PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (809162)

Clipboard (0)
None

Related Articles

1.  Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery 
Journal of Experimental Botany  2013;64(7):2093-2106.
In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 INTERACTING PARTNER 1 (SKIP1). Furthermore, the AtWEE1–green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1–YFPC (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1–YFPN negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome.
doi:10.1093/jxb/ert066
PMCID: PMC3638832  PMID: 23536609
Arabidopsis thaliana; bimolecular fluorescence complementation (BiFC); BY-2 cell line; CDKA/B; cell cycle; F-box; green fluorescent protein (GFP); mitosis; Nicotiana tabacum; 26S proteasome SKIP1; WEE1.
2.  Identification of a Wee1–Like Kinase Gene Essential for Procyclic Trypanosoma brucei Survival 
PLoS ONE  2013;8(11):e79364.
Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase. In trypanosomatids, little is known about the genes that regulate cyclin B-cdc2 complexes at the G2/M transition of their cell cycle. Although canonical tyrosine kinases are absent in the genome of trypanosomatids, phosphorylation on protein tyrosine residues has been reported in Trypanosoma brucei. Here, we characterized a Wee1-like protein kinase gene from T. brucei. Expression of TbWee1 in a Schizosaccharomyces pombe strain null for Wee1 inhibited cell division and caused cell elongation. This demonstrates the lengthening of G2, which provided cells with extra time to grow before dividing. The Wee1-like protein kinase was expressed in the procyclic and bloodstream proliferative slender forms of T. brucei and the role of Wee1 in cell cycle progression was analyzed by generating RNA interference cell lines. In the procyclic form of T. brucei, the knock-down of TbWee1 expression by RNAi led to inhibition of parasite growth. Abnormal phenotypes showing an increase in the percentage of cells with 1N0K, 0N1K and 2N1K were observed in these RNAi cell lines. Using parasites with a synchronized cell cycle, we demonstrated that TbWee1 is linked to the G2/M phase. We also showed that TbWee1 is an essential gene necessary for proper cell cycle progression and parasite growth in T. brucei. Our results provide evidence for the existence of a functional Wee1 in T. brucei with a potential role in cell division at G2/M.
doi:10.1371/journal.pone.0079364
PMCID: PMC3818516  PMID: 24223931
3.  Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation 
Molecular Biology of the Cell  2012;23(23):4515-4525.
Cdc14A phosphatase regulates Wee1 kinase through dephosphorylation of two Cdk phosphorylation sites in its regulatory domain, Ser-123 and -139, both involved in the degradation of Wee1 at the entry into mitosis. In this way, Cdc14A interferes with the negative feedback loop between Wee1 and Cdk1 to regulate the mitotic switch.
The activity of Cdk1–cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1–cyclin B1 activity through Wee1 dephosphorylation.
doi:10.1091/mbc.E12-04-0260
PMCID: PMC3510014  PMID: 23051732
4.  Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis 
Background
The cell cycles of the Xenopus laevis embryo undergo extensive remodeling beginning at the midblastula transition (MBT) of early development. Cell divisions 2–12 consist of rapid cleavages without gap phases or cell cycle checkpoints. Some remodeling events depend upon a critical nucleo-cytoplasmic ratio, whereas others rely on a maternal timer controlled by cyclin E/Cdk2 activity. One key event that occurs at the MBT is the degradation of maternal Wee1, a negative regulator of cyclin-dependent kinase (Cdk) activity.
Results
In order to assess the effect of Wee1 on embryonic cell cycle remodeling, Wee1 mRNA was injected into one-cell stage embryos. Overexpression of Wee1 caused cell cycle delay and tyrosine phosphorylation of Cdks prior to the MBT. Furthermore, overexpression of Wee1 disrupted key developmental events that normally occur at the MBT such as the degradation of Cdc25A, cyclin E, and Wee1. Overexpression of Wee1 also resulted in post-MBT apoptosis, tyrosine phosphorylation of Cdks and persistence of cyclin E/Cdk2 activity. To determine whether Cdk2 was required specifically for the survival of the embryo, the cyclin E/Cdk2 inhibitor, Δ34-Xic1, was injected in embryos and also shown to induce apoptosis.
Conclusion
Taken together, these data suggest that Wee1 triggers apoptosis through the disruption of the cyclin E/Cdk2 timer. In contrast to Wee1 and Δ34-Xic1, altering Cdks by expression of Chk1 and Chk2 kinases blocks rather than promotes apoptosis and causes premature degradation of Cdc25A. Collectively, these data implicate Cdc25A as a key player in the developmentally regulated program of apoptosis in X. laevis embryos.
doi:10.1186/1471-213X-7-119
PMCID: PMC2176066  PMID: 17961226
5.  A Bifunctional Regulatory Element in Human Somatic Wee1 Mediates Cyclin A/Cdk2 Binding and Crm1-Dependent Nuclear Export▿ †  
Molecular and Cellular Biology  2009;30(1):116-130.
