and lower airway colonisation/infection in 45 tracheotomised children 
Thorax  2002;57(12):1015-1020.
Background: A study was undertaken to determine the oropharyngeal carrier state of potentially pathogenic microorganisms (PPM) and the magnitude of colonisation and infection rates of the lower airways with these PPM in children requiring long term ventilation first transtracheally and afterwards via a tracheotomy.
Methods: A 5 year, prospective, observational cohort study was undertaken in 45 children (33 boys) of median age 6.4 months (range 0–180) over a 5 year period at the Royal Liverpool Children's NHS Trust of Alder Hey, a university affiliated tertiary referral centre. The children were first admitted to the 20-bed paediatric intensive care unit (PICU) and, following placement of a tracheotomy, they were transferred to a four bedded respiratory ward. The two main indications were neurological disorders and airway obstruction. All children were ventilated transtracheally for a median period of 12 days (range 0–103) and, after placement of the tracheotomy, for a similar period of 12 days (range 1–281). Surveillance cultures of the oropharynx were taken on admission to the PICU and on the day of placement of the tracheotomy. Throat swabs were taken twice weekly during ventilation, both transtracheal and via the tracheotomy. Tracheal aspirates were taken once weekly and when clinically indicated (in cases where the lower airway secretions were turbid).
Results: Twenty five patients (55%) had abnormal flora, mainly aerobic Gram negative bacilli (AGNB), particularly Pseudomonas aeruginosa, while the community PPM Staphylococcus aureus was present in the oropharynx of 37% (17/45) of the study population. The lower airways were sterile in six children; the other 39 patients (87%) had a total of 82 episodes of colonisation. "Community" PPM significantly increased once the patients received a tracheotomy, independent of the number of patients enrolled, episodes of colonisation/infection, and the number of colonised/infected patients. "Hospital" PPM significantly decreased after tracheotomy only when episodes were compared.
Conclusions: While P aeruginosa present in the admission flora caused primary endogenous colonisation/infection during mechanical ventilation on the PICU, S aureus not carried in the throat was responsible for the exogenous colonisation/infection once the patients had a tracheotomy. This is in sharp contrast to adult studies where exogenous infections are invariably caused by AGNB. This discrepancy may be explained by chronic underlying conditions such as diabetes, alcoholism, and chronic obstructive pulmonary disease which promote AGNB, whereas the children were recovering following tracheotomy.
doi:10.1136/thorax.57.12.1015
PMCID: PMC1758797  PMID: 12454294
5.  Outcome of tracheostomy after pediatric cardiac surgery 
Objective
To investigate the incidence, timing indications and outcome of tracheotomy in children who underwent cardiac surgeries.
Methods
All pediatric cardiac patients (under 14 years of age) who underwent cardiac surgeries and required tracheotomy from November 2000 to November 2010 were reviewed. The data were collected and reviewed retrospectively.
Results
Sixteen children underwent tracheotomy after cardiac surgery. Fifteen of these cases had surgery for congenital heart disease, and one had surgery for an acquired rheumatic mitral valve disease. The mean ± SEMs of the durations of ventilation before and after tracheotomy were 60.4 ± 9.8 and 14.5 ± 4.79 days respectively (P value 0.0002). The means ± SEM of the lengths of ICU stay before and after tracheotomy were 63.31 ± 10.15 and 22 ± 5.4 days respectively (P value 0.0012). After the tracheotomy 12/16 patients (75%) were weaned from their ventilators and 10/16 were discharged from the PCICU. Six patients were discharged from the hospital and 3 were successfully decannulated. The overall survival rate was 9/16 (56%).
Conclusion
Tracheostomy shortens the duration of mechanical ventilation and facilitates discharge from the ICU. The mortality of tracheotomy patients is still significant but is mainly related to the primary cardiac disease.
doi:10.1016/j.jsha.2012.01.003
PMCID: PMC3727485  PMID: 23960690
Tracheostomy; Pediatric cardiac surgery; ICU stay; Ventilator associated pneumonia
6.  Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients With Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this evidence-based analysis was to examine the effectiveness, safety, and cost-effectiveness of noninvasive positive pressure ventilation (NPPV) in the following patient populations: patients with acute respiratory failure (ARF) due to acute exacerbations of chronic obstructive pulmonary disease (COPD); weaning of COPD patients from invasive mechanical ventilation (IMV); and prevention of or treatment of recurrent respiratory failure in COPD patients after extubation from IMV.
Clinical Need and Target Population
Acute Hypercapnic Respiratory Failure
Respiratory failure occurs when the respiratory system cannot oxygenate the blood and/or remove carbon dioxide from the blood. It can be either acute or chronic and is classified as either hypoxemic (type I) or hypercapnic (type II) respiratory failure. Acute hypercapnic respiratory failure frequently occurs in COPD patients experiencing acute exacerbations of COPD, so this is the focus of this evidence-based analysis. Hypercapnic respiratory failure occurs due to a decrease in the drive to breathe, typically due to increased work to breathe in COPD patients.
Technology
There are several treatment options for ARF. Usual medical care (UMC) attempts to facilitate adequate oxygenation and treat the cause of the exacerbation, and typically consists of supplemental oxygen, and a variety of medications such as bronchodilators, corticosteroids, and antibiotics. The failure rate of UMC is high and has been estimated to occur in 10% to 50% of cases.
The alternative is mechanical ventilation, either invasive or noninvasive. Invasive mechanical ventilation involves sedating the patient, creating an artificial airway through endotracheal intubation, and attaching the patient to a ventilator. While this provides airway protection and direct access to drain sputum, it can lead to substantial morbidity, including tracheal injuries and ventilator-associated pneumonia (VAP).
While both positive and negative pressure noninvasive ventilation exists, noninvasive negative pressure ventilation such as the iron lung is no longer in use in Ontario. Noninvasive positive pressure ventilation provides ventilatory support through a facial or nasal mask and reduces inspiratory work. Noninvasive positive pressure ventilation can often be used intermittently for short periods of time to treat respiratory failure, which allows patients to continue to eat, drink, talk, and participate in their own treatment decisions. In addition, patients do not require sedation, airway defence mechanisms and swallowing functions are maintained, trauma to the trachea and larynx are avoided, and the risk for VAP is reduced. Common complications are damage to facial and nasal skin, higher incidence of gastric distension with aspiration risk, sleeping disorders, and conjunctivitis. In addition, NPPV does not allow direct access to the airway to drain secretions and requires patients to cooperate, and due to potential discomfort, compliance and tolerance may be low.
In addition to treating ARF, NPPV can be used to wean patients from IMV through the gradual removal of ventilation support until the patient can breathe spontaneously. Five to 30% of patients have difficultly weaning. Tapering levels of ventilatory support to wean patients from IMV can be achieved using IMV or NPPV. The use of NPPV helps to reduce the risk of VAP by shortening the time the patient is intubated.
Following extubation from IMV, ARF may recur, leading to extubation failure and the need for reintubation, which has been associated with increased risk of nosocomial pneumonia and mortality. To avoid these complications, NPPV has been proposed to help prevent ARF recurrence and/or to treat respiratory failure when it recurs, thereby preventing the need for reintubation.
Research Questions
What is the effectiveness, cost-effectiveness, and safety of NPPV for the treatment of acute hypercapnic respiratory failure due to acute exacerbations of COPD compared with
usual medical care, and
invasive mechanical ventilation?
What is the effectiveness, cost-effectiveness, and safety of NPPV compared with IMV in COPD patients after IMV for the following purposes:
weaning COPD patients from IMV,
preventing ARF in COPD patients after extubation from IMV, and
treating ARF in COPD patients after extubation from IMV?
Research Methods
Literature Search
A literature search was performed on December 3, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), Wiley Cochrane, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 until December 3, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Since there were numerous studies that examined the effectiveness of NPPV for the treatment of ARF due to exacerbations of COPD published before 2004, pre-2004 trials which met the inclusion/exclusion criteria for this evidence-based review were identified by hand-searching reference lists of included studies and systematic reviews.
Inclusion Criteria
English language full-reports;
health technology assessments, systematic reviews, meta-analyses, and randomized controlled trials (RCTs);
studies performed exclusively in patients with a diagnosis of COPD or studies performed with patients with a mix of conditions if results are reported for COPD patients separately;
patient population: (Question 1) patients with acute hypercapnic respiratory failure due to an exacerbation of COPD; (Question 2a) COPD patients being weaned from IMV; (Questions 2b and 2c) COPD patients who have been extubated from IMV.
Exclusion Criteria
< 18 years of age
animal studies
duplicate publications
grey literature
studies examining noninvasive negative pressure ventilation
studies comparing modes of ventilation
studies comparing patient-ventilation interfaces
studies examining outcomes not listed below, such as physiologic effects including heart rate, arterial blood gases, and blood pressure
Outcomes of Interest
mortality
intubation rates
length of stay (intensive care unit [ICU] and hospital)
health-related quality of life
breathlessness
duration of mechanical ventilation
weaning failure
complications
NPPV tolerance and compliance
Statistical Methods
When possible, results were pooled using Review Manager 5 Version 5.1, otherwise, the results were summarized descriptively. Dichotomous data were pooled into relative risks using random effects models and continuous data were pooled using weighted mean differences with a random effects model. Analyses using data from RCTs were done using intention-to-treat protocols; P values < 0.05 were considered significant. A priori subgroup analyses were planned for severity of respiratory failure, location of treatment (ICU or hospital ward), and mode of ventilation with additional subgroups as needed based on the literature. Post hoc sample size calculations were performed using STATA 10.1.
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses.
The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
NPPV for the Treatment of ARF due to Acute Exacerbations of COPD
NPPV Plus Usual Medical Care Versus Usual Medical Care Alone for First Line Treatment
A total of 1,000 participants were included in 11 RCTs1; the sample size ranged from 23 to 342. The mean age of the participants ranged from approximately 60 to 72 years of age. Based on either the Global Initiative for Chronic Obstructive Lung Disease (GOLD) COPD stage criteria or the mean percent predicted forced expiratory volume in 1 second (FEV1), 4 of the studies included people with severe COPD, and there was inadequate information to classify the remaining 7 studies by COPD severity. The severity of the respiratory failure was classified into 4 categories using the study population mean pH level as follows: mild (pH ≥ 7.35), moderate (7.30 ≤ pH < 7.35), severe (7.25 ≤ pH < 7.30), and very severe (pH < 7.25). Based on these categories, 3 studies included patients with a mild respiratory failure, 3 with moderate respiratory failure, 4 with severe respiratory failure, and 1 with very severe respiratory failure.
The studies were conducted either in the ICU (3 of 11 studies) or general or respiratory wards (8 of 11 studies) in hospitals, with patients in the NPPV group receiving bilevel positive airway pressure (BiPAP) ventilatory support, except in 2 studies, which used pressure support ventilation and volume cycled ventilation, respectively. Patients received ventilation through nasal, facial, or oronasal masks. All studies specified a protocol or schedule for NPPV delivery, but this varied substantially across the studies. For example, some studies restricted the amount of ventilation per day (e.g., 6 hours per day) and the number of days it was offered (e.g., maximum of 3 days); whereas, other studies provided patients with ventilation for as long as they could tolerate it and recommended it for much longer periods of time (e.g., 7 to 10 days). These differences are an important source of clinical heterogeneity between the studies. In addition to NPPV, all patients in the NPPV group also received UMC. Usual medical care varied between the studies, but common medications included supplemental oxygen, bronchodilators, corticosteroids, antibiotics, diuretics, and respiratory stimulators.
