Search tips
Search criteria

Results 1-25 (1498995)

Clipboard (0)

Related Articles

1.  GIP and GLP‐1, the two incretin hormones: Similarities and differences 
Gastric inhibitory polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1) are the two primary incretin hormones secreted from the intestine on ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP‐1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP‐1 receptor (GLP‐1R), which belong to the G‐protein coupled receptor family. Receptor binding activates and increases the level of intracellular cyclic adenosine monophosphate in pancreatic β cells, thereby stimulating insulin secretion glucose‐dependently. In addition to their insulinotropic effects, GIP and GLP‐1 play critical roles in various biological processes in different tissues and organs that express GIPR and GLP‐1R, including the pancreas, fat, bone and the brain. Within the pancreas, GIP and GLP‐1 together promote β cell proliferation and inhibit apoptosis, thereby expanding pancreatic β cell mass, while GIP enhances postprandial glucagon response and GLP‐1 suppresses it. In adipose tissues, GIP but not GLP‐1 facilitates fat deposition. In bone, GIP promotes bone formation while GLP‐1 inhibits bone absorption. In the brain, both GIP and GLP‐1 are thought to be involved in memory formation as well as the control of appetite. In addition to these differences, secretion of GIP and GLP‐1 and their insulinotropic effects on β cells have been shown to differ in patients with type 2 diabetes compared to healthy subjects. We summarize here the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic action on pancreatic β cells, and their non‐insulinotropic effects, and discuss their potential in treatment of type 2 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00022.x, 2010)
PMCID: PMC4020673  PMID: 24843404
Incretin; GIP; GLP‐1
2.  Glucose‐dependent insulinotropic polypeptide and glucagon‐like peptide‐1: Incretin actions beyond the pancreas 
Glucose‐dependent insulinotropic polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1) are the two primary incretin hormones secreted from the intestine on ingestion of various nutrients to stimulate insulin secretion from pancreatic β‐cells glucose‐dependently. GIP and GLP‐1 undergo degradation by dipeptidyl peptidase‐4 (DPP‐4), and rapidly lose their biological activities. The actions of GIP and GLP‐1 are mediated by their specific receptors, the GIP receptor (GIPR) and the GLP‐1 receptor (GLP‐1R), which are expressed in pancreatic β‐cells, as well as in various tissues and organs. A series of investigations using mice lacking GIPR and/or GLP‐1R, as well as mice lacking DPP‐4, showed involvement of GIP and GLP‐1 in divergent biological activities, some of which could have implications for preventing diabetes‐related microvascular complications (e.g., retinopathy, nephropathy and neuropathy) and macrovascular complications (e.g., coronary artery disease, peripheral artery disease and cerebrovascular disease), as well as diabetes‐related comorbidity (e.g., obesity, non‐alcoholic fatty liver disease, bone fracture and cognitive dysfunction). Furthermore, recent studies using incretin‐based drugs, such as GLP‐1 receptor agonists, which stably activate GLP‐1R signaling, and DPP‐4 inhibitors, which enhance both GLP‐1R and GIPR signaling, showed that GLP‐1 and GIP exert effects possibly linked to prevention or treatment of diabetes‐related complications and comorbidities independently of hyperglycemia. We review recent findings on the extrapancreatic effects of GIP and GLP‐1 on the heart, brain, kidney, eye and nerves, as well as in the liver, fat and several organs from the perspective of diabetes‐related complications and comorbidities.
PMCID: PMC4019264  PMID: 24843641
Diabetic complication; Glucose‐dependent insulinotropic polypeptide; Glucagon‐like peptide‐1
3.  Enteral supplementation with glutamine, fiber, and oligosaccharide modulates incretin and glucagon-like peptide-2 secretion 
A dietary supplementation product enriched with glutamine, dietary fiber and oligosaccharide (GFO) is widely applied for enteral nutrition support in Japan. The aim of the present study was to evaluate the effects of GFO ingestion on secretion of incretins, gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 (GLP-2).