Sophisticated models for the regulation of mitotic entry are lacking for human cells. Inactivating human cyclin A/Cdk2 complexes through diverse approaches delays mitotic entry and promotes inhibitory phosphorylation of Cdk1 on tyrosine 15, a modification performed by Wee1. We show here that cyclin A/Cdk2 complexes physically associate with Wee1 in U2OS cells. Mutation of four conserved RXL cyclin A/Cdk binding motifs (RXL1 to RXL4) in Wee1 diminished stable binding. RXL1 resides within a large regulatory region of Wee1 that is predicted to be intrinsically disordered (residues 1 to 292). Near RXL1 is T239, a site of inhibitory Cdk phosphorylation in Xenopus Wee1 proteins. We found that T239 is phosphorylated in human Wee1 and that this phosphorylation was reduced in an RXL1 mutant. RXL1 and T239 mutants each mediated greater Cdk phosphorylation and G2/M inhibition than the wild type, suggesting that cyclin A/Cdk complexes inhibit human Wee1 through these sites. The RXL1 mutant uniquely also displayed increased nuclear localization. RXL1 is embedded within sequences homologous to Crm1-dependent nuclear export signals (NESs). Coimmunoprecipitation showed that Crm1 associated with Wee1. Moreover, treatment with the Crm1 inhibitor leptomycin B or independent mutation of the potential NES (NESm) abolished Wee1 nuclear export. Export was also reduced by Cdk inhibition or cyclin A RNA interference, suggesting that cyclin A/Cdk complexes contribute to Wee1 export. Somewhat surprisingly, NESm did not display increased G2/M inhibition. Thus, nuclear export of Wee1 is not essential for mitotic entry though an important functional role remains likely. These studies identify a novel bifunctional regulatory element in Wee1 that mediates cyclin A/Cdk2 association and nuclear export.
doi:10.1128/MCB.01876-08
PMCID: PMC2798281  PMID: 19858290
6.  High Expression of Wee1 Is Associated with Poor Disease-Free Survival in Malignant Melanoma: Potential for Targeted Therapy 
PLoS ONE  2012;7(6):e38254.
Notoriously resistant malignant melanoma is one of the most increasing forms of cancer worldwide; there is thus a precarious need for new treatment options. The Wee1 kinase is a major regulator of the G2/M checkpoint, and halts the cell cycle by adding a negative phosphorylation on CDK1 (Tyr15). Additionally, Wee1 has a function in safeguarding the genome integrity during DNA synthesis. To assess the role of Wee1 in development and progression of malignant melanoma we examined its expression in a panel of paraffin-embedded patient derived tissue of benign nevi and primary- and metastatic melanomas, as well as in agarose-embedded cultured melanocytes. We found that Wee1 expression increased in the direction of malignancy, and showed a strong, positive correlation with known biomarkers involved in cell cycle regulation: Cyclin A (p<0.0001), Ki67 (p<0.0001), Cyclin D3 (p = 0.001), p21Cip1/WAF1 (p = 0.003), p53 (p = 0.025). Furthermore, high Wee1 expression was associated with thicker primary tumors (p = 0.001), ulceration (p = 0.005) and poor disease-free survival (p = 0.008). Transfections using siWee1 in metastatic melanoma cell lines; WM239WTp53, WM45.1MUTp53 and LOXWTp53, further support our hypothesis of a tumor promoting role of Wee1 in melanomas. Whereas no effect was observed in LOX cells, transfection with siWee1 led to accumulation of cells in G1/S and S phase of the cell cycle in WM239 and WM45.1 cells, respectively. Both latter cell lines displayed DNA damage and induction of apoptosis, in the absence of Wee1, indicating that the effect of silencing Wee1 may not be solely dependent of the p53 status of the cells. Together these results reveal the importance of Wee1 as a prognostic biomarker in melanomas, and indicate a potential role for targeted therapy, alone or in combination with other agents.
doi:10.1371/journal.pone.0038254
PMCID: PMC3373567  PMID: 22719872
7.  Murine Wee1 Plays a Critical Role in Cell Cycle Regulation and Pre-Implantation Stages of Embryonic Development 
Wee1 kinase regulates the G2/M cell cycle checkpoint by phosphorylating and inactivating the mitotic cyclin-dependent kinase 1 (Cdk1). Loss of Wee1 in many systems, including yeast and drosophila, leads to premature mitotic entry. However, the developmental role of Wee1 in mammals remains unclear. In this study, we established Wee1 knockout mice by gene targeting. We found that Wee-/- embryos were defective in the G2/M cell cycle checkpoint induced by γ-irradiation and died of apoptosis before embryonic (E) day 3.5. To study the function of Wee1 further, we have developed MEF cells in which Wee1 is disrupted by a tamoxifen inducible Cre-LoxP approach. We found that acute deletion of Wee1 resulted in profound growth defects and cell death. Wee1 deficient cells displayed chromosome aneuploidy and DNA damage as revealed by γ-H2AX foci formation and Chk2 activation. Further studies revealed a conserved mechanism of Wee1 in regulating mitotic entry and the G2/M checkpoint compared with other lower organisms. These data provide in vivo evidence that mammalian Wee1 plays a critical role in maintaining genome integrity and is essential for embryonic survival at the pre-implantation stage of mouse development.