The individual quality of the studies ranged. Common methodological issues included lack of blinding and allocation concealment, and small sample sizes.
Need for Endotracheal Intubation
Eleven studies reported the need for endotracheal intubation as an outcome. The pooled results showed a significant reduction in the need for endotracheal intubation in the NPPV plus UMC group compared with the UMC alone group (relative risk [RR], 0.38; 95% confidence interval [CI], 0.28−0.50). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Inhospital Mortality
Nine studies reported inhospital mortality as an outcome. The pooled results showed a significant reduction in inhospital mortality in the NPPV plus UMC group compared with the UMC group (RR, 0.53; 95% CI, 0.35−0.81). When subgrouped by severity of respiratory failure, the results remained significant for the moderate and severe respiratory failure groups.
GRADE: moderate
Hospital Length of Stay
Eleven studies reported hospital length of stay (LOS) as an outcome. The pooled results showed a significant decrease in the mean length of stay for the NPPV plus UMC group compared with the UMC alone group (weighted mean difference [WMD], −2.68 days; 95% CI, −4.41 to −0.94 days). When subgrouped by severity of respiratory failure, the results remained significant for the mild, severe, and very severe respiratory failure groups.
GRADE: moderate
Complications
Five studies reported complications. Common complications in the NPPV plus UMC group included pneumonia, gastrointestinal disorders or bleeds, skin abrasions, eye irritation, gastric insufflation, and sepsis. Similar complications were observed in the UMC group including pneumonia, sepsis, gastrointestinal disorders or bleeds, pneumothorax, and complicated endotracheal intubations. Many of the more serious complications in both groups occurred in those patients who required endotracheal intubation. Three of the studies compared complications in the NPPV plus UMC and UMC groups. While the data could not be pooled, overall, the NPPV plus UMC group experienced fewer complications than the UMC group.
GRADE: low
Tolerance/Compliance
Eight studies reported patient tolerance or compliance with NPPV as an outcome. NPPV intolerance ranged from 5% to 29%. NPPV tolerance was generally higher for patients with more severe respiratory failure. Compliance with the NPPV protocol was reported by 2 studies, which showed compliance decreases over time, even over short periods such as 3 days.
NPPV Versus IMV for the Treatment of Patients Who Failed Usual Medical Care
A total of 205 participants were included in 2 studies; the sample sizes of these studies were 49 and 156. The mean age of the patients was 71 to 73 years of age in 1 study, and the median age was 54 to 58 years of age in the second study. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, patients in 1 study had very severe COPD. The COPD severity could not be classified in the second study. Both studies had study populations with a mean pH less than 7.23, which was classified as very severe respiratory failure in this analysis. One study enrolled patients with ARF due to acute exacerbations of COPD who had failed medical therapy. The patient population was not clearly defined in the second study, and it was not clear whether they had to have failed medical therapy before entry into the study.
Both studies were conducted in the ICU. Patients in the NPPV group received BiPAP ventilatory support through nasal or full facial masks. Patients in the IMV group received pressure support ventilation.
Common methodological issues included small sample size, lack of blinding, and unclear methods of randomization and allocation concealment. Due to the uncertainty about whether both studies included the same patient population and substantial differences in the direction and significance of the results, the results of the studies were not pooled.
Mortality
Both studies reported ICU mortality. Neither study showed a significant difference in ICU mortality between the NPPV and IMV groups, but 1 study showed a higher mortality rate in the NPPV group (21.7% vs. 11.5%) while the other study showed a lower mortality rate in the NPPV group (5.1% vs. 6.4%). One study reported 1-year mortality and showed a nonsignificant reduction in mortality in the NPPV group compared with the IMV group (26.1% vs. 46.1%).
GRADE: low to very low
Intensive Care Unit Length of Stay
Both studies reported LOS in the ICU. The results were inconsistent. One study showed a statistically significant shorter LOS in the NPPV group compared with the IMV group (5 ± 1.35 days vs. 9.29 ± 3 days; P < 0.001); whereas, the other study showed a nonsignificantly longer LOS in the NPPV group compared with the IMV group (22 ± 19 days vs. 21 ± 20 days; P = 0.86).
GRADE: very low
Duration of Mechanical Ventilation
Both studies reported the duration of mechanical ventilation (including both invasive and noninvasive ventilation). The results were inconsistent. One study showed a statistically significant shorter duration of mechanical ventilation in the NPPV group compared with the IMV group (3.92 ± 1.08 days vs. 7.17 ± 2.22 days; P < 0.001); whereas, the other study showed a nonsignificantly longer duration of mechanical ventilation in the NPPV group compared with the IMV group (16 ± 19 days vs. 15 ± 21 days; P = 0.86). GRADE: very low
Complications
Both studies reported ventilator-associated pneumonia and tracheotomies. Both showed a reduction in ventilator-associated pneumonia in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 34.6%, P = 0.07; and 6.4% vs. 37.2%, P < 0.001, respectively). Similarly, both studies showed a reduction in tracheotomies in the NPPV group compared with the IMV group, but the results were only significant in 1 study (13% vs. 23.1%, P = 0.29; and 6.4% vs. 34.6%; P < 0.001).
GRADE: very low
Other Outcomes
One of the studies followed patients for 12 months. At the end of follow-up, patients in the NPPV group had a significantly lower rate of needing de novo oxygen supplementation at home. In addition, the IMV group experienced significant increases in functional limitations due to COPD, while no increase was seen in the NPPV group. Finally, no significant differences were observed for hospital readmissions, ICU readmissions, and patients with an open tracheotomy, between the NPPV and IMV groups.
NPPV for Weaning COPD Patients From IMV
A total of 80 participants were included in the 2 RCTs; the sample sizes of the studies were 30 and 50 patients. The mean age of the participants ranged from 58 to 69 years of age. Based on either the GOLD COPD stage criteria or the mean percent predicted FEV1, both studies included patients with very severe COPD. Both studies also included patients with very severe respiratory failure (mean pH of the study populations was less than 7.23). Chronic obstructive pulmonary disease patients receiving IMV were enrolled in the study if they failed a T-piece weaning trial (spontaneous breathing test), so they could not be directly extubated from IMV.
Both studies were conducted in the ICU. Patients in the NPPV group received weaning using either BiPAP or pressure support ventilation NPPV through a face mask, and patients in the IMV weaning group received pressure support ventilation. In both cases, weaning was achieved by tapering the ventilation level.
The individual quality of the studies ranged. Common methodological problems included unclear randomization methods and allocation concealment, lack of blinding, and small sample size.
Mortality
Both studies reported mortality as an outcome. The pooled results showed a significant reduction in ICU mortality in the NPPV group compared with the IMV group (RR, 0.47; 95% CI, 0.23−0.97; P = 0.04).
GRADE: moderate
Intensive Care Unit Length of Stay
Both studies reported ICU LOS as an outcome. The pooled results showed a nonsignificant reduction in ICU LOS in the NPPV group compared with the IMV group (WMD, −5.21 days; 95% CI, −11.60 to 1.18 days).
GRADE: low
Duration of Mechanical Ventilation
Both studies reported duration of mechanical ventilation (including both invasive and noninvasive ventilation) as an outcome. The pooled results showed a nonsignificant reduction in duration of mechanical ventilation (WMD, −3.55 days; 95% CI, −8.55 to 1.44 days).
GRADE: low
Nosocomial Pneumonia
Both studies reported nosocominal pneumonia as an outcome. The pooled results showed a significant reduction in nosocomial pneumonia in the NPPV group compared with the IMV group (RR, 0.14; 95% CI, 0.03−0.71; P = 0.02).
GRADE: moderate
Weaning Failure
One study reported a significant reduction in weaning failure in the NPPV group compared with the IMV group, but the results were not reported in the publication. In this study, 1 of 25 patients in the NPPV group and 2 of 25 patients in the IMV group could not be weaned after 60 days in the ICU.
NPPV After Extubation of COPD Patients From IMV
The literature was reviewed to identify studies examining the effectiveness of NPPV compared with UMC in preventing recurrence of ARF after extubation from IMV or treating acute ARF which has recurred after extubation from IMV. No studies that included only COPD patients or reported results for COPD patients separately were identified for the prevention of ARF postextubation.
One study was identified for the treatment of ARF in COPD patients that recurred within 48 hours of extubation from IMV. This study included 221 patients, of whom 23 had COPD. A post hoc subgroup analysis was conducted examining the rate of reintubation in the COPD patients only. A nonsignificant reduction in the rate of reintubation was observed in the NPPV group compared with the UMC group (7 of 14 patients vs. 6 of 9 patients, P = 0.67). GRADE: low
Conclusions
NPPV Plus UMC Versus UMC Alone for First Line Treatment of ARF due to Acute Exacerbations of COPD
Moderate quality of evidence showed that compared with UMC, NPPV plus UMC significantly reduced the need for endotracheal intubation, inhospital mortality, and the mean length of hospital stay.
Low quality of evidence showed a lower rate of complications in the NPPV plus UMC group compared with the UMC group.
NPPV Versus IMV for the Treatment of ARF in Patients Who Have Failed UMC
Due to inconsistent and low to very low quality of evidence, there was insufficient evidence to draw conclusions on the comparison of NPPV versus IMV for patients who failed UMC.
NPPV for Weaning COPD Patients From IMV
Moderate quality of evidence showed that weaning COPD patients from IMV using NPPV results in significant reductions in mortality, nosocomial pneumonia, and weaning failure compared with weaning with IMV.
Low quality of evidence showed a nonsignificant reduction in the mean LOS and mean duration of mechanical ventilation in the NPPV group compared with the IMV group.
NPPV for the Treatment of ARF in COPD Patients After Extubation From IMV
Low quality of evidence showed a nonsignificant reduction in the rate of reintubation in the NPPV group compared with the UMC group; however, there was inadequate evidence to draw conclusions on the effectiveness of NPPV for the treatment of ARF in COPD patients after extubation from IMV
PMCID: PMC3384377  PMID: 23074436
7.  Tracheotomy in Cancer Patients: Experience from a Cancer Hospital in Pakistan 
The Indian Journal of Surgery  2014;77(Suppl 3):906-909.
Tracheotomy is commonly performed for the management of upper airway compromise. Trauma and head and neck cancers are the most frequent indications. The objective of this study was to share our experience with tracheotomy performed for a broad range of malignancies including but not limited to head and neck cancer. This study is a retrospective case series of patients who underwent tracheotomy from January 2004 to June 2012 at Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan. A total of 130 patients were included in the study. Patient demographics, indications for tracheotomy, underlying malignancy, and duration of follow-up were assessed. Main indications were elective (prolonged intubation and/or as a prerequisite for head and neck cancer surgery) and emergency (stridor). Outcome was assessed on a basis of successful decannulation and complications related to tracheotomy. Indications for tracheotomy were elective in 55 (44.7 %) and emergent in 75 (55.3 %) patients. Most common underlying malignancy was leukemia/lymphoma in 38 (29.2 %) patients. There were seven (5.3 %) complications in emergency tracheotomies including bleeding in three, emphysema in two, and dislodgement and infection in one patient each. In the elective setting, three (2.3 %) complications were observed with dislodgement in one and stomal stenosis in two patients. Decannulation was successfully carried out in 23 (18 %) patients. Median follow-up of patients was 1 month (range 0–86). No tracheotomy-related mortality was observed. Tracheotomy was performed with relative safety in cancer patients, but low rate of successful decannulation predominantly due to persistent nature of disease.
doi:10.1007/s12262-014-1061-2
PMCID: PMC4775652  PMID: 27011480
Tracheotomy; Indications; Emergency; Outcome
8.  Trends in Resource Utilization by Children with Neurological Impairment in the United States Inpatient Health Care System: A Repeat Cross-Sectional Study 
PLoS Medicine  2012;9(1):e1001158.
