Search tips
Search criteria

Results 1-25 (1149595)

Clipboard (0)

Related Articles

1.  Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. 
British Journal of Cancer  1998;77(9):1386-1394.
It has been proposed that the generation of O2 during photodynamic therapy (PDT) may lead to photochemical depletion of ambient tumour oxygen, thus causing acute hypoxia and limiting treatment effectiveness. We have studied the effects of fluence rate on pO2, in the murine RIF tumour during and after PDT using 5 mg kg(-1) Photofrin and fluence rates of 30, 75 or 150 mW cm(-2). Median pO2 before PDT ranged from 2.9 to 5.2 mmHg in three treatment groups. Within the first minute of illumination, median tumour pO2 decreased with all fluence rates to values between 0.7 and 1.1 mmHg. These effects were rapidly and completely reversible if illumination was interrupted. During prolonged illumination (20-50 J cm(-2)) pO2 recovered at the 30 mW cm(-2) fluence rate to a median value of 7.4 mmHg, but remained low at the 150 mW cm(-2) fluence rate (median pO2 1.7 mmHg). Fluence rate effects were not found after PDT, and at both 30 and 150 mW cm(-2) median tumour pO2 fell from control levels to 1.0-1.8 mmHg within 1-3 h after treatment conclusion. PDT with 100 J cm(-2) at 30 mW cm(-2) caused significantly (P = 0.0004) longer median tumour regrowth times than PDT at 150 mW cm(-2), indicating that lower fluence rate can improve PDT response. Vascular perfusion studies uncovered significant fluence rate-dependent differences in the responses of the normal and tumour vasculature. These data establish a direct relationship between tumour pO2, the fluence rate applied during PDT and treatment outcome. The findings are of immediate clinical relevance.
PMCID: PMC2150183  PMID: 9652753
2.  Fluence Rate-Dependent Intratumor Heterogeneity in Physiologic and Cytotoxic Responses to Photofrin Photodynamic Therapy 
Photodynamic therapy (PDT) can lead to the creation of heterogeneous, response-limiting hypoxia during illumination, which may be controlled in part through illumination fluence rate. In the present report we consider 1) regional differences in hypoxia, vascular response, and cell kill as a function of tumor depth and 2) the role of fluence rate as a mediator of depth-dependent regional intratumor heterogeneity. Intradermal RIF murine tumors were treated with Photofrin-PDT using surface illumination at an irradiance of 75 or 38 mW/cm2. Regional heterogeneity in tumor response was examined through comparison of effects in the surface vs. base of tumors, i.e. along a plane parallel to the skin surface and perpendicular to the incident illumination. 75 mW/cm2-PDT created significantly greater hypoxia in tumor bases relative to their surfaces. Increased hypoxia in the tumor base could not be attributed to regional differences in Photofrin concentration nor effects of fluence rate distribution on photochemical oxygen consumption, but significant depth-dependent heterogeneity in vascular responses and cytotoxic response were detected. At a lower fluence rate of 38 mW/cm2, no detectable regional differences in hypoxia or cytotoxic responses were apparent, and heterogeneity in vascular response was significantly less than that during 75 mW/cm2-PDT. This research suggests that the benefits of low-fluence-rate-PDT are mediated in part by a reduction in intratumor heterogeneity in hypoxic, vascular and cytotoxic responses.
PMCID: PMC2834171  PMID: 20024165
photodynamic therapy; fluence rate; hypoxia; EF3; blood flow
3.  Motexafin lutetium-photodynamic therapy of prostate cancer: Short and long term effects on PSA 
The time course of serum PSA response to photodynamic therapy (PDT) of prostate cancer was measured.
Experimental Design:
Seventeen patients were treated in a Phase I trial of motexafin lutetium-PDT. PDT dose was calculated in each patient as the product of the ex vivo-measured pre-PDT photosensitizer level and the in situ-measured light dose. Serum PSA level was measured within two months prior to PDT (baseline), and at day 1; weeks 1-3; months 1, 2 and 3; months 4-6 and months 7-11 after PDT.
At 24h after PDT, serum PSA increased by 98±36% (mean ± SE) relative to baseline levels (p=0.007). When patients were dichotomized based on median PDT dose, those who received high PDT dose demonstrated a 119±52% increase in PSA compared to a 54±27% increase in patients treated at low PDT dose. Patients treated with high vs. low PDT dose demonstrated a median biochemical delay of 82 vs. 43 days (p=0.024), with biochemical delay defined as the length of time between PDT and a nonreversible increase in PSA to a value ≥baseline.
Results show PDT to induce large, transient increases in serum PSA levels. Patients who experienced high PDT dose demonstrated greater short-term increase in PSA and a significantly more durable PSA response (biochemical delay). These data strongly promote the need for individualized delivery of PDT dose and assessment of treatment effect in PDT of prostate cancer. Information gained from such patient-specific measurements could facilitate the introduction of multiple PDT sessions in patients who would benefit.
PMCID: PMC2680073  PMID: 18676760
motexafin lutetium; prostate; PSA; PDT dose; photosensitizer concentration
4.  Disruption of the Blood–Brain Barrier Following ALA-Mediated Photodynamic Therapy 
Lasers in surgery and medicine  2008;40(8):535-542.
Background and Objective
Photodynamic therapy (PDT) is a local antineoplastic treatment with the potential for tumor cell specificity. PDT using either hematoporphyrin derivatives or 5-aminolevulinic acid (ALA) has been reported to induce brain edema indicating disruption of the blood–brain barrier (BBB). We have evaluated the ability of ALA-mediated PDT to open the BBB in rats. This will permit access of chemotherapeutic agents to brain tumor cells remaining in the resection cavity wall, but limit their penetration into normal brain remote from the site of illumination.