Materials and Methods
We carried out a cross-over study involving 20 healthy Japanese volunteers. The participants received GFO or 17 g of glucose, the equivalent carbohydrate in GFO as the control. Plasma glucose, serum insulin, and plasma total GIP, total GLP-1 and total GLP-2 levels during GFO or glucose loading were determined.
GFO loading produced significantly higher plasma GLP-1 levels at 30 min and 60 min, area under the curve-GLP-1 value, and area under the curve-GLP-2 value after administration compared with those by glucose loading. In contrast, plasma GIP levels at both 30 and 60 min, and area under the curve-GIP value after glucose loading were significantly higher than those after GFO loading.
These results show that GFO ingestion stimulates GLP-1 and GLP-2 secretion, and reduces GIP secretion compared with glucose ingestion. Therefore, GFO could have an intestinotrophic effect as well as an ameliorating effect on metabolic disorders through modification of release of gut hormones.
PMCID: PMC4420562  PMID: 25969715
Glucagon-like peptide-2; Incretin; Oligosaccharide
4.  The GIP Receptor Displays Higher Basal Activity than the GLP-1 Receptor but Does Not Recruit GRK2 or Arrestin3 Effectively 
PLoS ONE  2014;9(9):e106890.
Background and Objectives
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are important regulators of insulin secretion, and their functional loss is an early characteristic of type 2 diabetes mellitus (T2DM). Pharmacological levels of GLP-1, but not GIP, can overcome this loss. GLP-1 and GIP exert their insulinotropic effects through their respective receptors expressed on pancreatic β-cells. Both the GLP-1 receptor (GLP-1R) and the GIP receptor (GIPR) are members of the secretin family of G protein-coupled receptors (GPCRs) and couple positively to adenylate cyclase. We compared the signalling properties of these two receptors to gain further insight into why GLP-1, but not GIP, remains insulinotropic in T2DM patients.
GLP-1R and GIPR were transiently expressed in HEK-293 cells, and basal and ligand-induced cAMP production were investigated using a cAMP-responsive luciferase reporter gene assay. Arrestin3 (Arr3) recruitment to the two receptors was investigated using enzyme fragment complementation, confocal microscopy and fluorescence resonance energy transfer (FRET).
GIPR displayed significantly higher (P<0.05) ligand-independent activity than GLP-1R. Arr3 displayed a robust translocation to agonist-stimulated GLP-1R but not to GIPR. These observations were confirmed in FRET experiments, in which GLP-1 stimulated the recruitment of both GPCR kinase 2 (GRK2) and Arr3 to GLP-1R. These interactions were not reversed upon agonist washout. In contrast, GIP did not stimulate recruitment of either GRK2 or Arr3 to its receptor. Interestingly, arrestin remained at the plasma membrane even after prolonged (30 min) stimulation with GLP-1. Although the GLP-1R/arrestin interaction could not be reversed by agonist washout, GLP-1R and arrestin did not co-internalise, suggesting that GLP-1R is a class A receptor with regard to arrestin binding.
GIPR displays higher basal activity than GLP-1R but does not effectively recruit GRK2 or Arr3.
PMCID: PMC4156404  PMID: 25191754
5.  Expression of Glucagon-Like Peptide 1 Receptor during Osteogenic Differentiation of Adipose-Derived Stem Cells 
Endocrinology and Metabolism  2014;29(4):567-573.
Glucagon-like peptide 1 (GLP-1), an incretin hormone well known for its glucose-lowering effect, was recently reported to exert an anabolic effect on bone. Although the exact mechanism is not known, it likely involves the GLP-1 receptor (GLP-1R), which is expressed in some osteoblastic cell lines. Adipose-derived stem cells (ADSCs) have mesenchymal stem cell-specific characteristics, including osteoblastic differentiation potential. We evaluated the expression of GLP-1R during osteogenic differentiation of ADSCs.