Jay Berry and colleagues report findings from an analysis of hospitalization data in the US, examining the proportion of inpatient resources attributable to care for children with neurological impairment.
Background
Care advances in the United States (US) have led to improved survival of children with neurological impairment (NI). Children with NI may account for an increasing proportion of hospital resources. However, this assumption has not been tested at a national level.
Methods and Findings
We conducted a study of 25,747,016 US hospitalizations of children recorded in the Kids' Inpatient Database (years 1997, 2000, 2003, and 2006). Children with NI were identified with International Classification of Diseases, 9th Revision, Clinical Modification diagnoses resulting in functional and/or intellectual impairment. We assessed trends in inpatient resource utilization for children with NI with a Mantel-Haenszel chi-square test using all 4 y of data combined. Across the 4 y combined, children with NI accounted for 5.2% (1,338,590) of all hospitalizations. Epilepsy (52.2% [n = 538,978]) and cerebral palsy (15.9% [n = 164,665]) were the most prevalent NI diagnoses. The proportion of hospitalizations attributable to children with NI did not change significantly (p = 0.32) over time. In 2006, children with NI accounted for 5.3% (n = 345,621) of all hospitalizations, 13.9% (n = 3.4 million) of bed days, and 21.6% (US$17.7 billion) of all hospital charges within all hospitals. Over time, the proportion of hospitalizations attributable to children with NI decreased within non-children's hospitals (3.0% [n = 146,324] in 1997 to 2.5% [n = 113,097] in 2006, p<.001) and increased within children's hospitals (11.7% [n = 179,324] in 1997 to 13.5% [n = 209,708] in 2006, p<0.001). In 2006, children with NI accounted for 24.7% (2.1 million) of bed days and 29.0% (US$12.0 billion) of hospital charges within children's hospitals.
Conclusions
Children with NI account for a substantial proportion of inpatient resources utilized in the US. Their impact is growing within children's hospitals. We must ensure that the current health care system is staffed, educated, and equipped to serve this growing segment of vulnerable children.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Disorders of the central and peripheral nervous system, often referred to as neurological impairments, are common in infants and children and can cause functional or intellectual disability. There are many causes of neurological impairments, including birth trauma, congenital abnormalities, structural defects, infections, tumors, blood flow disruption, genetic and metabolic conditions, and toxins. Symptoms can be progressive or static and vary widely depending on the condition. For example, developmental delay, changes in activity—often due to muscle wasting—and seizures may be common symptoms of neurological conditions in children. In many countries, extremely premature babies, and children with conditions such as spina bifida and muscular dystrophy, now receive better care than they used to, and may survive longer. However, although such children may have long-term care needs, they may receive crisis-driven, uncoordinated care, even in high-income countries.
Why Was This Study Done?
It is not well understood what proportion of hospital resource use is attributable to care for children with neurological impairments, although it's thought that this group may account for an increasing proportion of hospital resources. In this study, the researchers attempted to answer this question, specifically for the US, by evaluating national trends in hospital admissions for children with neurological impairments.
What Did the Researchers Do and Find?
The researchers used a multi-state database of US hospital admissions for children aged 0–18 years, known as the KID—the Healthcare Cost and Utilization Project's Kids' Inpatient Database—to identify the number of hospital admissions, total number of days spent in the hospital, and total health care costs for children with neurological impairments from 1997 to 2006. The researchers identified appropriate admissions by using diagnostic codes from the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM), which were reviewed and approved by two pediatric neurologists.
The researchers found that from 1997 to 2006, there were 25,747,016 hospital admissions for children aged 0–18 years, and of these, 1,338,590 (5.2%) were associated with children who had a definite diagnosis of neurological impairment. The most prevalent diagnoses among all hospitalized children with neurological impairments were epilepsy (52.2%) and cerebral palsy (15.9%). Furthermore, across the study period, the proportion of children aged 13–18 years admitted to hospitals with neurological impairments increased from 7.3% to 9.9%. The researchers also found that children with neurological impairments accounted for an increasing proportion of days spent in a hospital (12.9% in 1997 to 13.9% in 2006). In addition, there was a substantial increase in admissions for infants with neurological impairments compared to infants without neurological impairments. The researchers also found that throughout the study period, there was a general pattern for children with neurological impairments to be admitted to pediatric hospitals, rather than general hospitals. Within children's hospitals, children with neurological impairments accounted for a substantial proportion of resources over the study period, including nearly one-third of all hospital charges.
What Do These Findings Mean?
These findings show that in the US, children with neurological impairments account for a substantial proportion of inpatient resources utilized, particularly within children's hospitals, necessitating the need for adequate clinical care and a coordination of efforts to ensure that the needs of children with neurological impairments are met. System-based efforts such as partnerships between hospitals and families of children with neurological impairments and the rigorous evaluation of care treatment strategies have the potential to promote quality care for children with neurological impairments. However, such efforts will work only if the current health care system is adequately staffed with appropriately educated professionals.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/pmed.1001158.
More information is available about the KID database used in this study
NHS Choices has further information about epilepsy, one of the most common types of neurological impairment examined in this study
Further information is available from PubMed Health about cerebral palsy, another neurological condition acquired during development that was studied in this dataset
doi:10.1371/journal.pmed.1001158
PMCID: PMC3260313  PMID: 22272190
9.  Morbidity and Mortality in Patients with Esophageal Atresia 
Surgery  2014;156(2):483-491.
Background
This study reports national estimates of population characteristics and outcomes for patients with EA/TEF and evaluates relationships between hospital volume and outcomes.
Methods
Patients admitted within 30 days of life who had ICD-9-CM diagnosis and procedure codes relevant to EA/TEF during 1999–2012 were identified using the Pediatric Health Information System database. Baseline demographics, comorbidities, and post-operative outcomes, including predictors of in-hospital mortality, were examined up to 2 years following EA/TEF repair.
Results
We identified 3479 patients with EA/TEF treated at 43 children’s hospitals; 37% were premature and 83.5% had ≥1additional congenital anomaly, with cardiac anomalies (69.6%) being the most prevalent. Within two years of discharge, 54.7% were readmitted, 5.2% had a repeat TEF ligation, 11.4% had a repeat operation for their esophageal reconstruction, and 11.7% underwent fundoplication. In-hospital mortality was 5.4%. Independent predictors of mortality included lower birth weight, congenital heart disease, other congenital anomalies, and preoperative mechanical ventilation. There was no significant relationship between hospital volume and mortality or repeat TEF ligation.
Conclusions
This study describes population characteristics and outcomes, including predictors of in-hospital mortality, in EA/TEF patients treated at children’s hospitals across the United States. Across these hospitals, rates of mortality or repeat TEF ligation were not dependent on hospital volume.
doi:10.1016/j.surg.2014.03.016
PMCID: PMC4099299  PMID: 24947650
10.  Predictors of Clinical Outcome After Tracheotomy in Critically Ill Obese Patients 
The Laryngoscope  2014;124(5):1118-1122.
Objectives/Hypothesis
To identify patient factors associated with outcomes in critically ill obese patients requiring tracheotomy.
Study Design
Single-institution, retrospective cohort study.
Methods
Charts were reviewed for inpatients admitted to an intensive care unit from 2007 to 2010 with International Classification of Diseases, 9th Revision codes of obesity or morbid obesity and tracheotomy. Variables collected in the dataset include subject age, ethnicity, gender, body mass index, tracheotomy type, patient outcome, chief diagnosis, and medical comorbid conditions. The primary outcomes of interest were tracheotomy type and patient outcome at the time of hospital discharge. Logistic regression models were developed for the probability of each patient outcome using univariate and multivariate models.
Results
One hundred two patients met inclusion criteria. The most common outcome was tracheostomy dependence (49%). Increased mortality was independently significantly associated with pulmonary hypertension (P =.019) and African American ethnicity (P =.045). Increased tracheostomy dependence was significantly associated with obstructive sleep apnea (P =.030). Increased decannulation was significantly associated with percutaneous tracheotomy (P =.016) and Caucasian ethnicity (P <.001).
Conclusions
Obese patients in the intensive care unit who undergo tracheotomy have a high likelihood of remaining tracheostomy dependent at the time of discharge from the hospital. The factors most commonly found to be significantly associated with poor outcomes were open tracheotomy, African American ethnicity, obstructive sleep apnea, and pulmonary hypertension.
doi:10.1002/lary.24347
PMCID: PMC4207117  PMID: 23929503
Obesity; morbid obesity; tracheotomy; critically ill; intensive care unit; outcome; mortality; decannulation
11.  The effect of tracheotomy on drug consumption in patients with acute aneurysmal subarachnoid hemorrhage: an observational study 
BMC Anesthesiology  2015;15:47.
Background
Patients with aneurysmal subarachnoid hemorrhage (aSAH) are common in intensive care units (ICU). In patients with aSAH, sedation is used as a neuroprotective measure in order to secure adequate cerebral perfusion pressure (CPP). Compared with the use of an endotracheal tube, a tracheotomy has the advantage of securing the airway at a much lower level of distress, and aSAH patients can often be awakened more rapidly. Little is known about the impact of tracheotomy on the consumption of sedative/analgesic and vasoactive drugs and the maintenance of CPP within defined limits in aSAH patients.
Methods
We conducted an observational study of aSAH patients who underwent percutaneous tracheotomy. A prospective registry of patient data was supplemented with retrospective retrievals from medical records. Sedative, analgesic and vasoactive drug doses were registered for 3 days prior to and after percutaneous tracheotomy, respectively. Blood pressure, CPP, and the mode of mechanical ventilation were registered 24 h prior to and after tracheotomy.
Results
Between January 2001 and June 2009, 902 aSAH patients were admitted to our hospital; 74 (8%) were deeply comatose/dying upon arrival. The ruptured aneurysm was repaired in 828 patients (surgical repair 50%) and percutaneous tracheotomy was performed 182 times in 178 patients (59 men and 119 women). This subpopulation (178 of 828 patients) was significantly older (56 vs. 53 years) and presented with a more severe Hunt & Hess grade (p < 0.001). Percutaneous tracheotomy caused a marked decline in mean daily consumption of the analgesics/sedatives fentanyl, midazolam, and propofol, as well as the vasoactive drugs noradrenaline and dopamine. These declines were statistically and clinically significant. The mean CPP was 76 mmHg (SD 8.6) the day before and 79 mmHg (SD 9.6) 24 h after percutaneous tracheotomy. After percutaneous tracheotomy, mechanical ventilatory support could be reduced to a patient-controlled ventilatory support mode in a significant number of patients (p < 0.001).
Conclusions
Percutaneous tracheotomy in aSAH patients is a swift procedure with low risk that is associated with a significant decline in the consumption of sedative/analgesic and vasoactive drugs while clinical surveillance parameters remain stable or improve.
doi:10.1186/s12871-015-0029-5
PMCID: PMC4399106  PMID: 25883531
Tracheotomy; Subarachnoid hemorrhage; Blood pressure; Stroke; Critical care; Midazolam; Fentanyl; Noradrenaline; Dopamine
12.  Riluzole and Prognostic Factors in Amyotrophic Lateral Sclerosis Long-term and Short-term Survival: A Population-Based Study of 1149 Cases in Taiwan 
Journal of Epidemiology  2013;23(1):35-40.