PMCID: PMC1483124  PMID: 16810330
Cdk1; Chk2; G2/M; apoptosis; genetic instability
8.  Inhibition of caspase-3 by Survivin prevents Wee1 Kinase degradation and promotes cell survival by maintaining phosphorylation of p34Cdc2 
Summary
The anti-apoptotic protein Survivin and the cyclin-dependent kinase p34Cdc2 regulate cell cycle progression and apoptosis. p34Cdc2 activation is required for its pro-apoptotic activity and phosphorylation of p34Cdc2 at Tyrosine-15 (Tyr15) maintains p34Cdc2 in an inactive state. In BaF3 IL-3-dependent murine hematopoietic cells, over-expression of wild-type (wt)-Survivin increased Tyrosine phosphorylation of p34Cdc2, while over-expression of dominant-negative (dn) T34A-Survivin decreased Tyr15 phosphorylation. The increased phospho-Tyr15 levels associated with ectopic wt-Survivin directly correlated with enhanced BaF3 cell survival upon growth factor withdrawal, while conversely, low phospho-Tyr15 levels and decreased survival were seen in BaF3 cells expressing ectopic dn-Survivin. Tyrosine-15 phosphorylation of p34Cdc2 is mediated by the Wee1 Kinase, a known target of caspase-3. In BaF3 cells over-expressing wt-Survivin, 2-fold higher levels of Wee1 protein were detected compared to cells expressing vector or dn-Survivin. Treatment of control vector-transduced BaF3 cells with the selective caspase-3 inhibitor Ac-DEVD-CHO increased p34Cdc2-Tyr15 phosphorylation and Wee1 protein levels. In a similar fashion, over-expression of wt-Survivin maintained high levels of phospho-Tyr15-p34Cdc2 and Wee1 protein. Since Survivin requires Hsp90 for stability, we treated cells with the Hsp90 inhibitors AICAR and 17-AAG to further link Survivin to blocking p34Cdc2 activation. Treatment of BaF3 cells expressing ectopic wt-Survivin with AICAR or 17-AAG significantly reduced p34Cdc2-Tyr15 phosphorylation compared to vehicle-treated controls. These results suggest that Survivin protects the p34Cdc2-Tyr15-targeting kinase Wee1 from degradation by blocking caspase-3 activation leading to inhibition of the pro-apoptotic function of p34Cdc2 and enhanced cell survival.
PMCID: PMC2859835  PMID: 20428502
Survivin; p34Cdc2; Wee1; caspase-3; Apoptosis
9.  Cell cycle regulation by the Wee1 Inhibitor PD0166285, Pyrido [2,3-d] pyimidine, in the B16 mouse melanoma cell line 
BMC Cancer  2006;6:292.
Background
Wee1 kinase plays a critical role in maintaining G2 arrest through its inhibitory phosphorylation of cdc2. In previous reports, a pyridopyrimidine molecule PD0166285 was identified to inhibit Wee1 activity at nanomolar concentrations. This G2 checkpoint abrogation by PD0166285 was demonstrated to kill cancer cells, there at a toxic highest dose of 0.5 μM in some cell lines for exposure periods of no longer than 6 hours. The deregulated cell cycle progression may have ultimately damaged the cancer cells. We herein report one of the mechanism by which PD0166285 leads to cell death in the B16 mouse melanoma cell line.
Methods
Tumor cell proliferation was determined by counting cell numbers. Cell cycle distribution was determined by flow cytometry. Morphogenesis analysis such as microtubule stabilization, Wee1 distribution, and cyclin B location were observed by immunofluorescence confocal microscopy. An immunoblot analysis of cdc2-Tyr15, cyclin D, E, p16, 21, 27, and Rb. A real-time PCR of the mRNA of cyclin D were completed.
Results
In our experiment, B16 cells also dramatically abrogated the G2 checkpoint and were found to arrest in the early G1 phase by treatment with 0.5 μM for 4 hours observed by flow cytometry. Cyclin D mRNA decreased within 4 hours observed by Real-time PCR. Rb was dephosphrylated for 24 hours. However, B16 cells did not undergo cell death after 0.5 μM treatment for 24 hours. Immnofluoscence microscopy showed that the cells become round and small in the morphogenesis. More interesting phenomena were that microtubule stabilization was blocked, and Wee1 distribution was restricted after treatment for 4 hours.
Conclusion
We analyzed the effect of Wee1 inhibitor PD0166285 described first by Wang in the G2 transition in the B16 melanoma cell line. The inhibitor PD0166285 abrogated G2/M checkpoint inducing early cell division. Moreover, we found that the treatment of cells with the inhibitor is related to microtubule stabilization and decrease in cyclin D transcription. These effects together suggest that Wee1 inhibitor may thus be a potentially useful anti-cancer therapy.
doi:10.1186/1471-2407-6-292
PMCID: PMC1770931  PMID: 17177986
10.  Drosophila Wee1 Kinase Regulates Cdk1 and Mitotic Entry during Embryogenesis 
Current biology : CB  2004;14(23):2143-2148.
Summary
Cyclin-dependent kinases (Cdks) are the central regulators of the cell division cycle. Inhibitors of Cdks ensure proper coordination of cell cycle events and help regulate cell proliferation in the context of tissues and organs. Wee1 homologs phosphorylate a conserved tyrosine to inhibit the mitotic cyclin-dependent kinase Cdk1 [1]. Loss of Wee1 function in fission or budding yeast causes premature entry into mitosis [2, 3]. The importance of metazoan Wee1 homologs for timing mitosis, however, has been demonstrated only in Xenopus egg extracts and via ectopic Cdk1 activation [4, 5]. Here, we report that Drosophila Wee1 (dWee1) regulates Cdk1 via phosphorylation of tyrosine 15 and times mitotic entry during the cortical nuclear cycles of syncytial blastoderm embryos, which lack gap phases. Loss of maternal dwee1 leads to premature entry into mitosis, mitotic spindle defects, chromosome condensation problems, and a Chk2-dependent block of subsequent development, and then embryonic lethality. These findings modify previous models about cell cycle regulation in syncytial embryos [6] and demonstrate that Wee1 kinases can regulate mitotic entry in vivo during metazoan development even in cycles that lack a G2 phase.
doi:10.1016/j.cub.2004.11.050
PMCID: PMC3242732  PMID: 15589158
11.  Simultaneously expressed miR-424 and miR-381 synergistically suppress the proliferation and survival of renal cancer cells---Cdc2 activity is up-regulated by targeting WEE1 
Clinics  2013;68(6):825-833.