Study Design/Materials and Methods
ALA-PDT was performed on non-tumor bearing inbred Fischer rats at increasing fluence levels. Contrast T1-weighted high field (3 T) magnetic resonance imaging (MRI) scans were used to monitor the degree of BBB disruption which could be inferred from the intensity and volume of the contrast agent visualized.
PDT at increasing fluence levels between 9 and 26 J demonstrated an increasing contrast flow rate. A similar increased contrast volume was observed with increasing fluence rates. The BBB was found to be disrupted 2 hours following PDT and 80–100% restored 72 hours later at the lowest fluence level. No effect on the BBB was observed if 26 J of light was given in the absence of ALA.
ALA-PDT was highly effective in opening the BBB in a localized region of the brain. The degradation of the BBB was temporary in nature at fluence levels of 9 J, opening rapidly following treatment and significantly restored during the next 72 hours. No signs of tissue damage were seen on histological sections at this fluence level. However, higher fluences did demonstrate permanent tissue changes localized in the immediate vicinity of the light source.
PMCID: PMC2667623  PMID: 18798293
brain edema; fischer rat; fluence; fluence rate; magnetic resonance imaging; malignant glioma
5.  Tumor Vascular Microenvironment Determines Responsiveness to Photodynamic Therapy 
Cancer Research  2012;72(8):2079-2088.
The efficacy of photodynamic therapy (PDT) depends upon the delivery of both photosensitizing drug and oxygen. In this study, we hypothesized that local vascular microenvironment is a determinant of tumor response to PDT. Tumor vascularization and its basement membrane (collagen) were studied as a function of supplementation with basement membrane matrix (Matrigel) at the time of tumor cell inoculation. Effects on vascular composition with consequences to tumor hypoxia, photosensitizer uptake and PDT response were measured. Matrigel-supplemented tumors developed more normalized vasculature, composed of smaller and more uniformly-spaced blood vessels than their unsupplemented counterparts, but these changes did not affect tumor oxygenation or PDT-mediated direct cytotoxicity. However, PDT-induced vascular damage increased in Matrigel-supplemented tumors, following an affinity of the photosensitizer Photofrin for collagen-containing vascular basement membrane coupled with increased collagen content in these tumors. The more highly-collagenated tumors demonstrated more vascular congestion and ischemia after PDT, along with a higher probability of curative outcome that was collagen dependent. In the presence of photosensitizer-collagen localization, PDT effects on collagen were evidenced by a decrease in its association with vessels. Together, our findings demonstrate that photosensitizer localization to collagen increases vascular damage and improves treatment efficacy in tumors with greater collagen content. The vascular basement membrane is thus identified to be a determinant of therapeutic outcome in PDT of tumors.
PMCID: PMC3328659  PMID: 22374982
collagen; photodynamic therapy; microenvironment; normalization; vasculature
6.  Factors Influencing Tumor Response to Photodynamic Therapy Sensitized by Intratumor Administration of Methylene Blue 
Lasers in surgery and medicine  2010;42(8):728-735.
Background and Objective
We examined tumor response to methylene blue (MB)-mediated photodynamic therapy (PDT) in a murine tumor model. The goal was to investigate the effects of drug-light interval (DLI), injection vehicle, and fluence on tumor destruction. Fluorescence and reflectance spectroscopy informed our understanding.
Materials and Methods
EMT6 tumor cells were implanted intradermally on the backs of female BALB/c mice and grown to ~ 4-mm diameter. Mice were given a 35 μL, single site, intratumor injection of 500 μg/mL MB administered in either a water or a 5% ethanol-5% Cremophor-90% saline vehicle. PDT was begun either immediately or after a 1-hour DLI with a fluence rate of 60 mW/cm2. Each animal received a fluence of 240 or 480 J/cm2. Fluorescence and reflectance spectra were captured before and during irradiation.
A protocol consisting of the Cremophor-based vehicle, 0 DLI, and a fluence of 480 J/cm2 was the most effective, with a 55% cure rate as measured by no evidence of tumor 90 days after PDT. Use of the water vehicle with this fluence and DLI reduced the cure rate to 20%. Reducing the fluence to 240 J/cm2 similarly reduced treatment efficacy with 0 and 1-h DLIs. Univariate Cox proportional hazards analysis identified increased fluence, 0 vs. 1-h DLI, and the Cremophor vs. water vehicle as highly significant independent predictors of long term tumor control (p < 0.01 in each case). Multivariate analysis with model selection revealed fluence and injection vehicle as the best predictors of survival hazards. Fluorescence spectroscopy in vivo showed that MB fluorescence decreased monotonically during a 2-h dark interval but was restored by irradiation. Reflectance spectroscopy revealed that MB at this injected concentration attenuates the treatment beam significantly.
Sensitizer delivery vehicle, drug-light interval, and fluence contribute significantly to the tumor response to MB-mediated PDT.