Background
Amyotrophic lateral sclerosis (ALS) is a rare disease in Taiwan; thus, estimation of ALS mortality is difficult. We evaluated factors associated with ALS survival in Taiwan.
Methods
The study enrolled 1149 Taiwanese with a primary diagnosis of ALS during 1999–2008. Follow-up information was available for all patients; mean (SD) duration of follow-up was 2.91 (2.62) years. Medical interventions, including noninvasive positive pressure ventilation (NIPPV), tracheotomy, gastrostomy, and riluzole, were included in time-dependent survival analysis.
Results
Of the 1149 ALS patients, 438 (38.12%) died during follow-up. Mortality in the first year was 16%, which was 13 times (95% CI 11.1–15.2) the age- and sex-standardized rate of the general population in Taiwan. The average annual crude mortality rate was 13.1% (person-years). Factors significantly associated with increased mortality were male sex, advanced age, rural residence, lower economic status, no tracheotomy, and no riluzole treatment. Significant predictors of long-term versus average survival were younger age at diagnosis, being a dependent or receiving social welfare, and NIPPV support. Significant predictors of short-term versus average survival were older age, being employed, no tracheotomy, and no riluzole use.
Conclusions
The results support the use of riluzole to improve ALS survival. Patients who received riluzole and underwent tracheotomy had the best survival.
doi:10.2188/jea.JE20120119
PMCID: PMC3700231  PMID: 23117224
amyotrophic lateral sclerosis; survival; riluzole; tracheotomy
13.  Ventilator-associated pneumonia in trauma patients with open tracheotomy: Predictive factors and prognosis impact 
Objective:
To assess the predictive factors of ventilator associated pneumonia (VAP) occurrence following open tracheotomy in trauma patients.
Materials and Methods:
We conducted an observational, prospective study over 15 months, between 01/08/2010 and 30/11/2011. All trauma patients (except those with cervical spine trauma), older than 15 years, undergoing open tracheotomy during their ICU stay were included. All episode of VAP following tracheotomy were recorded. Predictive factor of VAP onset were studied.
Results:
We included 106 patients. Mean age was 37.9 ± 15.5 years. Mean Glasgow coma Scale (GCS) was 8.5 ± 3.7 and mean Injury Severity Score (ISS) was 53.1 ± 23.8. Tracheotomy was performed for 53 patients (50%) because of prolonged ventilation whereas 83 patients (78.3%) had tracheotomy because of projected long mechanical ventilation. Tracheotomy was performed within 8.6 ± 5.3 days. Immediate complications were bleeding events (22.6%) and barotrauma (0.9%). Late complications were stomal infection (28.3%) and VAP (52.8%). In multivariate analysis, independent factors predicting VAP onset were delayed tracheotomy (OR = 0.041; CI95% [1.02-7.87]; P = 0.041) and stomal infection (OR = 3.04; CI95% [1.02-9.93]; P = 0.045). Thirty three patients died in ICU (31.1%) without significant impact of VAP on mortality.
Conclusion:
Late tracheotomy and stomal infection are independent factors predicting VAP onset after open tracheotomy in trauma patients. The occurrence of VAP prolongers mechanical ventilation duration and intensive care unit (ICU) length of stay (LOS) but doesn’t increase mortality.
doi:10.4103/0974-2700.120364
PMCID: PMC3841530  PMID: 24339656
Multiple trauma; prognosis; tracheotomy; ventilator associated pneumonia
14.  Upper Airway Volume Segmentation Analysis Using Cine MRI Findings in Children with Tracheostomy Tubes 
Korean Journal of Radiology  2007;8(6):506-511.
Objective
The purpose of this study is to evaluate the airway dynamics of the upper airway as depicted on cine MRI in children with tracheotomy tubes during two states of airflow through the upper airway.
Materials and Methods
Sagittal fast gradient echo cine MR images of the supra-glottic airway were obtained with a 1.5T MRI scanner on seven children with tracheotomy tubes. Two sets of images were obtained with either the tubes capped or uncapped. The findings of the cine MRI were retrospectively reviewed. Volume segmentation of the cine images to compare the airway volume change over time (mean volume, standard deviation, normalized range, and coefficient of variance) was performed for the capped and uncapped tubes in both the nasopharynx and hypopharynx (Signed Rank Test).
Results
Graphical representation of the airway volume over time demonstrates a qualitative increased fluctuation in patients with the tracheotomy tube capped as compared to uncapped in both the nasopharyngeal and hypopharyngeal regions of interest. In the nasopharynx, the mean airway volume (capped 2.72 mL, uncapped 2.09 mL, p = 0.0313), the airway volume standard deviation (capped 0.42 mL, uncapped 0.20 mL, p = 0.0156), and the airway volume range (capped 2.10 mL, uncapped 1.09 mL, p = 0.0156) were significantly larger in the capped group of patients. In the hypopharynx, the airway volume standard deviation (capped 1.54 mL, uncapped 0.67 mL, p = 0.0156), and the airway volume range (capped 6.44 mL, uncapped 2.93 mL, p = 0.0156) were significantly larger in the capped tubes. The coefficient of variance (capped 0.37, uncapped 0.26, p = 0.0469) and the normalized range (capped 1.52, uncapped 1.09, p = 0.0313) were significantly larger in the capped tubes.
Conclusion
There is a statistically significant change in airway dynamics in children with tracheotomy tubes when breathing via the airway as compared to breathing via the tracheotomy tube.
doi:10.3348/kjr.2007.8.6.506
PMCID: PMC2627453  PMID: 18071281
Magnetic resonance (MR), cine study; Airway, MR; Obstructive sleep apnea, children
15.  Mandibular distraction in neonates: indications, technique, results 
Background
The Pierre Robin Sequence features were first described by Robin in 1923 and include micrognathia, glossoptosis and respiratory distress with an incidence estimated as 1:8,500 to 1:20,000 newborns. Upper airway obstruction and feeding difficulties are the main concerns related to the pathology. Mandibular distraction should be considered a treatment option (when other treatments result inadequate).
Patiants and methods
Ten patients between the ages of 1 month and 2 years with severe micrognathia and airway obstruction were treated with Mandibular Distraction Osteogenesis (MDO).
All patients underwent fibroscopic examination of the upper airway and a radiographic imaging and/or computed tomography scans to detect malformations and to confirm that the obstruction was caused by posterior tongue displacement. All patients were evaluated by a multidisciplinary team. Indications for surgery included frequent apneic episodes with severe desaturation (70%). Gavage therapy was employed in all patients since oral feeding was not possible. The two tracheotomy patients were 5 months and 2 years old respectively, and the distraction procedure was performed to remove the tracheotomy tube. All patients were treated with bilateral mandibular distraction: two cases with an external multivector distraction device, six cases with an internal non-resorbable device and two cases with an internal resorbable device. In one case, the patient with Goldenhar's Syndrome, the procedure was repeated.
Results
The resolution of symptoms was obtained in all patients, and, when present, tracheotomy was removed without complications. Of the two patients with pre-existing tracheotomies, in the younger patient (5 months old) the tracheotomy was removed 7 days postoperatively. In the Goldenhar's syndrome case (2 years old) a Montgomery device was necessary for 6 months due to the presence of tracheotomy-inducted tracheomalacia. Patients were discharged when the endpoint was obtained: symptoms and signs of airway obstruction were resolved, PAS and maxillomandibular relationship improved, and tracheotomy, when present, removed. During the follow-up, no injury to the inferior alveolar nerve was noted and scarring was significant in only the two cases treated with external devices.
Conclusion
Mandibular Distraction Osteogenesis is a good solution in solving respiratory distress when other procedures are failed in paediatric patients with severe micrognatia.
doi:10.1186/1824-7288-38-7
PMCID: PMC3293018  PMID: 22300418
16.  Noninvasive mechanical ventilation may be useful in treating patients who fail weaning from invasive mechanical ventilation: a randomized clinical trial 
Critical Care  2008;12(2):R51.
Introduction
The use of noninvasive positive-pressure mechanical ventilation (NPPV) has been investigated in several acute respiratory failure situations. Questions remain about its benefits when used in weaning patients from invasive mechanical ventilation (IMV). The objective of this study was to evaluate the use of bi-level NPPV for patients who fail weaning from IMV.
Methods
This experimental randomized clinical trial followed up patients undergoing IMV weaning, under ventilation for more than 48 hours, and who failed a spontaneous breathing T-piece trial. Patients with contraindications to NPPV were excluded. Before T-piece placement, arterial gases, maximal inspiratory pressure, and other parameters of IMV support were measured. During the trial, respiratory rate, tidal volume, minute volume, rapid shallow breathing index, heart rate, arterial blood pressure, and peripheral oxygen saturation were measured at 1 and 30 minutes. After failing a T-piece trial, patients were randomly divided in two groups: (a) those who were extubated and placed on NPPV and (b) those who were returned to IMV. Group results were compared using the Student t test and the chi-square test.
Results
Of 65 patients who failed T-piece trials, 28 were placed on NPPV and 37 were placed on IMV. The ages of patients in the NPPV and IMV groups were 67.6 ± 15.5 and 59.7 ± 17.6 years, respectively. Heart disease, post-surgery respiratory failure, and chronic pulmonary disease aggravation were the most frequent causes of IMV use. In both groups, ventilation time before T-piece trial was 7.3 ± 4.1 days. Heart and respiratory parameters were similar for the two groups at 1 and 30 minutes of T-piece trial. The percentage of complications in the NPPV group was lower (28.6% versus 75.7%), with lower incidences of pneumonia and tracheotomy. Length of stay in the intensive care unit and mortality were not statistically different when comparing the groups.
Conclusion
The results suggest that NPPV is a good alternative for ventilation of patients who fail initial weaning attempts. NPPV reduces the incidence of pneumonia associated with mechanical ventilation and the need for tracheotomy.
Trial registration
CEP HCPA (02–114).
doi:10.1186/cc6870
PMCID: PMC2447605  PMID: 18416851
17.  A randomized clinical trial for the timing of tracheotomy in critically ill patients: factors precluding inclusion in a single center study 
Critical Care  2014;18(5):585.
Introduction
We investigated the potential benefits of early tracheotomy performed before day eight of mechanical ventilation (MV) compared with late tracheotomy (from day 14 if it still indicated) in reducing mortality, days of MV, days of sedation and ICU length of stay (LOS).
Methods
Randomized controlled trial (RCT) including all-consecutive ICU admitted patients requiring seven or more days of MV. Between days five to seven of MV, before randomization, the attending physician (AP) was consulted about the expected duration of MV and acceptance of tracheotomy according to randomization. Only accepted patients received tracheotomy as result of randomization. An intention to treat analysis was performed including patients accepted for the AP and those rejected without exclusion criteria.
Results
A total of 489 patients were included in the RCT. Of 245 patients randomized to the early group, the procedure was performed for 167 patients (68.2%) whereas in the 244 patients randomized to the late group was performed for 135 patients (55.3%) (P <0.004). Mortality at day 90 was similar in both groups (25.7% versus 29.9%), but duration of sedation was shorter in the early tracheotomy group median 11 days (range 2 to 92) days compared to 14 days (range 0 to 79) in the late group (P <0.02). The AP accepted the protocol of randomization in 205 cases (42%), 101 were included in early group and 104 in the late group. In these subgroup of patients (per-protocol analysis) no differences existed in mortality at day 90 between the two groups, but the early group had more ventilator-free days, less duration of sedation and less LOS, than the late group.