OBJECTIVES:
MiRNAs are intrinsic RNAs that interfere with protein translation. Few studies on the synergistic effects of miRNAs have been reported. Both miR-424 and miR-381 have been individually reported to be involved in carcinogenesis. They share a common putative target, WEE1, which is described as an inhibitor of G2/M progression. Here, we studied the synergistic effects of miR-424 and miR-381 on renal cancer cells.
METHODS:
The viability of 786-O cells was analyzed after transfection with either a combination of miR-424 and miR-381 or each miRNA alone. We investigated cell cycle progression and apoptosis with flow cytometry. To confirm apoptosis and the abrogation of G2/M arrest, we determined the level of pHH3, which is an indicator of mitosis, and caspase-3/7 activity. The expression levels of WEE1, Cdc25, γH2AX, and Cdc2 were manipulated to investigate the roles of these proteins in the miRNA-induced anti-tumor effects. To verify that WEE1 was a direct target of both miR-424 and miR-381, we performed a dual luciferase reporter assay.
RESULTS:
We showed that the combination of these miRNAs synergistically inhibited proliferation, abrogated G2/M arrest, and induced apoptosis. This combination led to Cdc2 activation through WEE1 inhibition. This regulation was more effective when cells were treated with both miRNAs than with either miRNA alone, indicating synergy between these miRNAs. WEE1 was verified to be a direct target of each miRNA according to the luciferase reporter assay.
CONCLUSIONS:
These data clearly demonstrate that these two miRNAs might synergistically act as novel modulators of tumorigenesis by down-regulating WEE1 expression in renal cell cancer cells.
doi:10.6061/clinics/2013(06)17
PMCID: PMC3674285  PMID: 23778472
miRNA; WEE1; miR-424; miR-381; Synergistic Effect
12.  Roles of Wee1 and Nim1 protein kinases in regulating the switch from mitotic division to sexual development in Schizosaccharomyces pombe. 
Molecular and Cellular Biology  1997;17(1):10-17.
In self-fertile strains of the fission yeast Schizosaccharomyces pombe, nitrogen starvation initiates a program of sexual development in which cells express mating pheromones and receptors, arrest cell cycle progression in G1, and conjugate. This process is dependent on Rum1, an inhibitor of the Cdc2-Cdc13 and Cdc2-Cig2 cyclin B kinases. The M-phase induction activity of Cdc2-Cdc13 is inhibited by Wee1 tyrosine kinase, which phosphorylates Cdc2 on tyrosine-15. We report here that Wee1 activity is also important for mating. This discovery arose from studies of Nim1, a kinase which promotes mitosis by inhibiting Wee1. Nim1 was previously thought to have an important role in promoting mitosis during nitrogen starvation, but our studies revealed that Nim1 protein drops to an undetectable level within 15 min of nitrogen depletion. In contrast, Wee1 remains abundant, and tyrosine-phosphorylated Cdc2 is detected for at least 4 h after resuspension of cells in nitrogen-free medium. This suggested that maintenance of Wee1 activity may be important during the early stages of nitrogen starvation, a proposal confirmed by the observation that mating efficiency is reduced ca. fivefold in wee1- cells. Transcriptional induction of genes encoding mating factors and receptors is also delayed in wee1- cells. The wee1- mating defect is suppressed by deletion of cig2+, which encodes a B-type cyclin that promotes the onset of S and inhibits conjugation. These findings indicate that Wee1 and Rum1 act jointly to inhibit Cdc2 and promote sexual development in nitrogen-starved cells.
PMCID: PMC231724  PMID: 8972180
13.  Genetic inhibition of the atypical kinase Wee1 selectively drives apoptosis of p53 inactive tumor cells 
BMC Cancer  2014;14:430.
Background
Tumorigenesis is the result of genomic or epigenomic insults and subsequent loss of the proper mechanisms to respond to these alterations leading to unscheduled growth. Tumors arising from these mutations often have altered cell cycles that offer proliferative advantages and lead to the accumulation of additional mutations that can lead to more aggressive phenotypes. Nevertheless, tumor cells must still adhere to the basic tenets of the cell cycle program to ensure their survival by DNA duplication, chromosomal segregation and cytokinesis. The atypical tyrosine kinase Wee1 plays a key role in regulating the cell cycle at the DNA synthesis and mitotic checkpoints via phosphorylation and subsequent inactivation of cyclin-dependent kinases (CDKs) in both healthy and tumorigenic cells.