PMCID: PMC2948599  PMID: 20848552
fluorescence spectroscopy; methylene blue; photodynamic therapy; reflectance spectroscopy
7.  The Vascular Disrupting Agent 5,6-Dimethylxanthenone-4-Acetic Acid Improves the Antitumor Efficacy and Shortens Treatment Time Associated with Photochlor-sensitized Photodynamic Therapy In Vivo 
In this report, we examined the antitumor activity of photodynamic therapy (PDT) in combination with 5,6-dimethylxanthenone- 4-acetic acid (DMXAA), a vascular disrupting agent currently undergoing clinical evaluation. BALB/c mice bearing subcutaneous CT-26 colon carcinomas were treated with PDT using the second-generation chlorin-based sensitizer, 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (Photochlor) with or without DMXAA. Long-term (60-days) treatment outcome, induction of tumor necrosis factor-alpha (TNF-α) and interleukin- 6 (IL-6), vascular damage (microvessel density, MVD) were evaluated as endpoints. In addition, treatment selectivity was evaluated using magnetic resonance imaging (MRI) and the foot response assay. A highly synergistic interaction was observed with the combination of low-dose DMXAA and PDT (48 J cm−2 at 112 mW cm−2) resulting in ~60% long-term cures. The duration of the PDT session for this combination therapy protocol was only 7 min, while the duration of a monotherapy PDT session, selected to yield the equivalent cure rate, was 152 min. MRI showed markedly less peritumoral edema after DMXAA + short-duration PDT compared with long-duration PDT monotherapy. Similarly, DMXAA + PDT caused significantly less phototoxicity to normal mouse foot tissue than PDT alone. Increased induction of cytokines TNF-α and IL-6 (P < 0.001) was observed at 4 h followed by extensive vascular damage, demonstrated by a significant reduction in MVD at 24 h after combination treatment. In conclusion, Photochlorsensitized PDT in combination with DMXAA exhibits superior efficacy and improved selectivity with clinically feasible illumination schemes. Clinical evaluation of this novel combination strategy is currently being planned.
PMCID: PMC2897069  PMID: 18643909
8.  Mechanisms of Resistance to Photodynamic Therapy 
Current medicinal chemistry  2011;18(16):2486-2515.
Photodynamic therapy (PDT) involves the administration of a photosensitizer (PS) followed by illumination with visible light, leading to generation of reactive oxygen species. The mechanisms of resistance to PDT ascribed to the PS may be shared with the general mechanisms of drug resistance, and are related to altered drug uptake and efflux rates or altered intracellular trafficking. As a second step, an increased inactivation of oxygen reactive species is also associated to PDT resistance via antioxidant detoxifying enzymes and activation of heat shock proteins. Induction of stress response genes also occurs after PDT, resulting in modulation of proliferation, cell detachment and inducing survival pathways among other multiple extracellular signalling events. In addition, an increased repair of induced damage to proteins, membranes and occasionally to DNA may happen. PDT-induced tissue hypoxia as a result of vascular damage and photochemical oxygen consumption may also contribute to the appearance of resistant cells.
The structure of the PS is believed to be a key point in the development of resistance, being probably related to its particular subcellular localization.
Although most of the features have already been described for chemoresistance, in many cases, no cross-resistance between PDT and chemotherapy has been reported. These findings are in line with the enhancement of PDT efficacy by combination with chemotherapy. The study of cross resistance in cells with developed resistance against a particular PS challenged against other PS is also highly complex and comprises different mechanisms.
In this review we will classify the different features observed in PDT resistance, leading to a comparison with the mechanisms most commonly found in chemo resistant cells.
PMCID: PMC3780570  PMID: 21568910
chemoresistance; cross resistance; PDT; photodynamic therapy; photosensitizer; resistance; apoptosis; photosensitizers; mechanisms; porphyrins; MDR
9.  Choline PET for Monitoring Early Tumor Response to Photodynamic Therapy 
Photodynamic therapy (PDT) is a relatively new therapy that has shown promise for treating various cancers in both preclinical and clinical studies. The present study evaluated the potential use of PET with radiolabeled choline to monitor early tumor response to PDT in animal models.
Two human prostate cancer models (PC-3 and CWR22) were studied in athymic nude mice. A second-generation photosensitizer, phthalocyanine 4 (Pc 4), was delivered to each animal by a tail vein injection 48 h before laser illumination. Small-animal PET images with 11C-choline were acquired before PDT and at 1, 24, and 48 h after PDT. Time–activity curves of 11C-choline uptake were analyzed before and after PDT. The percentage of the injected dose per gram of tissue was quantified for both treated and control tumors at each time point. In addition, Pc 4-PDT was performed in cell cultures. Cell viability and 11C-choline uptake in PDT-treated and control cells were measured.
For treated tumors, normalized 11C-choline uptake decreased significantly 24 and 48 h after PDT, compared with the same tumors before PDT (P < 0.001). For the control tumors, normalized 11C-choline uptake increased significantly. For mice with CWR22 tumors, the prostate-specific antigen level decreased 24 and 48 h after PDT. Pc 4-PDT in cell culture showed that the treated tumor cells, compared with the control cells, had less than 50% 11C-choline activity at 5, 30, and 45 min after PDT, whereas the cell viability test showed that the treated cells were viable longer than 7 h after PDT.
PET with 11C-choline is sensitive for detecting early changes associated with Pc 4-PDT in mouse models of human prostate cancer. Choline PET has the potential to determine whether a PDT-treated tumor responds to treatment within 48 h after therapy.
PMCID: PMC2999358  PMID: 20008981
small-animal PET; choline molecular imaging; photodynamic therapy (PDT); prostate cancer; tumor response
10.  Cerebral Edema Following Photodynamic Therapy Using Endogenous and Exogenous Photosensitizers in Normal Brain 
Lasers in surgery and medicine  2011;43(9):892-900.