Conclusions
This study shows that early tracheotomy reduces the days of sedation in patients undergoing MV, but was underpowered to prove any other benefit. In those patients selected by their attending physicians as potential candidates for a tracheotomy, an early procedure can lessen the days of MV, the days of sedation and LOS. However, the imprecision of physicians to select patients who will require prolonged MV challenges the potential benefits of early tracheotomy.
Trial registration
Controlled-Trials.com ISRCTN22208087. Registered 27 March 2014.
Electronic supplementary material
The online version of this article (doi:10.1186/s13054-014-0585-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s13054-014-0585-y
PMCID: PMC4234827  PMID: 25358451
18.  Application of a Complication Screening Method to Congenital Heart Surgery Admissions A Preliminary Report 
Pediatric cardiology  2007;29(2):258-265.
There have been comprehensive screening methods developed to identify unwanted inpatient events. A comprehensive assessment of complication diagnoses during congenital heart surgery admissions has not been performed. We examined the frequency of complications identified by a complication screening method and their relationship to patient characteristics among congenital heart surgery admissions. Data were obtained from the Healthcare Cost and Utilization Project Kids' Inpatient Database 2000. Among congenital heart surgery admissions, age ≤20 years, we identified International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) codes indicating complication. Complication diagnoses were categorized as related to drug/biologic, procedures, devices, implants and grafts, and radiation. We used the Risk Adjustment for Congenital Heart Surgery risk categories (1–6) to examine the association between case complexity and complications. Multivariate analyses estimated the odds for a complication diagnosis by patient characteristics, including age, prematurity, chromosomal anomalies, noncardiac structural anomalies, and surgical risk category.
Among 12,717 cases, 4014 (32%) had at least 1 complication diagnosis code. Procedure-related complication diagnoses represented 75% of complication diagnoses; device, implant, or graft represented 21%; drug/biologic represented 4% and radiation represented 0%. Multivariate analyses demonstrated that higher surgical case complexity and older age had a greater risk for a complication diagnosis: Risk Category 2, odds ratio (OR) 1.8; 3 OR 2.9; 4 OR 2.9; 5 OR 5.0; 6 OR 4.1, relative to category 1, all p‹0.01; age ≥12 years, OR 1.3, p‹0.001; ‹1 year OR 1.1, p = 0.31. Premature cases had decreased odds OR 0.4, p‹0.001. This complication screening method indicates that unwanted patient events occur frequently during congenital heart surgery admissions. Children undergoing complex congenital heart surgery are at greatest risk for these unwanted events. Further study of these events is needed to determine their preventability and severity.
doi:10.1007/s00246-007-9110-2
PMCID: PMC4240226  PMID: 17912481
Outcomes; Surgery complications; CHD miscellaneous
19.  Association of Adenotonsillectomy with Asthma Outcomes in Children: A Longitudinal Database Analysis 
PLoS Medicine  2014;11(11):e1001753.
Rakesh Bhattacharjee and colleagues use data from a US private health insurance database to compare asthma severity measures in children one year before and one year after they underwent adenotonsillectomy with asthma measures in those who did not undergo adenotonsillectomy.
Please see later in the article for the Editors' Summary
Background
Childhood asthma and obstructive sleep apnea (OSA), both disorders of airway inflammation, were associated in recent observational studies. Although childhood OSA is effectively treated by adenotonsillectomy (AT), it remains unclear whether AT also improves childhood asthma. We hypothesized that AT, the first line of therapy for childhood OSA, would be associated with improved asthma outcomes and would reduce the usage of asthma therapies in children.
Methods and Findings
Using the 2003–2010 MarketScan database, we identified 13,506 children with asthma in the United States who underwent AT. Asthma outcomes during 1 y preceding AT were compared to those during 1 y following AT. In addition, 27,012 age-, sex-, and geographically matched children with asthma without AT were included to examine asthma outcomes among children without known adenotonsillar tissue morbidity. Primary outcomes included the occurrence of a diagnostic code for acute asthma exacerbation (AAE) or acute status asthmaticus (ASA). Secondary outcomes included temporal changes in asthma medication prescriptions, the frequency of asthma-related emergency room visits (ARERs), and asthma-related hospitalizations (ARHs). Comparing the year following AT to the year prior, AT was associated with significant reductions in AAE (30.2%; 95% CI: 25.6%–34.3%; p<0.0001), ASA (37.9%; 95% CI: 29.2%–45.6%; p<0.0001), ARERs (25.6%; 95% CI: 16.9%–33.3%; p<0.0001), and ARHs (35.8%; 95% CI: 19.6%–48.7%; p = 0.02). Moreover, AT was associated with significant reductions in most asthma prescription refills, including bronchodilators (16.7%; 95% CI: 16.1%–17.3%; p<0.001), inhaled corticosteroids (21.5%; 95% CI: 20.7%–22.3%; p<0.001), leukotriene receptor antagonists (13.4%; 95% CI: 12.9%–14.0%; p<0.001), and systemic corticosteroids (23.7%; 95% CI: 20.9%–26.5%; p<0.001). In contrast, there were no significant reductions in these outcomes in children with asthma who did not undergo AT over an overlapping follow-up period. Limitations of the MarketScan database include lack of information on race and obesity status. Also, the MarketScan database does not include information on children with public health insurance (i.e., Medicaid) or uninsured children.
Conclusions
In a very large sample of privately insured children, AT was associated with significant improvements in several asthma outcomes. Contingent on validation through prospectively designed clinical trials, this study supports the premise that detection and treatment of adenotonsillar tissue morbidity may serve as an important strategy for improving asthma control.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The global burden of asthma has been rising steadily over the past few decades. Nowadays, about 200–300 million adults and children worldwide are affected by asthma, a chronic condition caused by inflammation of the airways (the tubes that carry air in and out of the lungs). Although asthma can develop at any age, it is often diagnosed in childhood—asthma is one of the commonest chronic diseases in children. In the US, for example, asthma affects around 7.1 million children under the age of 18 years and is the third leading cause of hospitalization of children under the age of 15 years. In people with asthma, the airways can react very strongly to allergens such as animal fur or to irritants such as cigarette smoke. Exercise, cold air, and infections can trigger asthma attacks, which can be fatal. The symptoms of asthma include wheezing, coughing, chest tightness, and shortness of breath. Asthma cannot be cured, but drugs can relieve its symptoms and prevent acute asthma attacks.
Why Was This Study Done?
Recent studies have found an association between severe childhood asthma and obstructive sleep apnea (OSA). In OSA, airway inflammation promotes hypertrophy (excess growth) of the adenoids and the tonsils, immune system tissues in the upper airway. During sleep, the presence of hypertrophic adenotonsillar tissues predisposes the walls of the throat to collapse, which results in apnea—a brief interruption in breathing. People with OSA often snore loudly and frequently wake from deep sleep as they struggle to breathe. Childhood OSA, which affects 2%–3% of children, can be effectively treated by removal of the adenoids and tonsils (adenotonsillectomy). Given the association between childhood OSA and severe asthma and given the involvement of airway inflammation in both conditions, might adenotonsillectomy also improve childhood asthma? Here, the researchers analyze data from the MarketScan database, a large database of US patients with private health insurance, to investigate whether adenotonsillectomy is associated with improvements in asthma outcomes and with reductions in the use of asthma therapies in children.
What Did the Researchers Do and Find?
The researchers used the database to identify 13,506 children with asthma who had undergone adenotonsillectomy and to obtain information about asthma outcomes among these children for the year before and the year after the operation. Because asthma severity tends to decrease with age, the researchers also used the database to identify 27,012 age-, sex-, and geographically matched children with asthma who did not have the operation so that they could examine asthma outcomes over an equivalent two-year period in the absence of complications related to adenotonsillar hypertrophy. Comparing the year after adenotonsillectomy with the year before the operation, adenotonsillectomy was associated with a 30% reduction in acute asthma exacerbations, a 37.9% reduction in acute status asthmaticus (an asthma attack that is unresponsive to the drugs usually used to treat attacks), a 25.6% reduction in asthma-related emergency room visits, and a 35.8% reduction in asthma-related hospitalizations. By contrast, among the control children, there was only a 2% reduction in acute asthma exacerbations and only a 7% reduction in acute status asthmaticus over an equivalent two-year period. Adenotonsillectomy was also associated with significant reductions (changes unlikely to have occurred by chance) in prescription refills for most types of drugs used to treat asthma, whereas there were no significant reductions in prescription refills among children with asthma who had not undergone adenotonsillectomy. The study was limited by the lack of measures of race and obesity, which are both associated with severity of asthma.
What Do These Findings Mean?
These findings show that in a large sample of privately insured children in the US, adenotonsillectomy was associated with significant improvements in several asthma outcomes. These results do not show, however, that adenotonsillectomy caused a reduction in the severity of childhood asthma. It could be that the children who underwent adenotonsillectomy (but not those who did not have the operation) shared another unknown factor that led to improvements in their asthma over time. To prove a causal link, it will be necessary to undertake a randomized controlled trial in which the outcomes of groups of children with asthma who are chosen at random to undergo or not undergo adenotonsillectomy are compared. However, with the proviso that there are some risks associated with adenotonsillectomy, these findings suggest that the detection and treatment of adenotonsillar hypertrophy may help to improve asthma control in children.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001753.
The US Centers for Disease Control and Prevention provides information on asthma, including videos, games, and links to other resources for children with asthma
The American Lung Association provides detailed information about asthma and a fact sheet on asthma in children; it also has information about obstructive sleep apnea
The National Sleep Foundation provides information on snoring and obstructive sleep apnea in children
The UK National Health Service Choices website provides information (including some personal stories) about asthma, about asthma in children, and about obstructive sleep apnea
The “Global Asthma Report 2014” will be available in October 2014
MedlinePlus provides links to further information on asthma, on asthma in children, on sleep apnea, and on tonsils and adenoids (in English and Spanish)
doi:10.1371/journal.pmed.1001753
PMCID: PMC4219664  PMID: 25369282
20.  A population based study of hospitalised seriously injured in a region of Northern Italy 
Background
Injury is a public health problem in terms of mortality, morbidity and disability. The implementation of a regionalised trauma system has been proved to significantly reduce the social impact of severe trauma on population. A population-based registry may be useful to obtain reliable epidemiologic data.
Aim
To perform an exhaustive analysis of severe trauma patients hospitalised in Lombardia, a region of northern Italy.
Materials and methods
The regional Hospital Discharge Registry (HDR) was used to retrieve data of all patients who suffered from serious injuries from 2008 to 2010. ICD9-CM codes of discharge diagnoses were analysed and patients coded from 800.0 to 939.9 or from 950.0 to 959.9 have been retrieved. Femur fractures in elderly and patients with length of hospital stay less than 2 days were excluded. Patients have been considered seriously injured if discharged dead or any of followings: admission or transit in ICU, need of mechanical ventilation, tracheotomy, invasive hemodynamic monitoring. Average reimbursement based on DRG has been evaluated.
Statistics
Student’s t test, ANOVA for continuous data, chi-square test for categorical data were used, and a p value less than 0.05 was considered significant.