ADSCs were isolated from subcutaneous adipose tissue obtained from three male donors during plastic surgery and were subjected to osteogenic induction. Mineralization was assessed by Alizarin Red staining on day 21. Expression of alkaline phosphatase (ALP), osteocalcin (OC), and GLP-1R was measured by real-time polymerase chain reaction in triplicate for each patient on days 0, 7, 14, and 21. Target mRNA expression levels were normalized to that of β-actin.
ADSCs were fibroblast-like in morphology, adhered to plastic, and had multipotent differentiation potential, as assessed using specific antigen markers. The osteogenic markers ALP and OC were notably upregulated at 21 days. Osteogenic differentiation resulted in a time-dependent increase in the expression of GLP-1R (P=0.013).
We demonstrated upregulation of GLP-1R gene expression during osteogenic differentiation of ADSCs. This finding suggests that GLP-1 may induce osteogenic differentiation in bone tissue.
PMCID: PMC4285026  PMID: 25325271
Glucagon-like peptide 1; Glucagon-like peptide 1 receptor; Adipose-derived stem cell; Osteogenesis
6.  Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents 
Diabetologia  2012;55(11):3094-3103.
Glucose-dependent insulinotropic polypeptide (GIP) is an enteroendocrine hormone that promotes storage of glucose and fat. Its secretion from intestinal K cells is triggered by nutrient ingestion and is modulated by intracellular cAMP. In view of the proadipogenic actions of GIP, this study aimed to identify pathways in K cells that lower cAMP levels and GIP secretion.
Murine K cells purified by flow cytometry were analysed for expression of Gαi-coupled receptors by transcriptomic microarrays. Somatostatin and cannabinoid receptor expression was confirmed by quantitative RT-PCR. Hormone secretion in vitro was measured in GLUTag and primary murine intestinal cultures. cAMP was monitored in GLUTag cells using the genetically encoded sensor Epac2-camps. In vivo tolerance tests were performed in cannulated rats.
Purified murine K cells expressed high mRNA levels for somatostatin receptors (Sstrs) Sstr2, Sstr3 and Sstr5, and cannabinoid receptor type 1 (Cnr1, CB1). Somatostatin inhibited GIP and glucagon-like peptide-1 (GLP-1) secretion from primary small intestinal cultures, in part through SSTR5, and reduced cAMP generation in GLUTag cells. Although the CB1 agonist methanandamide (mAEA) inhibited GIP secretion, no significant effect was observed on GLP-1 secretion from primary cultures. In cannulated rats, treatment with mAEA prior to an oral glucose tolerance test suppressed plasma GIP but not GLP-1 levels, whereas the CB1 antagonist AM251 elevated basal GIP concentrations.
GIP release is inhibited by somatostatin and CB1 agonists. The differential effects of CB1 ligands on GIP and GLP-1 release may provide a new tool to dissociate secretion of these incretin hormones and lower GIP but not GLP-1 levels in vivo.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-012-2663-5) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC3464380  PMID: 22872212
Cannabinoid receptor; Cannabinoid receptor type 1; Glucose-dependent insulinotropic polypeptide; Glucagon-like peptide-1; K cells; Somatostatin
7.  Regulation of GIP and GLP1 Receptor Cell Surface Expression by N-Glycosylation and Receptor Heteromerization 
PLoS ONE  2012;7(3):e32675.
In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.
PMCID: PMC3296735  PMID: 22412906
8.  The Role of Incretins in Glucose Homeostasis and Diabetes Treatment 
Pharmacological reviews  2008;60(4):470-512.