Background and Objective
Failure of treatment for high-grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy such as photodynamic therapy (PDT) could be of benefit. The increase in brain edema following PDT using endogenous and exogenous photosensitizers was compared in terms of animal survival, MR imaging, and histopathological changes in normal brain.
Materials and Methods
Fischer rats were exposed to increasing laser light treatment following intraperitoneal injection of either the photosensitizers 5-aminolevulinic acid (ALA) or aluminum phthalocyanine disulfonate (AlPcS2a). Light treatment was applied either via an optical fiber inserted directly into the brain parenchyma or through a fiber applied to the surface of the intact skull. Edema development was followed by T2-weighted MR imaging.
ALA and AlPcS2a PDT resulted in a fluence dependent increase in cerebral edema and mortality. AlPcS2a PDT showed significant edema and mortality even at low fluences following interstitial light delivery, which was reduced with surface illumination. The mechanism of edema was determined to be vasogenic by response to steroid therapy and confirmed on histological images.
T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and noninvasive modality in following the development of the edema reaction and the degree and time course of blood–brain barrier dysfunction thus allowing the use of fewer animals. ALA mediated PDT induced a lower edema reaction than that observed with the photosensitizer AlPcS2a.
PMCID: PMC4124831  PMID: 22006731
photodynamic therapy; PDT; cerebral edema; ALA; AlPcS2a; vasogenic edema; endogenous photosensitizer; exogenous photosensitizer; amino levulenic acid; aluminum phthalocyanine disulfonate
11.  Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities 
Pharmaceuticals  2010;3(5):1507-1529.
Photodynamic therapy (PDT) has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS), which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS), that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body’s immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.
PMCID: PMC4033994
photodynamic therapy (PDT); targeted therapy; peptides; nanoparticles; vascular PDT; anti-angiogenesis; immune response
12.  Monitoring photodynamic therapy of head and neck malignancies with optical spectroscopies 
In recent years there has been significant developments in photosensitizers (PSs), light sources and light delivery systems that have allowed decreasing the treatment time and skin phototoxicity resulting in more frequent use of photodynamic therapy (PDT) in the clinical settings. Compared to standard treatment approaches such as chemo-radiation and surgery, PDT has much reduced morbidity for head and neck malignancies and is becoming an alternative treatment option. It can be used as an adjunct therapy to other treatment modalities without any additive cumulative side effects. Surface illumination can be an option for pre-malignant and early-stage malignancies while interstitial treatment is for debulking of thick tumors in the head and neck region. PDT can achieve equivalent or greater efficacy in treating head and neck malignancies, suggesting that it may be considered as a first line therapy in the future. Despite progressive development, clinical PDT needs improvement in several topics for wider acceptance including standardization of protocols that involve the same administrated light and PS doses and establishing quantitative tools for PDT dosimetry planning and response monitoring. Quantitative measures such as optical parameters, PS concentration, tissue oxygenation and blood flow are essential for accurate PDT dosimetry as well as PDT response monitoring and assessing therapy outcome. Unlike conventional imaging modalities like magnetic resonance imaging, novel optical imaging techniques can quantify PDT-related parameters without any contrast agent administration and enable real-time assessment during PDT for providing fast feedback to clinicians. Ongoing developments in optical imaging offer the promise of optimization of PDT protocols with improved outcomes.
PMCID: PMC3845916  PMID: 24303476
Head and neck cancer; Photodynamic therapy; Monitoring and predicting response; Blood flow; Oxygenation; Oxygen metabolism; Diffuse optical imaging
13.  Enhancement of photodynamic therapy by mitomycin C: a preclinical and clinical study. 
British Journal of Cancer  1996;73(8):945-951.
Photodynamic therapy (PDT) using Photofrin was used in combination with a hypoxic toxin (mitomycin C, MMC) to treat four patients with recurrent skin metastasis of a mammary carcinoma. In preclinical experiments an additive effect was found for the combination of MMC and PDT for treating subcutaneous RIF1 tumours in mice. When interstitial PDT was combined with a low dose of MMC (administered 15 min before illumination), the Photofrin dose or light dose could be reduced by a factor of 2 in order to obtain equivalent cure rate or growth delay. In the clinical pilot study, a low dose of Photofrin (0.75 mg kg-1) was used for PDT alone (superficial illumination) or combined with low-dose MMC (5 mg m-2). Different tumour areas were illuminated with or without a preceding infusion of MMC. Both tumour response and skin photosensitivity were scored. After 8-12 weeks of treatment, tumour cure could be achieved by administering light doses > or = 150 J cm-2 for PDT alone and similar effects were obtained when light doses of 75-87.5 J cm-2 were given after infusion with MMC. In all cases necrotic tissue of both tumour and surrounding skin was observed, which lasted for a mean of 5 months (range 2-20 months). Skin phototoxicity, tested by using a standardised illumination of skin patches on the back, lasted maximally 3 weeks. Three main conclusions could be drawn from these studies: (1) The enhanced effects of the combination of PDT and MMC observed in mouse tumours can be extrapolated to patients with mammary skin metastasis. (2) The combination of PDT and hypoxic toxins facilitates treatment by permitting lower doses of photosensitiser to be used (thereby reducing skin phototoxicity) or lower light doses (thereby reducing illumination times and allowing the possibility to treat larger tumour areas). (3) Restoration of skin after PDT in previously treated tumour areas (chemotherapy, radiation therapy and surgery) is very low.
PMCID: PMC2075831  PMID: 8611430
14.  The Effects of Ultra Low Fluence Rate Single and Repetitive Photodynamic Therapy on Glioma Spheroids 
Lasers in surgery and medicine  2009;41(8):578-584.