Methods
To assess the role of Wee1 in tumor cell proliferation we performed small interfering RNA (siRNA) experiments in a panel of diverse cell lines derived from various tissue origins. We also tested the hypothesis that any potential effects would be as a result of the kinase activity of Wee1 by siRNA rescue studies with wild-type or kinase-dead versions of Wee1.
Results
We find that, in general, cells with wild-type p53 activity are not susceptible to loss of Wee1 protein via siRNA. However, Wee1 siRNA treatment in tumor cells with an inherent loss of p53 activity results in a deregulated cell cycle that causes simultaneous DNA synthesis and premature mitosis and that these effects are kinase dependent. These cumulative effects lead to potent inhibition of cellular proliferation and ultimately caspase-dependent apoptosis in the absence of co-treatment with cytotoxic agents.
Conclusions
These results suggest that, while Wee1 acts as a tumor suppressor in the context of normal cell growth and its functional loss can be compensated by p53-dependent DNA damage repairing mechanisms, specific inhibition of Wee1 has deleterious effects on the proliferation and survival of p53 inactive tumors. In total, targeting the atypical kinase Wee1 with an siRNA-based therapeutic or a selective ATP competitive small molecule inhibitor would be a feasible approach to targeting p53 inactive tumors in the clinic.
doi:10.1186/1471-2407-14-430
PMCID: PMC4229861  PMID: 24927813
Wee1; p53; Apoptosis; CDK1; CDK2; DNA damage
14.  An RNAi-Based Suppressor Screen Identifies Interactors of the Myt1 Ortholog of Caenorhabditis elegans 
G3: Genes|Genomes|Genetics  2014;4(12):2329-2343.
Oocyte maturation in all species is controlled by a protein complex termed the maturation promoting factor (MPF). MPF comprises a cyclin-dependent kinase (CDK) and its partner cyclin, and it is regulated by dueling regulatory phosphorylation events on the CDK. In Caenorhabditis elegans, the Wee1/Myt1 ortholog WEE-1.3 provides the inhibitory phosphorylations on CDK-1 that keep MPF inactive and halt meiosis. Prior work has shown that depletion of WEE-1.3 in C. elegans results in precocious oocyte maturation in vivo and a highly penetrant infertility phenotype. This study sought to further define the precocious maturation phenotype and to identify novel interactors with WEE-1.3. We found that WEE-1.3 is expressed throughout the germline and in developing embryos in a perinuclear pattern, and demonstrated that oocytes in WEE-1.3–depleted germlines have begun to transcribe embryonic genes and exhibit inappropriate expression of proteins normally restricted to fertilized eggs. In addition, we performed an RNAi suppressor screen of the infertile phenotype to identify novel factors that, when co-depleted with WEE-1.3, restore fertility to these animals. We screened ∼1900 essential genes by RNAi feeding and identified 44 (∼2% of the tested genes) that are suppressors of the WEE-1.3 depletion phenotype. The suppressors include many previously unidentified players in the meiotic cell cycle and represent a pool of potential WEE-1.3 interacting proteins that function during C. elegans oocyte maturation and zygotic development.
doi:10.1534/g3.114.013649
PMCID: PMC4267929  PMID: 25298536
WEE-1.3; fertility; suppressor; oocyte maturation; EGA
15.  Discovery of gene expression-based pharmacodynamic biomarker for a p53 context-specific anti-tumor drug Wee1 inhibitor 
Molecular Cancer  2009;8:34.
Background
Wee1 is a tyrosine kinase regulating S-G2 cell cycle transition through the inactivating phosphorylation of CDC2. The inhibition of Wee1 kinase by a selective small molecule inhibitor significantly enhances the anti-tumor efficacy of DNA damaging agents, specifically in p53 negative tumors by abrogating S-G2 checkpoints, while normal cells with wild-type p53 are not severely damaged due to the intact function of the G1 checkpoint mediated by p53. Since the measurement of mRNA expression requires a very small amount of biopsy tissue and is highly quantitative, the development of a pharmacodynamic (PD) biomarker leveraging mRNA expression is eagerly anticipated in order to estimate target engagement of anti-cancer agents.
Results
In order to find the Wee1 inhibition signature, mRNA expression profiling was first performed in both p53 positive and negative cancer cell lines treated with gemcitabine and a Wee1 inhibitor, MK-1775. We next carried out mRNA expression profiling of skin samples derived from xenograft models treated with the Wee1 inhibitor to identify a Wee1 inhibitor-regulatory gene set. Then, the genes that were commonly modulated in both cancer cell lines and rat skin samples were extracted as a Wee1 inhibition signature that could potentially be used as a PD biomarker independent of p53 status. The expression of the Wee1 inhibition signature was found to be regulated in a dose-dependent manner by the Wee1 inhibitor, and was significantly correlated with the inhibition level of a direct substrate, phosphorylated-CDC2. Individual genes in this Wee1 inhibition signature are known to regulate S-G2 cell cycle progression or checkpoints, which is consistent with the mode-of-action of the Wee1 inhibitor.
Conclusion
We report here the identification of an mRNA gene signature that was specifically changed by gemcitabine and Wee1 inhibitor combination treatment by molecular profiling. Given the common regulation of expression in both xenograft tumors and animal skin samples, the data suggest that the Wee1 inhibition gene signature might be utilized as a quantitative PD biomarker in both tumors and surrogate tissues, such as skin and hair follicles, in human clinical trials.
doi:10.1186/1476-4598-8-34
PMCID: PMC2700070  PMID: 19500427
16.  Multisite M-Phase Phosphorylation of Xenopus Wee1A 
Molecular and Cellular Biology  2005;25(23):10580-10590.