Incretins are gut hormones that are secreted from enteroendocrine cells into the blood within minutes after eating. One of their many physiological roles is to regulate the amount of insulin that is secreted after eating. In this manner, as well as others to be described in this review, their final common raison d’être is to aid in disposal of the products of digestion. There are two incretins, known as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1), that share many common actions in the pancreas but have distinct actions outside of the pancreas. Both incretins are rapidly deactivated by an enzyme called dipeptidyl peptidase 4 (DPP4). A lack of secretion of incretins or an increase in their clearance are not pathogenic factors in diabetes. However, in type 2 diabetes (T2DM), GIP no longer modulates glucose-dependent insulin secretion, even at supraphysiological (pharmacological) plasma levels, and therefore GIP incompetence is detrimental to β-cell function, especially after eating. GLP-1, on the other hand, is still insulinotropic in T2DM, and this has led to the development of compounds that activate the GLP-1 receptor with a view to improving insulin secretion. Since 2005, two new classes of drugs based on incretin action have been approved for lowering blood glucose levels in T2DM: an incretin mimetic (exenatide, which is a potent long-acting agonist of the GLP-1 receptor) and an incretin enhancer (sitagliptin, which is a DPP4 inhibitor). Exenatide is injected subcutaneously twice daily and its use leads to lower blood glucose and higher insulin levels, especially in the fed state. There is glucose-dependency to its insulin secretory capacity, making it unlikely to cause low blood sugars (hypoglycemia). DPP4 inhibitors are orally active and they increase endogenous blood levels of active incretins, thus leading to prolonged incretin action. The elevated levels of GLP-1 are thought to be the mechanism underlying their blood glucose-lowering effects.
PMCID: PMC2696340  PMID: 19074620
9.  Obestatin partially affects ghrelin stimulation of food intake and growth hormone secretion in rodents 
Endocrinology  2007;148(4):1648-1653.
Administration of ghrelin, an endogenous ligand for the growth hormone secretagogue receptor 1a (GHSR 1a), induces potent stimulating effects on GH secretion and food intake. However, more than seven years after its discovery, the role of endogenous ghrelin remains elusive. Recently a second peptide, obestatin, also generated from proteolytic cleavage of preproghrelin has been identified. This peptide inhibits food intake and gastrointestinal motility but does not modify in vitro GH release from pituitary cells. In this study we have reinvestigated obestatin functions by measuring plasma ghrelin and obestatin levels in a period of spontaneous feeding in ad libitum fed and 24h-fasted mice. While fasting resulted in elevated ghrelin levels, obestatin levels were significantly reduced. Exogenous obestatin per se did not modify food intake in fasted and fed mice. However, it inhibited ghrelin orexigenic effect that were evident in fed mice only. The effects of obestatin on GH secretion were monitored in superfused pituitary explants and in freely moving rats. Obestatin was only effective in vivo to inhibit ghrelin stimulation of GH levels. Finally, the relationship between octanoylated ghrelin, obestatin and GH secretions was evaluated by iterative blood sampling every 20 minutes during 6 hours in freely moving adult male rats. The half-life of exogenous obestatin (10 μg iv) in plasma was about 22 minutes. Plasma obestatin levels exhibited an ultradian pulsatility with a frequency slightly lower than octanoylated ghrelin and GH. Ghrelin and obestatin levels were not strictly correlated.
In conclusion these results show that obestatin, like ghrelin, is secreted in a pulsatile manner and that in some conditions; obestatin can modulate exogenous ghrelin action. It remains to be determined whether obestatin modulates endogenous ghrelin actions.
PMCID: PMC1890395  PMID: 17204551
Animals; Eating; drug effects; Fasting; Growth Hormone; blood; secretion; Male; Mice; Mice, Inbred C57BL; Peptide Hormones; blood; pharmacology; physiology; Photoperiod; Rats; Rats, Sprague-Dawley; Obestatin; Ghrelin; GH; food intake; mouse; rat
10.  Glucose-Induced Glucagon-Like Peptide 1 Secretion Is Deficient in Patients with Non-Alcoholic Fatty Liver Disease 
PLoS ONE  2014;9(1):e87488.