Background and Objective
Achieving local control of gliomas with photodynamic therapy (PDT) requires the delivery of adequate light fluences to depths of 1–2 cm in the resection margin where the majority of local recurrences originate. This is clinically impractical with current single-shot, intraoperative PDT treatments due to the length of time required to deliver adequate fluences. Multiple or extended treatment protocols would therefore seem to be required. The response of human glioma spheroids to 5-aminolevulinic acid (ALA)-mediated PDT using single or, repetitive light delivery protocols was investigated at both low and ultra low fluence rates.
Study Design/Materials and Methods
Human glioma spheroids (400 μm diameter) were subjected to sub-threshold light fluence (1.5, 3, or 6 J cm−2) ALA–PDT consisting of four light delivery schemes: single treatment given over either 1 or 24 hours, repetitive treatment given either as four 1 hour light treatments separated by a 4 day interval, or 24 hours light delivery, consisting of four 24 hours treatments separated by a 3 day interval. Treatment efficacy was evaluated using a growth assay. In some cases, confocal microscopy was used to image cell viability.
The repetitive and single light treatment protocols were most effective when delivered at ultra low (μW cm−2) fluence rates. In all cases, growth inhibition was light dose-dependent. The repetitive ultra low fluence rate treatment (1.5 J cm−2; irradiance = 17 μW cm−2) light delivery protocol was the most effective resulting in total growth inhibition during the 2-week observation period.
Ultra low light fluence rate ALA–PDT results in significant spheroid growth inhibition. Repeated administration of ALA was required during repetitive and/or protracted single PDT treatment protocols. The existence of a lower fluence rate limit, below which the efficacy of threshold light fluences diminish was not found in these studies.
PMCID: PMC4153363  PMID: 19731298
photodynamic therapy; 5-aminolevulinic acid; human glioma spheroids; fluence; fluence rate; repetitive PDT; chronic PDT; malignant glioma
15.  Chlorin e6 – polyvinylpyrrolidone mediated photosensitization is effective against human non-small cell lung carcinoma compared to small cell lung carcinoma xenografts 
BMC Pharmacology  2007;7:15.
Photodynamic therapy (PDT) is an effective local cancer treatment that involves light activation of a photosensitizer, resulting in oxygen-dependent, free radical-mediated cell death. Little is known about the comparative efficacy of PDT in treating non-small cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC), despite ongoing clinical trials treating lung cancers. The present study evaluated the potential use of chlorin e6 – polyvinylpyrrolidone (Ce6-PVP) as a multimodality photosensitizer for fluorescence detection and photodynamic therapy (PDT) on NSCLC and SCLC xenografts.
Human NSCLC (NCI-H460) and SCLC (NCI-H526) tumor cell lines were used to establish tumor xenografts in the chick chorioallantoic membrane (CAM) model as well as in the Balb/c nude mice. In the CAM model, Ce6-PVP was applied topically (1.0 mg/kg) and fluorescence intensity was charted at various time points. Tumor-bearing mice were given intravenous administration of Ce6-PVP (2.0 mg/kg) and laser irradiation at 665 nm (fluence of 150 J/cm2 and fluence rate of 125 mW/cm2). Tumor response was evaluated at 48 h post PDT. Studies of temporal fluorescence pharmacokinetics in CAM tumor xenografts showed that Ce6-PVP has a selective localization and a good accuracy in demarcating NSCLC compared to SCLC from normal surrounding CAM after 3 h post drug administration. Irradiation at 3 h drug-light interval showed greater tumor necrosis against human NSCLC xenografts in nude mice. SCLC xenografts were observed to express resistance to photosensitization with Ce6-PVP.
The formulation of Ce6-PVP is distinctly advantageous as a diagnostic and therapeutic agent for fluorescence diagnosis and PDT of NSCLC.
PMCID: PMC2212622  PMID: 18053148
16.  Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy 
Molecular Cancer  2008;7:56.
Photodynamic therapy (PDT) involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h) and long (6 h) drug light interval (DLI) hypericin-PDT (HY-PDT) treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors.
Immunohistochemistry (IHC) results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF), tumor necrosis growth factor-α (TNF-α), interferon-α (IFN-α) and basic fibroblast growth factor (bFGF) were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF) and Ephrin-A3 (EFNA3) were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways.
In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT.
PMCID: PMC2440549  PMID: 18549507
17.  Photodynamic Therapy of Disseminated Non-Small Cell Lung Carcinoma in a Murine Model 
Lasers in surgery and medicine  2011;43(7):663-675.
Background and Objective
Photodynamic therapy (PDT) of thoracic malignancies involving the pleural surfaces is an active area of clinical investigation. The present report aims to characterize a model for PDT of disseminated non-small cell lung carcinoma grown orthotopically in nude mice, and to evaluate PDT effect on tumor and normal tissues.
Study Design
H460 human non-small cell lung carcinoma (NSCLC) cells were injected percutaneously into the thoracic cavity of nude mice. HPPH-PDT (1 mg/kg, 24 h) was performed via the interstitial delivery (150 mW/cm) of 661 nm light to the thoracic cavity at fluences of 25-200 J/cm.