Results
The severely injured patients hospitalised in Lombardia in three years were 11704, 391 per million per year. Overall mortality was 24.17% and increased with age. Males aging from 18 to 64 years had more occupational injuries, trauma on the road and violence by others. Females were more susceptible to domestic injuries and self inflicted violence, mostly in older ages. Acute mortality was higher after traffic accidents, while late mortality was increased in domestic trauma. Pediatric cases were unusual. A significant increase (+10.18%) in domestic trauma, with a concomitant decrease (-17.76%) in road-related accidents was observed in the three years study period. Reimbursement paid to hospitals for seriously injured was insufficient with regard to estimated costs of care.
Conclusion
Serious injury requiring hospitalisation in Lombardia is still an healthcare problem, with a trend toward a decrease of traffic accidents, increase in domestic trauma and involvement of older people. These results may help to plan a new regionalised Trauma System.
doi:10.1186/1749-7922-8-32
PMCID: PMC3751444  PMID: 23937969
Epidemiology; Major trauma; Population-based study; Trauma registry; Trauma system
21.  Advanced and rapidly progressing head and neck cancer: good palliation following intralesional bleomycin 
BMJ Case Reports  2011;2011:bcr0820114599.
The authors herein report the case of a 61-year-old man undergoing adjuvant therapy for locally advanced laryngeal cancer, who developed parastomal recurrence in his radiation field around his tracheotomy site, while he was undergoing radiation therapy, and compromised the secure placement of his tracheotomy tube and maintenance of his upper airway. MRI restaging and biopsy confirmed recurrence and progressive disease in his mediastinum. He underwent local therapy with intralesional bleomycin with good palliation, and ability to maintain the patency of his upper airway.
doi:10.1136/bcr.08.2011.4599
PMCID: PMC3185391  PMID: 22679261
22.  Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data 
PLoS Medicine  2015;12(1):e1001776.
Daniel Weinberger and colleagues examine a possible interaction between two serious respiratory infections in children under 2 years of age.
Please see later in the article for the Editors' Summary
Background
The importance of bacterial infections following respiratory syncytial virus (RSV) remains unclear. We evaluated whether variations in RSV epidemic timing and magnitude are associated with variations in pneumococcal disease epidemics and whether changes in pneumococcal disease following the introduction of seven-valent pneumococcal conjugate vaccine (PCV7) were associated with changes in the rate of hospitalizations coded as RSV.
Methods and Findings
We used data from the State Inpatient Databases (Agency for Healthcare Research and Quality), including >700,000 RSV hospitalizations and >16,000 pneumococcal pneumonia hospitalizations in 36 states (1992/1993–2008/2009). Harmonic regression was used to estimate the timing of the average seasonal peak of RSV, pneumococcal pneumonia, and pneumococcal septicemia. We then estimated the association between the incidence of pneumococcal disease in children and the activity of RSV and influenza (where there is a well-established association) using Poisson regression models that controlled for shared seasonal variations. Finally, we estimated changes in the rate of hospitalizations coded as RSV following the introduction of PCV7. RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern (correlation of peak timing: ρ = 0.70, 95% CI: 0.45, 0.84). RSV was associated with a significant increase in the incidence of pneumococcal pneumonia in children aged <1 y (attributable percent [AP]: 20.3%, 95% CI: 17.4%, 25.1%) and among children aged 1–2 y (AP: 10.1%, 95% CI: 7.6%, 13.9%). Influenza was also associated with an increase in pneumococcal pneumonia among children aged 1–2 y (AP: 3.2%, 95% CI: 1.7%, 4.7%). Finally, we observed a significant decline in RSV-coded hospitalizations in children aged <1 y following PCV7 introduction (−18.0%, 95% CI: −22.6%, −13.1%, for 2004/2005–2008/2009 versus 1997/1998–1999/2000). This study used aggregated hospitalization data, and studies with individual-level, laboratory-confirmed data could help to confirm these findings.
Conclusions
These analyses provide evidence for an interaction between RSV and pneumococcal pneumonia. Future work should evaluate whether treatment for secondary bacterial infections could be considered for pneumonia cases even if a child tests positive for RSV.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Respiratory infections—bacterial and viral infections of the lungs and the airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for about 15% of all child deaths. The leading cause of bacterial pneumonia in children is Streptococcus pneumoniae, which is transmitted through contact with infected respiratory secretions. S. pneumoniae usually causes noninvasive diseases such as bronchitis, but sometimes the bacteria invade the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, or meningitis, respectively. These potentially fatal invasive pneumococcal diseases can be treated with antibiotics but can also be prevented by vaccination with pneumococcal conjugate vaccines such as PCV7. The leading cause of viral pneumonia is respiratory syncytial virus (RSV), which is also readily transmitted through contact with infected respiratory secretions. Almost all children have an RSV infection before their second birthday—RSV usually causes a mild cold-like illness. However, some children infected with RSV develop pneumonia and have to be admitted to hospital for supportive care such as the provision of supplemental oxygen; there is no specific treatment for RSV infection.
Why Was This Study Done?
Co-infections with bacteria and viruses can sometimes have a synergistic effect and lead to more severe disease than an infection with either type of pathogen (disease-causing organism) alone. For example, influenza infections increase the risk of invasive pneumococcal disease. But does pneumococcal disease also interact with RSV infection? It is important to understand the interaction between pneumococcal disease and RSV to improve the treatment of respiratory infections in young children, but the importance of bacterial infections following RSV infection is currently unclear. Here, the researchers undertake a time series analysis of US hospitalization data to investigate the association between RSV activity and pneumococcal disease in infants. Time series analysis uses statistical methods to analyze data collected at successive, evenly spaced time points.
What Did the Researchers Do and Find?
For their analysis, the researchers used data collected between 1992/1993 and 2008/2009 by the State Inpatient Databases on more than 700,000 hospitalizations for RSV and more than 16,000 hospitalizations for pneumococcal pneumonia or septicemia among children under two years old in 36 US states. Using a statistical technique called harmonic regression to measure seasonal variations in disease incidence (the rate of occurrence of new cases of a disease), the researchers show that RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern over the study period. Next, using Poisson regression models (another type of statistical analysis), they show that RSV was associated with significant increases (increases unlikely to have happened by chance) in the incidence of pneumococcal disease. Among children under one year old, 20.3% of pneumococcal pneumonia cases were associated with RSV activity; among children 1–2 years old, 10.1% of pneumococcal pneumonia cases were associated with RSV activity. Finally, the researchers report that following the introduction of routine vaccination in the US against S. pneumoniae with PCV7 in 2000, there was a significant decline in hospitalizations for RSV among children under one year old.
What Do These Findings Mean?
These findings provide evidence for an interaction between RSV and pneumococcal pneumonia and indicate that RSV is associated with increases in the incidence of pneumococcal pneumonia, particularly in young infants. Notably, the finding that RSV hospitalizations declined after the introduction of routine pneumococcal vaccination suggests that some RSV hospitalizations may have a joint viral–bacterial etiology (cause), although it is possible that PCV7 vaccination reduced the diagnosis of RSV because fewer children were hospitalized with pneumococcal disease and subsequently tested for RSV. Because this is an ecological study (an observational investigation that looks at risk factors and outcomes in temporally and geographically defined populations), these findings do not provide evidence for a causal link between hospitalizations for RSV and pneumococcal pneumonia. The similar spatiotemporal patterns for the two infections might reflect another unknown factor shared by the children who were hospitalized for RSV or pneumococcal pneumonia. Moreover, because pooled hospitalization discharge data were used in this study, these results need to be confirmed through analysis of individual-level, laboratory-confirmed data. Importantly, however, these findings support the initiation of studies to determine whether treatment for bacterial infections should be considered for children with pneumonia even if they have tested positive for RSV.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001776.
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about pneumonia
The US Centers for Disease Control and Prevention provides information on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories and information about RSV infection
The UK National Health Service Choices website provides information about pneumonia (including a personal story) and about pneumococcal diseases
KidsHealth, a website provided by the US-based non-profit Nemours Foundation, includes information on pneumonia and on RSV (in English and Spanish)
MedlinePlus provides links to other resources about pneumonia, RSV infections, and pneumococcal infections (in English and Spanish)
HCUPnet provides aggregated hospitalization data from the State Inpatient Databases used in this study
doi:10.1371/journal.pmed.1001776
PMCID: PMC4285401  PMID: 25562317
23.  Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices 
Executive Summary
Objective
The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions.
Clinical Need: Condition and Target Population
Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD.
Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities.
Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs.
Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however, increases the risk of SCD five-fold, regardless of aetiology. Patients with HF who remain highly symptomatic despite optimal drug therapy are sometimes also treated with CRT devices.
With an increasing prevalence of age-related conditions such as chronic HF and the expanding indications for ICD therapy, the rate of ICD placement has been dramatically increasing. The appropriate indications for ICD placement, as well as the rate of ICD placement, are increasingly an issue. In the United States, after the introduction of expanded coverage of ICDs, a national ICD registry was created in 2005 to track these devices. A recent survey based on this national ICD registry reported that 22.5% (25,145) of patients had received a non-evidence based ICD and that these patients experienced significantly higher in-hospital mortality and post-procedural complications.
In addition to the increased ICD device placement and the upfront device costs, there is the need for lifelong follow-up or surveillance, placing a significant burden on patients and device clinics. In 2007, over 1.6 million CIEDs were implanted in Europe and the United States, which translates to over 5.5 million patient encounters per year if the recommended follow-up practices are considered. A safe and effective RMS could potentially improve the efficiency of long-term follow-up of patients and their CIEDs.
Technology
In addition to being therapeutic devices, CIEDs have extensive diagnostic abilities. All CIEDs can be interrogated and reprogrammed during an in-clinic visit using an inductive programming wand. Remote monitoring would allow patients to transmit information recorded in their devices from the comfort of their own homes. Currently most ICD devices also have the potential to be remotely monitored. Remote monitoring (RM) can be used to check system integrity, to alert on arrhythmic episodes, and to potentially replace in-clinic follow-ups and manage disease remotely. They do not currently have the capability of being reprogrammed remotely, although this feature is being tested in pilot settings.
Every RMS is specifically designed by a manufacturer for their cardiac implant devices. For Internet-based device-assisted RMSs, this customization includes details such as web application, multiplatform sensors, custom algorithms, programming information, and types and methods of alerting patients and/or physicians. The addition of peripherals for monitoring weight and pressure or communicating with patients through the onsite communicators also varies by manufacturer. Internet-based device-assisted RMSs for CIEDs are intended to function as a surveillance system rather than an emergency system.
Health care providers therefore need to learn each application, and as more than one application may be used at one site, multiple applications may need to be reviewed for alarms. All RMSs deliver system integrity alerting; however, some systems seem to be better geared to fast arrhythmic alerting, whereas other systems appear to be more intended for remote follow-up or supplemental remote disease management. The different RMSs may therefore have different impacts on workflow organization because of their varying frequency of interrogation and methods of alerts. The integration of these proprietary RM web-based registry systems with hospital-based electronic health record systems has so far not been commonly implemented.
Currently there are 2 general types of RMSs: those that transmit device diagnostic information automatically and without patient assistance to secure Internet-based registry systems, and those that require patient assistance to transmit information. Both systems employ the use of preprogrammed alerts that are either transmitted automatically or at regular scheduled intervals to patients and/or physicians.
The current web applications, programming, and registry systems differ greatly between the manufacturers of transmitting cardiac devices. In Canada there are currently 4 manufacturers—Medtronic Inc., Biotronik, Boston Scientific Corp., and St Jude Medical Inc.—which have regulatory approval for remote transmitting CIEDs. Remote monitoring systems are proprietary to the manufacturer of the implant device. An RMS for one device will not work with another device, and the RMS may not work with all versions of the manufacturer’s devices.