Background & Aims
The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are gastrointestinal peptide hormones regulating postprandial insulin release from pancreatic β-cells. GLP-1 agonism is a treatment strategy in Type 2 diabetes and is evaluated in Non-alcoholic fatty liver disease (NAFLD). However, the role of incretins in its pathophysiology is insufficiently understood. Studies in mice suggest improvement of hepatic steatosis by GLP-1 agonism. We determined the secretion of incretins after oral glucose administration in non-diabetic NAFLD patients.
N = 52 patients (n = 16 NAFLD and n = 36 Non-alcoholic steatohepatitis (NASH) patients) and n = 50 matched healthy controls were included. Standardized oral glucose tolerance test was performed. Glucose, insulin, glucagon, GLP-1 and GIP plasma levels were measured sequentially for 120 minutes after glucose administration.
Glucose induced GLP-1 secretion was significantly decreased in patients compared to controls (p<0.001). In contrast, GIP secretion was unchanged. There was no difference in GLP-1 and GIP secretion between NAFLD and NASH subgroups. All patients were insulin resistant, however HOMA2-IR was highest in the NASH subgroup. Fasting and glucose-induced insulin secretion was higher in NAFLD and NASH compared to controls, while the glucose lowering effect was diminished. Concomitantly, fasting glucagon secretion was significantly elevated in NAFLD and NASH.
Glucose-induced GLP-1 secretion is deficient in patients with NAFLD and NASH. GIP secretion is contrarily preserved. Insulin resistance, with hyperinsulinemia and hyperglucagonemia, is present in all patients, and is more severe in NASH compared to NAFLD. These pathophysiologic findings endorse the current evaluation of GLP-1 agonism for the treatment of NAFLD.
PMCID: PMC3906180  PMID: 24489924
11.  Gut Hormone Pharmacology of a Novel GPR119 Agonist (GSK1292263), Metformin, and Sitagliptin in Type 2 Diabetes Mellitus: Results from Two Randomized Studies 
PLoS ONE  2014;9(4):e92494.
GPR119 receptor agonists improve glucose metabolism and alter gut hormone profiles in animal models and healthy subjects. We therefore investigated the pharmacology of GSK1292263 (GSK263), a selective GPR119 agonist, in two randomized, placebo-controlled studies that enrolled subjects with type 2 diabetes. Study 1 had drug-naive subjects or subjects who had stopped their diabetic medications, and Study 2 had subjects taking metformin. GSK263 was administered as single (25–800 mg; n = 45) or multiple doses (100–600 mg/day for 14 days; n = 96). Placebo and sitagliptin 100 mg/day were administered as comparators. In Study 1, sitagliptin was co-administered with GSK263 or placebo on Day 14 of dosing. Oral glucose and meal challenges were used to assess the effects on plasma glucose, insulin, C-peptide, glucagon, peptide tyrosine-tyrosine (PYY), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). After 13 days of dosing, GSK263 significantly increased plasma total PYY levels by ∼five-fold compared with placebo, reaching peak concentrations of ∼50 pM after each of the three standardized meals with the 300 mg BID dose. Co-dosing of GSK263 and metformin augmented peak concentrations to ∼100 pM at lunchtime. GSK263 had no effect on active or total GLP-1 or GIP, but co-dosing with metformin increased post-prandial total GLP-1, with little effect on active GLP-1. Sitagliptin increased active GLP-1, but caused a profound suppression of total PYY, GLP-1, and GIP when dosed alone or with GSK263. This suppression of peptides was reduced when sitagliptin was co-dosed with metformin. GSK263 had no significant effect on circulating glucose, insulin, C-peptide or glucagon levels. We conclude that GSK263 did not improve glucose control in type 2 diabetics, but it had profound effects on circulating PYY. The gut hormone effects of this GPR119 agonist were modulated when co-dosed with metformin and sitagliptin. Metformin may modulate negative feedback loops controlling the secretion of enteroendocrine peptides.
Trial Registration: NCT01119846 NCT01128621
PMCID: PMC3974707  PMID: 24699248
12.  Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice 
Diabetologia  2011;54(10):2649-2659.