H460 tumors exhibited exponential growth within the thoracic cavity consisting of diffuse, gross nodular disease within 9 days after intrathoracic injection. Tumor volume, measured by magnetic resonance imaging (MRI), was highly correlated with the aggregate tumor mass extracted from the corresponding animal. Intrathoracic PDT at fluences of ≥ 50 J/cm produced significant decreases in tumor burden as compared to untreated controls, however mortality increased with rising fluence. Accordingly, 50 J/cm was selected for MRI studies to measure intra-animal PDT effects. Tumor distribution favored the ventral (vs. dorsal), caudal (vs. cranial), and right (vs. left) sides of the thoracic cavity by MRI; PDT did not change this spatial pattern despite an overall effect on tumor burden. Histopathology revealed edema and fibrin deposition within the pulmonary interstitium and alveoli of the PDT-treated thoracic cavity, as well as occasional evidence of vascular disruption. Prominent neutrophil infiltration with a concomitant decline in the lymphocyte compartment was also noted in the lung parenchyma within 24 hours after PDT.
HPPH-PDT of an orthotopic model of disseminated NSCLC is both feasible and effective using intracavitary light delivery. We establish this animal model, together with the treatment and monitoring approaches, as novel and valuable methods for the pre-clinical investigation of intrathoracic PDT of disseminated pleural malignancies.
PMCID: PMC3676899  PMID: 22057494
HPPH; Photochlor®; 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a; interstitial illumination; magnetic resonance imaging; non-small cell lung carcinoma; photodynamic therapy; pleural malignancy
18.  A green fluorescent protein-expressing murine tumour but not its wild-type counterpart is cured by photodynamic therapy 
British Journal of Cancer  2006;94(3):391-397.
The ideal cancer treatment should both destroy the primary tumour and at the same time educate the immune system to recognise the tumour as foreign so that distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the i.v. administration of photosensitisers followed by illumination of the tumour with red light producing reactive oxygen species that eventually cause vascular shutdown and tumour cell death by apoptosis and necrosis. Anti-tumour immunity is stimulated after PDT due to the acute inflammatory response, generation of tumour-specific antigens, and induction of heat-shock proteins. Green fluorescent protein (GFP) is used as an optical reporter to noninvasively image the progression of mouse tumours, and in addition, may act as a foreign (jellyfish) antigen. We asked whether GFP-expressing tumours could be used to monitor the response of tumour-bearing mice to PDT, and whether the tumour response differed when a nonimmunogenic tumour cell line was transduced with GFP. We injected RIF-1 or RIF-1 EGFP (stably transduced with a retroviral vector) cells in the leg of C3H/HeN mice and both the cells and tumour grew equally well. We used PDT with benzoporphyrin derivative and a short drug-light interval. There were complete cures and 100% mouse survival of RIF-1 EGFP while RIF-1 wild-type tumours all recurred. Cured mice were resistant to rechallenge with RIF-1 EGFP cells and a rechallenge with wild-type RIF-1 cells grew significantly slower. There was also slower RIF-1 EGFP rechallenge growth but no rejection when RIF-1 EGFP tumours were surgically removed. There was a low rate of PDT cure of tumours when RIF-1 cells were transduced with an empty retroviral vector. The presence of antibodies against EGFP in mouse serum suggests EGFP can act as a foreign antigen and PDT can then stimulate a long-term memory immune response.
PMCID: PMC2361144  PMID: 16421588
photodynamic therapy; green fluorescent protein; antitumour immunity; benzoporphyrin derivative; radiation-induced fibrosarcoma; fluorescence imaging
19.  Effects of Pd-bacteriopheophorbide (TOOKAD)-Mediated Photodynamic Therapy on Canine Prostate Pretreated with Ionizing Radiation 
Radiation research  2004;161(6):723-731.
The aim of this study was to evaluate the effects of photodynamic therapy (PDT) using a novel palladium bacteriopherophorbide photosensitizer TOOKAD (WST09) on canine prostate that had been pretreated with ionizing radiation. To produce a physiological and anatomical environment in canine prostate similar to that in patients for whom radiotherapy has failed, canine prostates (n = 4) were exposed to ionizing radiation (54 Gy) 5 to 6 months prior to interstitial TOOKAD-mediated PDT. Light irradiation (763 nm, 50–200 J/cm at 150 mW/cm from a 1-cm cylindrical diffusing fiber) was delivered during intravenous infusion of TOOKAD at 2 mg/kg over 10 min. Interstitial measurements of tissue oxygen profile (pO2) and of local light fluence rate were also measured. The prostates were harvested for histological examination 1 week after PDT. The baseline pO2 of preirradiated prostate was in the range 10–44 mmHg. The changes in relative light fluence rate during PDT ranged from 12 to 43%. The acute lesions were characterized by hemorrhagic necrosis, clearly distinguishable from the radiotherapy-induced pre-existing fibrosis. The lesion size was correlated with light fluence and comparable to that in unirradiated prostate treated with a similar TOOKAD-PDT protocol. There was no noticeable damage to the urethra, bladder or adjacent colon. The preliminary results obtained from a small number of animals indicate that TOOKAD-PDT can effectively ablate prostate pretreated with ionizing radiation, and so it may provide an alternative modality for those prostate cancer patients for whom radiotherapy has failed.
PMCID: PMC1237001  PMID: 15161347
20.  Motexafin gadolinium enhances the efficacy of aminolevulinic acid mediated-photodynamic therapy in human glioma spheroids 
Journal of neuro-oncology  2008;91(2):141-149.