The Cdk1 inhibitor Wee1 is inactivated during mitotic entry by proteolysis, translational regulation, and transcriptional regulation. Wee1 is also regulated by posttranslational modifications, and here we have identified five phosphorylation sites in the N-terminal domain of embryonic Xenopus Wee1A through a combination of mutagenesis studies and matrix-assisted laser desorption ionization-time of flight mass spectrometry. All five sites conform to the Ser-Pro/Thr-Pro consensus for proline-directed kinases like Cdks. Three of the sites (Ser 38, Thr 53, and Ser 62) are required for the mitotic gel shift, and at least two of these sites (Ser 38 and Thr 53) regulate the proteolysis of Wee1A during interphase. The other two sites (Thr 104 and Thr 150) are primarily responsible for the mitotic inactivation of Wee1A. Alanine mutants of Thr 150 or Thr 104 had an increased capacity to inhibit mitotic entry in cyclin B-treated interphase extracts, and Thr 150 was found to be transiently phosphorylated just prior to nuclear envelope breakdown in cycling egg extracts. These findings establish the phosphorylation-dependent direct inactivation of Wee1A as a critical mechanism for the promotion of M-phase entry. These results also show that multisite phosphorylation cooperatively inactivates Wee1A and cooperatively promotes Wee1A proteolysis.
doi:10.1128/MCB.25.23.10580-10590.2005
PMCID: PMC1291245  PMID: 16287869
17.  Akt/Protein Kinase B-Dependent Phosphorylation and Inactivation of WEE1Hu Promote Cell Cycle Progression at G2/M Transition 
Molecular and Cellular Biology  2005;25(13):5725-5737.
The serine/threonine kinase Akt is known to promote cell growth by regulating the cell cycle in G1 phase through activation of cyclin/Cdk kinases and inactivation of Cdk inhibitors. However, how the G2/M phase is regulated by Akt remains unclear. Here, we show that Akt counteracts the function of WEE1Hu. Inactivation of Akt by chemotherapeutic drugs or the phosphatidylinositide-3-OH kinase inhibitor LY294002 induced G2/M arrest together with the inhibitory phosphorylation of Cdc2. Because the increased Cdc2 phosphorylation was completely suppressed by wee1hu gene silencing, WEE1Hu was associated with G2/M arrest induced by Akt inactivation. Further analyses revealed that Akt directly bound to and phosphorylated WEE1Hu during the S to G2 phase. Serine-642 was identified as an Akt-dependent phosphorylation site. WEE1Hu kinase activity was not affected by serine-642 phosphorylation. We revealed that serine-642 phosphorylation promoted cytoplasmic localization of WEE1Hu. The nuclear-to-cytoplasmic translocation was mediated by phosphorylation-dependent WEE1Hu binding to 14-3-3θ but not 14-3-3β or -σ. These results indicate that Akt promotes G2/M cell cycle progression by inducing phosphorylation-dependent 14-3-3θ binding and cytoplasmic localization of WEE1Hu.
doi:10.1128/MCB.25.13.5725-5737.2005
PMCID: PMC1156994  PMID: 15964826
18.  Gauchos and ochos: a Wee1-Cdk tango regulating mitotic entry 
Cell Division  2010;5:12.
The kinase Wee1 has been recognized for a quarter century as a key inhibitor of Cyclin dependent kinase 1 (Cdk1) and mitotic entry in eukaryotes. Nonetheless, Wee1 regulation is not well understood and its large amino-terminal regulatory domain (NRD) has remained largely uncharted. Evidence has accumulated that cyclin B/Cdk1 complexes reciprocally inhibit Wee1 activity through NRD phosphorylation. Recent studies have identified the first functional NRD elements and suggested that vertebrate cyclin A/Cdk2 complexes also phosphorylate the NRD. A short NRD peptide, termed the Wee box, augments the activity of the Wee1 kinase domain. Cdk1/2-mediated phosphorylation of the Wee box (on T239) antagonizes kinase activity. A nearby region harbors a conserved RxL motif (RxL1) that promotes cyclin A/Cdk2 binding and T239 phosphorylation. Mutation of either T239 or RxL1 bolsters the ability of Wee1 to block mitotic entry, consistent with negative regulation of Wee1 through these sites. The region in human somatic Wee1 that encompasses RxL1 also binds Crm1, directing Wee1 export from the nucleus. These studies have illuminated important aspects of Wee1 regulation and defined a specific molecular pathway through which cyclin A/Cdk2 complexes foster mitotic entry. The complexity, speed, and importance of regulation of mitotic entry suggest that there is more to be learned.
doi:10.1186/1747-1028-5-12
PMCID: PMC2886006  PMID: 20465818
19.  Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease 
The Journal of Cell Biology  2011;194(4):567-579.
Wee1 is essential for normal DNA replication and for genomic stability, at least in part by inhibiting a general DNA damage response induced by the Mus81-Eme1 endonuclease.