All Internet-based device-assisted RMSs have common components. The implanted device is equipped with a micro-antenna that communicates with a small external device (at bedside or wearable) commonly known as the transmitter. Transmitters are able to interrogate programmed parameters and diagnostic data stored in the patients’ implant device. The information transfer to the communicator can occur at preset time intervals with the participation of the patient (waving a wand over the device) or it can be sent automatically (wirelessly) without their participation. The encrypted data are then uploaded to an Internet-based database on a secure central server. The data processing facilities at the central database, depending on the clinical urgency, can trigger an alert for the physician(s) that can be sent via email, fax, text message, or phone. The details are also posted on the secure website for viewing by the physician (or their delegate) at their convenience.
Research Questions
The research directions and specific research questions for this evidence review were as follows:
To identify the Internet-based device-assisted RMSs available for follow-up of patients with therapeutic CIEDs such as PMs, ICDs, and CRT devices.
To identify the potential risks, operational issues, or organizational issues related to Internet-based device-assisted RM for CIEDs.
To evaluate the safety, acceptability, and effectiveness of Internet-based device-assisted RMSs for CIEDs such as PMs, ICDs, and CRT devices.
To evaluate the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted RMSs for CIEDs compared to usual outpatient in-office monitoring strategies.
To evaluate the resource implications or budget impact of RMSs for CIEDs in Ontario, Canada.
Research Methods
Literature Search
The review included a systematic review of published scientific literature and consultations with experts and manufacturers of all 4 approved RMSs for CIEDs in Canada. Information on CIED cardiac implant clinics was also obtained from Provincial Programs, a division within the Ministry of Health and Long-Term Care with a mandate for cardiac implant specialty care. Various administrative databases and registries were used to outline the current clinical follow-up burden of CIEDs in Ontario. The provincial population-based ICD database developed and maintained by the Institute for Clinical Evaluative Sciences (ICES) was used to review the current follow-up practices with Ontario patients implanted with ICD devices.
Search Strategy
A literature search was performed on September 21, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from 1950 to September 2010. Search alerts were generated and reviewed for additional relevant literature until December 31, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Inclusion Criteria
published between 1950 and September 2010;
English language full-reports and human studies;
original reports including clinical evaluations of Internet-based device-assisted RMSs for CIEDs in clinical settings;
reports including standardized measurements on outcome events such as technical success, safety, effectiveness, cost, measures of health care utilization, morbidity, mortality, quality of life or patient satisfaction;
randomized controlled trials (RCTs), systematic reviews and meta-analyses, cohort and controlled clinical studies.
Exclusion Criteria
non-systematic reviews, letters, comments and editorials;
reports not involving standardized outcome events;
clinical reports not involving Internet-based device assisted RM systems for CIEDs in clinical settings;
reports involving studies testing or validating algorithms without RM;
studies with small samples (<10 subjects).
Outcomes of Interest
The outcomes of interest included: technical outcomes, emergency department visits, complications, major adverse events, symptoms, hospital admissions, clinic visits (scheduled and/or unscheduled), survival, morbidity (disease progression, stroke, etc.), patient satisfaction, and quality of life.
Summary of Findings
The MAS evidence review was performed to review available evidence on Internet-based device-assisted RMSs for CIEDs published until September 2010. The search identified 6 systematic reviews, 7 randomized controlled trials, and 19 reports for 16 cohort studies—3 of these being registry-based and 4 being multi-centered. The evidence is summarized in the 3 sections that follow.
1. Effectiveness of Remote Monitoring Systems of CIEDs for Cardiac Arrhythmia and Device Functioning
In total, 15 reports on 13 cohort studies involving investigations with 4 different RMSs for CIEDs in cardiology implant clinic groups were identified in the review. The 4 RMSs were: Care Link Network® (Medtronic Inc,, Minneapolis, MN, USA); Home Monitoring® (Biotronic, Berlin, Germany); House Call 11® (St Jude Medical Inc., St Pauls, MN, USA); and a manufacturer-independent RMS. Eight of these reports were with the Home Monitoring® RMS (12,949 patients), 3 were with the Care Link® RMS (167 patients), 1 was with the House Call 11® RMS (124 patients), and 1 was with a manufacturer-independent RMS (44 patients). All of the studies, except for 2 in the United States, (1 with Home Monitoring® and 1 with House Call 11®), were performed in European countries.
The RMSs in the studies were evaluated with different cardiac implant device populations: ICDs only (6 studies), ICD and CRT devices (3 studies), PM and ICD and CRT devices (4 studies), and PMs only (2 studies). The patient populations were predominately male (range, 52%–87%) in all studies, with mean ages ranging from 58 to 76 years. One study population was unique in that RMSs were evaluated for ICDs implanted solely for primary prevention in young patients (mean age, 44 years) with Brugada syndrome, which carries an inherited increased genetic risk for sudden heart attack in young adults.
Most of the cohort studies reported on the feasibility of RMSs in clinical settings with limited follow-up. In the short follow-up periods of the studies, the majority of the events were related to detection of medical events rather than system configuration or device abnormalities. The results of the studies are summarized below:
The interrogation of devices on the web platform, both for continuous and scheduled transmissions, was significantly quicker with remote follow-up, both for nurses and physicians.
In a case-control study focusing on a Brugada population–based registry with patients followed-up remotely, there were significantly fewer outpatient visits and greater detection of inappropriate shocks. One death occurred in the control group not followed remotely and post-mortem analysis indicated early signs of lead failure prior to the event.
Two studies examined the role of RMSs in following ICD leads under regulatory advisory in a European clinical setting and noted:
– Fewer inappropriate shocks were administered in the RM group.
– Urgent in-office interrogations and surgical revisions were performed within 12 days of remote alerts.
– No signs of lead fracture were detected at in-office follow-up; all were detected at remote follow-up.
Only 1 study reported evaluating quality of life in patients followed up remotely at 3 and 6 months; no values were reported.
Patient satisfaction was evaluated in 5 cohort studies, all in short term follow-up: 1 for the Home Monitoring® RMS, 3 for the Care Link® RMS, and 1 for the House Call 11® RMS.
– Patients reported receiving a sense of security from the transmitter, a good relationship with nurses and physicians, positive implications for their health, and satisfaction with RM and organization of services.
– Although patients reported that the system was easy to implement and required less than 10 minutes to transmit information, a variable proportion of patients (range, 9% 39%) reported that they needed the assistance of a caregiver for their transmission.
– The majority of patients would recommend RM to other ICD patients.
– Patients with hearing or other physical or mental conditions hindering the use of the system were excluded from studies, but the frequency of this was not reported.
Physician satisfaction was evaluated in 3 studies, all with the Care Link® RMS:
– Physicians reported an ease of use and high satisfaction with a generally short-term use of the RMS.
– Physicians reported being able to address the problems in unscheduled patient transmissions or physician initiated transmissions remotely, and were able to handle the majority of the troubleshooting calls remotely.
– Both nurses and physicians reported a high level of satisfaction with the web registry system.
2. Effectiveness of Remote Monitoring Systems in Heart Failure Patients for Cardiac Arrhythmia and Heart Failure Episodes
Remote follow-up of HF patients implanted with ICD or CRT devices, generally managed in specialized HF clinics, was evaluated in 3 cohort studies: 1 involved the Home Monitoring® RMS and 2 involved the Care Link® RMS. In these RMSs, in addition to the standard diagnostic features, the cardiac devices continuously assess other variables such as patient activity, mean heart rate, and heart rate variability. Intra-thoracic impedance, a proxy measure for lung fluid overload, was also measured in the Care Link® studies. The overall diagnostic performance of these measures cannot be evaluated, as the information was not reported for patients who did not experience intra-thoracic impedance threshold crossings or did not undergo interventions. The trial results involved descriptive information on transmissions and alerts in patients experiencing high morbidity and hospitalization in the short study periods.
3. Comparative Effectiveness of Remote Monitoring Systems for CIEDs
Seven RCTs were identified evaluating RMSs for CIEDs: 2 were for PMs (1276 patients) and 5 were for ICD/CRT devices (3733 patients). Studies performed in the clinical setting in the United States involved both the Care Link® RMS and the Home Monitoring® RMS, whereas all studies performed in European countries involved only the Home Monitoring® RMS.
3A. Randomized Controlled Trials of Remote Monitoring Systems for Pacemakers
Two trials, both multicenter RCTs, were conducted in different countries with different RMSs and study objectives. The PREFER trial was a large trial (897 patients) performed in the United States examining the ability of Care Link®, an Internet-based remote PM interrogation system, to detect clinically actionable events (CAEs) sooner than the current in-office follow-up supplemented with transtelephonic monitoring transmissions, a limited form of remote device interrogation. The trial results are summarized below:
In the 375-day mean follow-up, 382 patients were identified with at least 1 CAE—111 patients in the control arm and 271 in the remote arm.
The event rate detected per patient for every type of CAE, except for loss of atrial capture, was higher in the remote arm than the control arm.
The median time to first detection of CAEs (4.9 vs. 6.3 months) was significantly shorter in the RMS group compared to the control group (P < 0.0001).
Additionally, only 2% (3/190) of the CAEs in the control arm were detected during a transtelephonic monitoring transmission (the rest were detected at in-office follow-ups), whereas 66% (446/676) of the CAEs were detected during remote interrogation.
The second study, the OEDIPE trial, was a smaller trial (379 patients) performed in France evaluating the ability of the Home Monitoring® RMS to shorten PM post-operative hospitalization while preserving the safety of conventional management of longer hospital stays.
Implementation and operationalization of the RMS was reported to be successful in 91% (346/379) of the patients and represented 8144 transmissions.
In the RM group 6.5% of patients failed to send messages (10 due to improper use of the transmitter, 2 with unmanageable stress). Of the 172 patients transmitting, 108 patients sent a total of 167 warnings during the trial, with a greater proportion of warnings being attributed to medical rather than technical causes.
Forty percent had no warning message transmission and among these, 6 patients experienced a major adverse event and 1 patient experienced a non-major adverse event. Of the 6 patients having a major adverse event, 5 contacted their physician.
The mean medical reaction time was faster in the RM group (6.5 ± 7.6 days vs. 11.4 ± 11.6 days).
The mean duration of hospitalization was significantly shorter (P < 0.001) for the RM group than the control group (3.2 ± 3.2 days vs. 4.8 ± 3.7 days).
Quality of life estimates by the SF-36 questionnaire were similar for the 2 groups at 1-month follow-up.
3B. Randomized Controlled Trials Evaluating Remote Monitoring Systems for ICD or CRT Devices
The 5 studies evaluating the impact of RMSs with ICD/CRT devices were conducted in the United States and in European countries and involved 2 RMSs—Care Link® and Home Monitoring ®. The objectives of the trials varied and 3 of the trials were smaller pilot investigations.
The first of the smaller studies (151 patients) evaluated patient satisfaction, achievement of patient outcomes, and the cost-effectiveness of the Care Link® RMS compared to quarterly in-office device interrogations with 1-year follow-up.
Individual outcomes such as hospitalizations, emergency department visits, and unscheduled clinic visits were not significantly different between the study groups.
Except for a significantly higher detection of atrial fibrillation in the RM group, data on ICD detection and therapy were similar in the study groups.