Photodynamic therapy (PDT) has been investigated as a postoperative treatment in patients with high grade gliomas. The purpose of this in vitro investigation was to determine whether motexafin gadolinium (MGd), a known radiation sensitizer, could potentiate the effects of 5-aminolevulinic acid (ALA)-PDT. Human glioma (ACBT) spheroids (250 μm diameter) were incubated in 5-aminolevulinic acid (ALA) with and without MGd and irradiated with 635 nm light for a total light fluence of 6, 12, or 18 J cm−2 delivered at a fluence rate of 5 mW cm−2. Spheroid growth was monitored for a period of 4 weeks following each treatment. In another set of experiments, 400–500 μm diameter ACBT spheroids were implanted into a gel collagen matrix and subjected to ALA-PDT (fluence: 3 or 6 J cm−2), MGd, or a combination of ALA-PDT and MGd. The migration distance of surviving glioma cells in each treatment group was recorded over a 5-day period. The results showed that MGd interacted with PDT in a synergistic manner resulting in greater cytotoxicity than that achievable with either treatment modality alone. The degree of synergism was shown to increase with increasing light fluence. At the highest light fluence investigated (18 J cm−2), the percentage of spheroids demonstrating growth 4 weeks following exposure to MGd, ALA-PDT, or MGd + ALA-PDT was 100%, 75%, and 15%, respectively. The results of cell migration studies revealed that the combination of PDT and MGd produced a significant inhibitory effect on glioma cell migration: the addition of MGd resulted in an approximately three times reduction in migration distance compared with PDT alone. Overall, the results suggest that MGd can potentiate both the cytotoxic and migration inhibitory effects of ALA-PDT and hence, this combined therapeutic approach has the potential to extend treatment volumes in patients with malignant gliomas.
PMCID: PMC4116194  PMID: 18777009
Glioma; Photodynamic therapy; Motexafin gadolinium; 5-aminolevulinic acid; Spheroid; Invasive growth
21.  Irradiance-dependent photobleaching and pain in δ-aminolevulinic acid-photodynamic therapy of superficial basal cell carcinomas 
In superficial basal cell carcinomas (sBCC) treated with photodynamic therapy with topical δ-aminolevulinic acid (ALA-PDT) we examined effects of light irradiance on photodynamic efficiency and pain. The rate of singlet oxygen production depends on the product of irradiance and photosensitizer and oxygen concentrations. High irradiance and/or photosensitizer levels cause inefficient treatment from oxygen depletion in preclinical models.
Experimental Design
Self-sensitized photobleaching of PpIX fluorescence was used as a surrogate metric for photodynamic dose. We developed instrumentation measuring fluorescence and reflectance from lesions and margins during treatment at 633nm with various irradiances. When PpIX was 90% bleached, irradiance was increased to 150 mW cm−2 until 200 J cm−2 were delivered. Pain was monitored.
In 33 sBCC in 26 patients, photobleaching efficiency decreased with increasing irradiance above 20 mW cm−2, consistent with oxygen depletion. Fluences bleaching PpIX fluorescence 80% (D80) were 5.7±1.6, 4.5±0.3, 7.5±0.8, 7.4±0.3, 12.4±0.3 and 28.7±7.1 J cm−2, respectively, at 10, 20, 40, 50, 60 and 150 mW cm−2. At 20–150 mW cm−2, D80 doses required 2.5–3.5 min; times for the total 200 J cm−2 were 22.2–25.3 min. No significant pain occurred up to 50 mW cm−2; pain was not significant when irradiance then increased. Clinical responses were comparable to continuous150 mW cm−2 treatment.
ALA-PDT using ~40 mW cm−2 at 633nm is photodynamically efficient with minimum pain. Once PpIX is largely photobleached, higher irradiances allow efficient, rapid delivery of additional light. Optimal fluence at a single low irradiance is yet to be determined.
PMCID: PMC2810858  PMID: 18628462
Aminolevulinic acid; fluorescence spectroscopy; pain; photodynamic therapy; reflectance spectroscopy; skin cancer
22.  Preliminary Clinical and Pharmacologic Investigation of Photodynamic Therapy with the Silicon Phthalocyanine Photosensitizer Pc 4 for Primary or Metastatic Cutaneous Cancers 
Photodynamic therapy (PDT) for cutaneous malignancies has been found to be an effective treatment with a range of photosensitizers. The phthalocyanine Pc 4 was developed initially for PDT of primary or metastatic cancers in the skin. A Phase I trial was initiated to evaluate the safety and pharmacokinetic profiles of systemically administered Pc 4 followed by red light (Pc 4-PDT) in cutaneous malignancies. A dose-escalation study of Pc 4 (starting dose 0.135 mg/m2) at a fixed light fluence (135 J/cm2 of 675-nm light) was initiated in patients with primary or metastatic cutaneous malignancies with the aim of establishing the maximum tolerated dose (MTD). Blood samples were taken at intervals over the first 60 h post-PDT for pharmacokinetic analysis, and patients were evaluated for toxicity and tumor response. A total of three patients (two females with breast cancer and one male with cutaneous T-cell lymphoma) were enrolled and treated over the dose range of 0.135 mg/m2 (first dose level) to 0.54 mg/m2 (third dose level). Grade 3 erythema within the photoirradiated area was induced in patient 2, and transient tumor regression in patient 3, in spite of the low photosensitizer doses. Pharmacokinetic observations fit a three-compartment exponential elimination model with an initial rapid distribution phase (∼0.2 h) and relatively long terminal elimination phase (∼28 h), Because of restrictive exclusion criteria and resultant poor accrual, the trial was closed before MTD could be reached. While the limited accrual to this initial Phase I study did not establish the MTD nor establish a complete pharmacokinetic and safety profile of intravenous Pc 4-PDT, these preliminary data support further Phase I testing of this new photosensitizer.