Correct replication of the genome and protection of its integrity are essential for cell survival. In a high-throughput screen studying H2AX phosphorylation, we identified Wee1 as a regulator of genomic stability. Wee1 down-regulation not only induced H2AX phosphorylation but also triggered a general deoxyribonucleic acid (DNA) damage response (DDR) and caused a block in DNA replication, resulting in accumulation of cells in S phase. Wee1-deficient cells showed a decrease in replication fork speed, demonstrating the involvement of Wee1 in DNA replication. Inhibiting Wee1 in cells treated with short treatment of hydroxyurea enhanced the DDR, which suggests that Wee1 specifically protects the stability of stalled replication forks. Notably, the DDR induced by depletion of Wee1 critically depends on the Mus81-Eme1 endonuclease, and we found that codepletion of Mus81 and Wee1 abrogated the S phase delay. Importantly, Wee1 and Mus81 interact in vivo, suggesting direct regulation. Altogether, these results demonstrate a novel role of Wee1 in controlling Mus81 and DNA replication in human cells.
doi:10.1083/jcb.201101047
PMCID: PMC3160579  PMID: 21859861
20.  MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1 
Molecular Cancer  2013;12:23.
Background
Neuroblastoma is responsible for 15% of all childhood cancer deaths. Despite advances in treatment and disease management, the overall 5-year survival rates remain poor in high-risk disease (25-40%). MiR-497 was previously identified by our laboratory as a member of a miRNA expression signature, predictive of neuroblastoma patient survival and has been reported as a tumor suppressor in a variety of other cancers. WEE1, a tyrosine kinase regulator of the cell cycle and predicted target of miR-497, has emerged as an oncogene in several cancer types and therefore represents an attractive potential target for novel therapy approaches in high-risk neuroblastoma. Our aim was to investigate the potential tumor suppressive role of miR-497 in high-risk neuroblastoma.
Methods
Expression levels of miR-497 and WEE1 in tissues and cells were determined using RT-PCR. The effect of miR-497 and siWEE1 on cell viability was evaluated using MTS assays, apoptosis levels were determined using FACS analysis of Annexin V/PI stained cells, and target protein expression was determined using western blot. Luciferase reporter plasmids were constructed to confirm direct targeting. Results were reported as mean±S.E.M and differences were tested for significance using 2-tailed Students t-test.
Results
We determined that miR-497 expression was significantly lower in high-risk MYCN amplified (MNA) tumors and that low miR-497 expression was associated with worse EFS and OS in our cohort. Over-expression of miR-497 reduced cell viability and increased apoptosis in MNA cells. We identified WEE1 as a novel target for miR-497 in neuroblastoma. Furthermore, our analysis showed that high WEE1 levels are significantly associated with poor EFS and OS in neuroblastoma and that siRNA knockdown of WEE1 in MNA cell lines results in significant levels of apoptosis, supporting an oncogenic role of WEE1 in neuroblastoma. Cisplatin (CDDP) treatment of both miR-497 over-expressing cells and WEE1 inhibited cells, resulted in a significant increase in apoptosis in MNA cells, describing a synergistic effect and therefore a potential therapeutic for high-risk neuroblastoma.
Conclusion
Our study’s results are consistent with miR-497 being a candidate tumor suppressor in neuroblastoma, through the direct targeting of WEE1. These findings re-enforce the proposal of WEE1 as a therapeutic target in neuroblastoma.
doi:10.1186/1476-4598-12-23
PMCID: PMC3626575  PMID: 23531080
miR-497; Neuroblastoma; WEE1; Tumor suppressor; Cisplatin
21.  Protein tyrosine kinase Wee1B is essential for metaphase II exit in mouse oocytes 
Science (New York, N.Y.)  2011;332(6028):462-465.
Waves of cyclin synthesis and degradation regulate the activity of Cdc2 protein kinase during the cell cycle. Cdc2 inactivation by Wee1B-mediated phosphorylation is necessary for arrest of the oocyte at G2-prophase, but it is unclear whether this regulation functions later during the metaphase to anaphase transition. We show that reactivation of a Wee1B pathway triggers the decrease in Cdc2 activity during egg activation. When Wee1B is downregulated, oocytes fail to form a pronucleus in response to Ca2+ signals. Calcium-calmodulin-dependent kinase II (CaMKII) activates Wee1B, and CaMKII-driven exit from metaphase II (MII) is inhibited by Wee1B downregulation, demonstrating that exit from metaphase requires not only a proteolytic degradation of cyclin B, but also the inhibitory phosphorylation of Cdc2 by Wee1B.
doi:10.1126/science.1199211
PMCID: PMC4104668  PMID: 21454751
22.  DNA replication checkpoint control of Wee1 stability by vertebrate Hsl7 
The Journal of Cell Biology  2004;167(5):841-849.
G2/M checkpoints prevent mitotic entry upon DNA damage or replication inhibition by targeting the Cdc2 regulators Cdc25 and Wee1. Although Wee1 protein stability is regulated by DNA-responsive checkpoints, the vertebrate pathways controlling Wee1 degradation have not been elucidated. In budding yeast, stability of the Wee1 homologue, Swe1, is controlled by a regulatory module consisting of the proteins Hsl1 and Hsl7 (histone synthetic lethal 1 and 7), which are targeted by the morphogenesis checkpoint to prevent Swe1 degradation when budding is inhibited. We report here the identification of Xenopus Hsl7 as a positive regulator of mitosis that is controlled, instead, by an entirely distinct checkpoint, the DNA replication checkpoint. Although inhibiting Hsl7 delayed mitosis, Hsl7 overexpression overrode the replication checkpoint, accelerating Wee1 destruction. Replication checkpoint activation disrupted Hsl7–Wee1 interactions, but binding was restored by active polo-like kinase. These data establish Hsl7 as a component of the replication checkpoint and reveal that similar cell cycle control modules can be co-opted for use by distinct checkpoints in different organsims.
doi:10.1083/jcb.200406048
PMCID: PMC2172454  PMID: 15583029
23.  Changes in Regulatory Phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during Normal Cell Cycle Progression and Checkpoint Arrests 
Molecular Biology of the Cell  2005;16(12):5749-5760.