Several lines of evidence suggest that incretin-based therapies suppress the development of cardiovascular disease in type 2 diabetes. We investigated the possibility that glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) can prevent the development of atherosclerosis in Apoe−/− mice.
Apoe−/− mice (17 weeks old) were administered GLP-1(7–36)amide, GLP-1(9–36)amide, GIP(1–42) or GIP(3–42) for 4 weeks. Aortic atherosclerosis, oxidised LDL-induced foam cell formation and related gene expression in exudate peritoneal macrophages were determined.
Administration of GLP-1(7–36)amide or GIP(1–42) significantly suppressed atherosclerotic lesions and macrophage infiltration in the aortic wall, compared with vehicle controls. These effects were cancelled by co-infusion with specific antagonists for GLP-1 and GIP receptors, namely exendin(9–39) or Pro3(GIP). The anti-atherosclerotic effects of GLP-1(7–36)amide and GIP(1–42) were associated with significant decreases in foam cell formation and downregulation of CD36 and acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) in macrophages. GLP-1 and GIP receptors were both detected in Apoe−/− mouse macrophages. Ex vivo incubation of macrophages with GLP-1(7–36)amide or GIP(1–42) for 48 h significantly suppressed foam cell formation. This effect was wholly abolished in macrophages pretreated with exendin(9−39) or (Pro3)GIP, or with an adenylate cyclase inhibitor, MDL12,330A, and was mimicked by incubation with an adenylate cyclase activator, forskolin. The inactive forms, GLP-1(9–36)amide and GIP(3–42), had no effects on atherosclerosis and macrophage foam cell formation.
Our study is the first to demonstrate that active forms of GLP-1 and GIP exert anti-atherogenic effects by suppressing macrophage foam cell formation via their own receptors, followed by cAMP activation. Molecular mechanisms underlying these effects are associated with the downregulation of CD36 and ACAT-1 by incretins.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-011-2241-2) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC3168747  PMID: 21786155
Atherosclerosis; Cholesterol; Dipeptidyl peptidase-4; Glucagon-like peptide-1; Glucose-dependent insulinotropic polypeptide; Incretin; Macrophages; Mouse model
13.  Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. 
Journal of Clinical Investigation  1998;101(7):1421-1430.
The gastrointestinal hormone, glucagon-like peptide-1(7-36)amide (GLP-1) is released after a meal. The potency of synthetic GLP-1 in stimulating insulin secretion and in inhibiting glucagon secretion indicates the putative physiological function of GLP-1. In vitro, the nonmammalian peptide, exendin(9-39)amide [ex(9-39)NH2], is a specific and competitive antagonist of GLP-1. This in vivo study examined the efficacy of ex(9-39)NH2 as an antagonist of exogenous GLP-1 and the physiological role of endogenous GLP-1. Six healthy volunteers underwent 10 experiments in random order. In each experiment, a 30-min period of euglycemia was followed by an intravenous infusion of glucose for 150 min that established a stable hyperglycemia of 8 mmol/liter. There was a concomitant intravenous infusion of one of the following: (1) saline, (2) GLP-1 (for 60 min at 0.3 pmol . kg-1 . min-1 that established physiological postprandial plasma levels, and for another 60 min at 0.9 pmol . kg-1 . min-1 to induce supraphysiological plasma levels), (3-5) ex(9-39)NH2 at 30, 60, or 300 pmol . kg-1 . min-1 + GLP-1, (6-8) ex(9-39)NH2 at 30, 60, or 300 pmol . kg-1 . min-1 + saline, (9 and 10) GIP (glucose-dependent insulinotropic peptide; for 60 min at 0.8 pmol . kg-1 . min-1, with saline or ex(9-39)NH2 at 300 pmol . kg-1 . min-1). Each volunteer received each of these concomitant infusions on separate days. ex(9-39)NH2 dose-dependently reduced the insulinotropic action of GLP-1 with the inhibitory effect declining with increasing doses of GLP-1. ex(9-39)NH2 at 300 pmol . kg-1 . min-1 blocked the insulinotropic effect of physiological doses of GLP-1 and completely antagonized the glucagonostatic effect at both doses of GLP-1. Given alone, this load of ex(9-39)NH2 increased plasma glucagon levels during euglycemia and hyperglycemia. It had no effect on plasma levels of insulin during euglycemia but decreased plasma insulin during hyperglycemia. ex(9-39)NH2 did not alter GIP-stimulated insulin secretion. These data indicate that in humans, ex(9-39)NH2 is a potent GLP-1 antagonist without any agonistic properties. The pancreatic A cell is under a tonic inhibitory control of GLP-1. At hyperglycemia, the B cell is under a tonic stimulatory control of GLP-1.