PMCID: PMC3355859  PMID: 22649754
cutaneous cancers; phthalocyanine; Pc 4; photodynamic therapy
23.  Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy 
British Journal of Cancer  2000;82(11):1835-1843.
The role of nitric oxide (NO) in the response to Photofrin-based photodynamic therapy (PDT) was investigated using mouse tumour models characterized by either relatively high or low endogenous NO production (RIF and SCCVII vs EMT6 and FsaR, respectively). The NO synthase inhibitors Nω-nitro- L -arginine (L-NNA) or Nω-nitro- L -arginine methyl ester (L-NAME), administered to mice immediately after PDT light treatment of subcutaneously growing tumours, markedly enhanced the cure rate of RIF and SCCVII models, but produced no obvious benefit with the EMT6 and FsaR models. Laser Doppler flowmetry measurement revealed that both L-NNA and L-NAME strongly inhibit blood flow in RIF and SCCVII tumours, but not in EMT6 and FsaR tumours. When injected intravenously immediately after PDT light treatment, L-NAME dramatically augmented the decrease in blood flow in SCCVII tumours induced by PDT. The pattern of blood flow alterations in tumours following PDT indicates that, even with curative doses, regular circulation may be restored in some vessels after episodes of partial or complete obstruction. Such conditions are conducive to the induction of ischaemia-reperfusion injury, which is instigated by the formation of superoxide radical. The administration of superoxide dismutase immediately after PDT resulted in a decrease in tumour cure rates, thus confirming the involvement of superoxide in the anti-tumour effect. The results of this study demonstrate that NO participates in the events associated with PDT-mediated tumour destruction, particularly in the vascular response that is of critical importance for the curative outcome of this therapy. The level of endogenous production of NO in tumours appears to be one of the determinants of sensitivity to PDT. © 2000 Cancer Research Campaign
PMCID: PMC2363231  PMID: 10839299
photodynamic therapy; nitric oxide; ischaemia-reperfusion injury; mouse tumour models; tumour blood flow; nitric oxide synthase inhibitors
24.  Mechanisms for optimising photodynamic therapy: second-generation photosensitisers in combination with mitomycin C. 
British Journal of Cancer  1995;72(2):344-350.
Mechanisms for improving photodynamic therapy (PDT) were investigated in the murine RIF1 tumour using meso-tetrahydroxyphenylchlorin (m-THPC) or bacteriochlorin a (BCA) as photosensitisers and comparing these results with Photofrin-mediated PDT. The 86Rb extraction technique was used to measure changes in perfusion at various times after interstitial PDT. Non-curative combinations of light doses with m-THPC and BCA PDT markedly decreased vascular perfusion. This decrease was more pronounced for both new photosensitisers than for Photofrin. Comparison of tumour perfusion after PDT with tumour response revealed an inverse correlation for all three photosensitisers, but the relationship was less clear for m-THPC and BCA. In vivo/in vitro experiments were performed after Photofrin or m-THPC PDT in order to assess direct tumour kill (immediate plating) vs indirect vascular effects (delayed plating). For both photosensitisers, there was little direct cell killing but clonogenic survival decreased as the interval between treatment and excision increased. When m-THPC PDT was combined with mitomycin C (MMC), light doses could be decreased by a factor of 2 for equal tumour effects. Lower light and m-THPC doses could be used compared with Photofrin PDT in combination with MMC. BCA PDT with MMC did not result in a greater tumour response compared with BCA PDT alone. Reduction in both light and photosensitiser does for effective PDT regimes in combination with MMC offers substantial clinical advantages, since both treatment time and skin photosensitisation will be reduced.
PMCID: PMC2034009  PMID: 7640216
25.  Light Delivery Over Extended Time Periods Enhances the Effectiveness of Photodynamic Therapy 
The rate of energy delivery is a principal factor determining the biological consequences of photodynamic therapy (PDT). In contrast to conventional high irradiance treatments, recent preclinical and clinical studies have focused on low irradiance schemes. The objective of this study was to investigate the relationship between irradiance, photosensitizer dose and PDT dose with regard to treatment outcome and tumor oxygenation in a rat tumor model.
Experimental Design
Using the photosensitizer HPPH (2-[1-hexyloxyethyl]-2 devinyl pyropheophorbide), a wide range of PDT doses that included clinically relevant photosensitizer concentrations were evaluated. Magnetic resonance imaging (MRI) and oxygen tension measurements were performed along with the Evans blue exclusion assay to assess vascular response, oxygenation status and tumor necrosis.
In contrast to high incident laser power (150 mW), low power regimens (7 mW) yielded effective tumor destruction. This was largely independent of PDT dose (drug-light product), with up to 30-fold differences in photosensitizer dose and 15-fold differences in drug-light product. For all drug-light products, the duration of light treatment positively influenced tumor response. Regimens utilizing treatment times of 120–240 mins showed marked reduction in signal intensity in T2-weighted MR images at both low (0.1 mg/kg) and high (3 mg/kg) drug doses compared to short duration (6–11 mins) regimens. Significantly greater reductions in pO2 were observed with extended exposures, which persisted after completion of treatment.
These results confirm the benefit of prolonged light exposure, identify vascular response as a major contributor and suggest that duration of light treatment (time) may be an important new treatment parameter.
PMCID: PMC2805854  PMID: 18451247
Photodynamic therapy; HPPH; light delivery; fluence; fluence rate

Results 1-25 (1149595)