Entry into mitosis is catalyzed by cdc2 kinase. Previous work identified the cdc2-activating phosphatase cdc25C and the cdc2-inhibitory kinase wee1 as targets of the incomplete replication-induced kinase Chk1. Further work led to the model that checkpoint kinases block mitotic entry by inhibiting cdc25C through phosphorylation on Ser287 and activating wee1 through phosphorylation on Ser549. However, almost all conclusions underlying this idea were drawn from work using recombinant proteins. Here, we report that in the early Xenopus egg cell cycles, phosphorylation of endogenous cdc25C Ser287 is normally high during interphase and shows no obvious increase after checkpoint activation. By contrast, endogenous wee1 Ser549 phosphorylation is low during interphase and increases after activation of either the DNA damage or replication checkpoints; this is accompanied by a slight increase in wee1 kinase activity. Blocking mitotic entry by adding the catalytic subunit of PKA also results in increased wee1 Ser549 phosphorylation and maintenance of cdc25C Ser287 phosphorylation. These results argue that in response to checkpoint activation, endogenous wee1 is indeed a critical responder that functions by repressing the cdc2-cdc25C positive feedback loop. Surprisingly, endogenous wee1 Ser549 phosphorylation is highest during mitosis just after the peak of cdc2 activity. Treatments that block inactivation of cdc2 result in further increases in wee1 Ser549 phosphorylation, suggesting a previously unsuspected role for wee1 in mitosis.
doi:10.1091/mbc.E05-06-0541
PMCID: PMC1289418  PMID: 16195348
24.  Cell cycle regulation of a Xenopus Wee1-like kinase. 
Molecular Biology of the Cell  1995;6(1):119-134.
Using a polymerase chain reaction-based strategy, we have isolated a gene encoding a Wee1-like kinase from Xenopus eggs. The recombinant Xenopus Wee1 protein efficiently phosphorylates Cdc2 exclusively on Tyr-15 in a cyclin-dependent manner. The addition of exogenous Wee1 protein to Xenopus cell cycle extracts results in a dose-dependent delay of mitotic initiation that is accompanied by enhanced tyrosine phosphorylation of Cdc2. The activity of the Wee1 protein is highly regulated during the cell cycle: the interphase, underphosphorylated form of Wee1 (68 kDa) phosphorylates Cdc2 very efficiently, whereas the mitotic, hyperphosphorylated version (75 kDa) is weakly active as a Cdc2-specific tyrosine kinase. The down-modulation of Wee1 at mitosis is directly attributable to phosphorylation, since dephosphorylation with protein phosphatase 2A restores its kinase activity. During interphase, the activity of this Wee1 homolog does not vary in response to the presence of unreplicated DNA. The mitosis-specific phosphorylation of Wee1 is due to at least two distinct kinases: the Cdc2 protein and another activity (kinase X) that may correspond to an MPM-2 epitope kinase. These studies indicate that the down-regulation of Wee1-like kinase activity at mitosis is a multistep process that occurs after other biochemical reactions have signaled the successful completion of S phase.
Images
PMCID: PMC275819  PMID: 7749193
25.  Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome 
Breast cancers can be classified into those that express the estrogen (ER) and progesterone (PR) receptors, those with ERBB2 (HER-2/Neu) amplification, and those without expression of ER, PR, or amplification of ERBB2 (referred to as triple-negative or basal-like breast cancer). In order to identify potential molecular targets in breast cancer, we performed a synthetic siRNA-mediated RNAi screen of the human tyrosine kinome. A primary RNAi screen conducted in the triple-negative/basal-like breast cancer cell line MDA-MB231 followed by secondary RNAi screens and further studies in this cell line and two additional triple-negative/basal-like breast cancer cell lines, BT20 and HCC1937, identified the G2/M checkpoint protein, WEE1, as a potential therapeutic target. Similar sensitivity to WEE1 inhibition was observed in cell lines from all subtypes of breast cancer. RNAi-mediated silencing or small compound inhibition of WEE1 in breast cancer cell lines resulted in an increase in γH2AX levels, arrest in the S-phase of the cell cycle, and a significant decrease in cell proliferation. WEE1-inhibited cells underwent apoptosis as demonstrated by positive Annexin V staining, increased sub-G1 DNA content, apoptotic morphology, caspase activation, and rescue by the pan-caspase inhibitor, Z-VAD-FMK. In contrast, the non-transformed mammary epithelial cell line, MCF10A, did not exhibit any of these downstream effects following WEE1 silencing or inhibition. These results identify WEE1 as a potential molecular target in breast cancer.
doi:10.1007/s10549-009-0571-2
PMCID: PMC3462346  PMID: 19821025
RNAi screen; Breast cancer; Tyrosine kinase; WEE1; Apoptosis

Results 1-25 (809162)