Health-related quality of life evaluated by the EuroQoL at 6-month or 12-month follow-up was not different between study groups.
Patients were more satisfied with their ICD care in the clinic follow-up group than in the remote follow-up group at 6-month follow-up, but were equally satisfied at 12- month follow-up.
The second small pilot trial (20 patients) examined the impact of RM follow-up with the House Call 11® system on work schedules and cost savings in patients randomized to 2 study arms varying in the degree of remote follow-up.
The total time including device interrogation, transmission time, data analysis, and physician time required was significantly shorter for the RM follow-up group.
The in-clinic waiting time was eliminated for patients in the RM follow-up group.
The physician talk time was significantly reduced in the RM follow-up group (P < 0.05).
The time for the actual device interrogation did not differ in the study groups.
The third small trial (115 patients) examined the impact of RM with the Home Monitoring® system compared to scheduled trimonthly in-clinic visits on the number of unplanned visits, total costs, health-related quality of life (SF-36), and overall mortality.
There was a 63.2% reduction in in-office visits in the RM group.
Hospitalizations or overall mortality (values not stated) were not significantly different between the study groups.
Patient-induced visits were higher in the RM group than the in-clinic follow-up group.
The TRUST Trial
The TRUST trial was a large multicenter RCT conducted at 102 centers in the United States involving the Home Monitoring® RMS for ICD devices for 1450 patients. The primary objectives of the trial were to determine if remote follow-up could be safely substituted for in-office clinic follow-up (3 in-office visits replaced) and still enable earlier physician detection of clinically actionable events.
Adherence to the protocol follow-up schedule was significantly higher in the RM group than the in-office follow-up group (93.5% vs. 88.7%, P < 0.001).
Actionability of trimonthly scheduled checks was low (6.6%) in both study groups. Overall, actionable causes were reprogramming (76.2%), medication changes (24.8%), and lead/system revisions (4%), and these were not different between the 2 study groups.
The overall mean number of in-clinic and hospital visits was significantly lower in the RM group than the in-office follow-up group (2.1 per patient-year vs. 3.8 per patient-year, P < 0.001), representing a 45% visit reduction at 12 months.
The median time from onset of first arrhythmia to physician evaluation was significantly shorter (P < 0.001) in the RM group than in the in-office follow-up group for all arrhythmias (1 day vs. 35.5 days).
The median time to detect clinically asymptomatic arrhythmia events—atrial fibrillation (AF), ventricular fibrillation (VF), ventricular tachycardia (VT), and supra-ventricular tachycardia (SVT)—was also significantly shorter (P < 0.001) in the RM group compared to the in-office follow-up group (1 day vs. 41.5 days) and was significantly quicker for each of the clinical arrhythmia events—AF (5.5 days vs. 40 days), VT (1 day vs. 28 days), VF (1 day vs. 36 days), and SVT (2 days vs. 39 days).
System-related problems occurred infrequently in both groups—in 1.5% of patients (14/908) in the RM group and in 0.7% of patients (3/432) in the in-office follow-up group.
The overall adverse event rate over 12 months was not significantly different between the 2 groups and individual adverse events were also not significantly different between the RM group and the in-office follow-up group: death (3.4% vs. 4.9%), stroke (0.3% vs. 1.2%), and surgical intervention (6.6% vs. 4.9%), respectively.
The 12-month cumulative survival was 96.4% (95% confidence interval [CI], 95.5%–97.6%) in the RM group and 94.2% (95% confidence interval [CI], 91.8%–96.6%) in the in-office follow-up group, and was not significantly different between the 2 groups (P = 0.174).
The CONNECT Trial
The CONNECT trial, another major multicenter RCT, involved the Care Link® RMS for ICD/CRT devices in a15-month follow-up study of 1,997 patients at 133 sites in the United States. The primary objective of the trial was to determine whether automatically transmitted physician alerts decreased the time from the occurrence of clinically relevant events to medical decisions. The trial results are summarized below:
Of the 575 clinical alerts sent in the study, 246 did not trigger an automatic physician alert. Transmission failures were related to technical issues such as the alert not being programmed or not being reset, and/or a variety of patient factors such as not being at home and the monitor not being plugged in or set up.
The overall mean time from the clinically relevant event to the clinical decision was significantly shorter (P < 0.001) by 17.4 days in the remote follow-up group (4.6 days for 172 patients) than the in-office follow-up group (22 days for 145 patients).
– The median time to a clinical decision was shorter in the remote follow-up group than in the in-office follow-up group for an AT/AF burden greater than or equal to 12 hours (3 days vs. 24 days) and a fast VF rate greater than or equal to 120 beats per minute (4 days vs. 23 days).
Although infrequent, similar low numbers of events involving low battery and VF detection/therapy turned off were noted in both groups. More alerts, however, were noted for out-of-range lead impedance in the RM group (18 vs. 6 patients), and the time to detect these critical events was significantly shorter in the RM group (same day vs. 17 days).
Total in-office clinic visits were reduced by 38% from 6.27 visits per patient-year in the in-office follow-up group to 3.29 visits per patient-year in the remote follow-up group.
Health care utilization visits (N = 6,227) that included cardiovascular-related hospitalization, emergency department visits, and unscheduled clinic visits were not significantly higher in the remote follow-up group.
The overall mean length of hospitalization was significantly shorter (P = 0.002) for those in the remote follow-up group (3.3 days vs. 4.0 days) and was shorter both for patients with ICD (3.0 days vs. 3.6 days) and CRT (3.8 days vs. 4.7 days) implants.
The mortality rate between the study arms was not significantly different between the follow-up groups for the ICDs (P = 0.31) or the CRT devices with defribillator (P = 0.46).
Conclusions
There is limited clinical trial information on the effectiveness of RMSs for PMs. However, for RMSs for ICD devices, multiple cohort studies and 2 large multicenter RCTs demonstrated feasibility and significant reductions in in-office clinic follow-ups with RMSs in the first year post implantation. The detection rates of clinically significant events (and asymptomatic events) were higher, and the time to a clinical decision for these events was significantly shorter, in the remote follow-up groups than in the in-office follow-up groups. The earlier detection of clinical events in the remote follow-up groups, however, was not associated with lower morbidity or mortality rates in the 1-year follow-up. The substitution of almost all the first year in-office clinic follow-ups with RM was also not associated with an increased health care utilization such as emergency department visits or hospitalizations.
The follow-up in the trials was generally short-term, up to 1 year, and was a more limited assessment of potential longer term device/lead integrity complications or issues. None of the studies compared the different RMSs, particularly the different RMSs involving patient-scheduled transmissions or automatic transmissions. Patients’ acceptance of and satisfaction with RM were reported to be high, but the impact of RM on patients’ health-related quality of life, particularly the psychological aspects, was not evaluated thoroughly. Patients who are not technologically competent, having hearing or other physical/mental impairments, were identified as potentially disadvantaged with remote surveillance. Cohort studies consistently identified subgroups of patients who preferred in-office follow-up. The evaluation of costs and workflow impact to the health care system were evaluated in European or American clinical settings, and only in a limited way.
Internet-based device-assisted RMSs involve a new approach to monitoring patients, their disease progression, and their CIEDs. Remote monitoring also has the potential to improve the current postmarket surveillance systems of evolving CIEDs and their ongoing hardware and software modifications. At this point, however, there is insufficient information to evaluate the overall impact to the health care system, although the time saving and convenience to patients and physicians associated with a substitution of in-office follow-up by RM is more certain. The broader issues surrounding infrastructure, impacts on existing clinical care systems, and regulatory concerns need to be considered for the implementation of Internet-based RMSs in jurisdictions involving different clinical practices.
PMCID: PMC3377571  PMID: 23074419
24.  Tracheostomy in children with congenital heart disease: a national analysis of the Kids’ Inpatient Database 
PeerJ  2014;2:e568.
Background. While single-institution studies reported the indications and outcomes of tracheostomy in children with congenital heart disease (CHD), no national analyses have been performed. We sought to examine the indications, performance, outcomes, and resource utilization of tracheostomy in children with CHD using a nationally representative database.
Methods. We identified all children undergoing tracheostomy in the Kids’ Inpatient Database 1997 through 2009, and we compared children with CHD to children without CHD. Within the CHD group, we compared children whose tracheostomy occurred in the same hospital admission as a cardiac operation to those whose tracheostomy occurred without a cardiac operation in the same admission.
Results. Tracheostomy was performed in n = 2,495 children with CHD, which represents 9.6% of all tracheostomies performed in children (n = 25,928), and 3.5% of all admissions for children with CHD (n = 355,460). Over the study period, there was an increasing trend in the proportion of all tracheostomies that were done in children with CHD (p < 0.0001) and an increasing trend in the proportion of admissions for children with CHD that involved a tracheostomy (p < 0.0001). The population of children with CHD undergoing tracheostomy differed markedly in baseline characteristics, outcomes, and resource utilization. Similarly, the subgroup of children whose tracheostomy was performed in the same admission as a cardiac operation differed significantly from those whose tracheostomy was not.
Conclusions. Tracheostomy is an increasingly common procedure in children with CHD despite being associated with significantly greater resource utilization and in-hospital mortality. The population of children with CHD who undergo tracheostomy differs markedly from that of children without CHD who undergo tracheostomy, and important differences are observed between children who undergo tracheostomy in the same admission as a cardiac surgical procedure and those who undergo tracheostomy in a nonsurgical admission, as well as between children with single-ventricle physiology and children with two-ventricle physiology.
doi:10.7717/peerj.568
PMCID: PMC4168842  PMID: 25250217
Tracheostomy; Congenital heart disease; Pediatrics; Respiratory failure; Pediatric critical care; Single-ventricle physiology
25.  Hospitalisations for respiratory syncytial virus bronchiolitis in Akershus, Norway, 1993–2000: a population-based retrospective study 
BMC Pediatrics  2004;4:25.
Background
RSV is recognized as the most important cause of serious lower respiratory tract illness in infants and young children worldwide leading to hospitalisation in a great number of cases, especially in certain high-risk groups. The aims of the present study were to identify risk groups, outcome and incidences of hospitalisation for RSV bronchiolitis in Norwegian children under two years of age and to compare the results with other studies.
Methods
We performed a population-based retrospective survey for the period 1993–2000 in children under two years of age hospitalised for RSV bronchiolitis.
Results
822 admissions from 764 patients were identified, 93% had one hospitalisation, while 7% had two or more hospitalisations. Mean annual hospitalisation incidences were 21.7 per 1.000 children under one year of age, 6.8 per 1.000 children at 1–2 years of age and 14.1 per 1.000 children under two years of age. 77 children (85 admissions) belonged to one or more high-risk groups such as preterm birth, trisomy 21 and congenital heart disease. For preterm children under one year of age, at 1–2 years of age and under two years of age hospitalisation incidences per 1.000 children were 23.5, 8.7 and 16.2 respectively. The incidence for children under two years of age with trisomy 21 was 153.8 per 1.000 children.
Conclusion
While the overall hospitalisation incidences and outcome of RSV bronchiolitis were in agreement with other studies, hospitalisation incidences for preterm children were lower than in many other studies. Age on admission for preterm children, when corrected for prematurity, was comparable to low-risk children. Length of hospitalisation and morbidity was high in both preterm children, children with a congenital heart disease and in children with trisomy 21, the last group being at particular high risk for severe disease.
doi:10.1186/1471-2431-4-25
PMCID: PMC544884  PMID: 15606912

Results 1-25 (1598412)