PMCID: PMC508720  PMID: 9525985
14.  Retinal Pigment Epithelial Cells Express a Functional Receptor for Glucagon-Like Peptide-1 (GLP-1) 
Mediators of Inflammation  2013;2013:975032.
Glucagon-like peptide-1 (GLP-1) is a gut-derived incretin hormone that has been shown to improve glucose homeostasis in type 2 diabetes. The biological effects of GLP-1 are mediated by its specific receptor GLP-1R that is expressed in a wide range of tissues, where it is responsible of the extra-pancreatic effects of GLP-1. Since the retinal pigment epithelium (RPE), that forms the outer retinal barrier, has a key role in protecting from diabetic retinopathy (DR), we investigated the potential expression and function of GLP-1R in a RPE cell line. ARPE-19 cells were cultured in DMEM/F12 supplemented with 10% FBS. The expression of GLP-1R was evaluated at both mRNA and protein levels. Then, the activation postreceptor intracellular signal transduction pathways (extracellular signal-regulated kinases 1 and 2 [ERK1/2] and protein kinase B [PKB]) were assessed by western blot in normal cells or silenced for GLP-1R in the presence or absence of 10 nmol/L GLP-1. The potential connections between intracellular signalling pathways triggered by GLP-1 stimulation were performed before incubating cells with kinase pharmacological inhibitors of mitogen-activated protein kinase (MEK)1/2, phosphatydilinositol-3kinase (PI3K), or epidermal growth factor receptor (EGFR). The results showed that GLP1R is expressed at both mRNA and protein level in ARPE-19 cells. Stimulation with GLP-1 strongly activated PKB and ERK1/2 phosphorylation till 40 min of exposure. GLP-1-mediated activation of both kinases was dependent on the upstream activation of PI3K and EGFR. Finally, treatment with GLP-1 did not affect the spontaneous release of VEGF-A from ARPE-19 cells. In conclusion, this paper showed that the presence of functional GLP-1R is expressed in RPE cells. These data might represent the rationale to further investigate the potential direct beneficial effects of GLP-1 treatment against DR.
PMCID: PMC3836565  PMID: 24307763
15.  Exogenous Glucose–Dependent Insulinotropic Polypeptide Worsens Post prandial Hyperglycemia in T ype 2 Diabetes 
Diabetes  2009;58(6):1342-1349.
Glucose-dependent insulinotropic polypeptide (GIP), unlike glucagon-like peptide (GLP)-1, lacks glucose-lowering properties in patients with type 2 diabetes. We designed this study to elucidate the underlying pathophysiology.
Twenty-two insulin-naïve subjects with type 2 diabetes were given either synthetic human GIP (20 ng · kg−1 · min−1) or placebo (normal saline) over 180 min, starting with the first bite of a mixed meal (plus 1 g of acetaminophen) on two separate occasions. Frequent blood samples were obtained over 6 h to determine plasma GIP, GLP-1, glucose, insulin, glucagon, resistin, and acetaminophen levels.
Compared with placebo, GIP induced an early postprandial increase in insulin levels. Intriguingly, GIP also induced an early postprandial augmentation in glucagon, a significant elevation in late postprandial glucose, and a decrease in late postprandial GLP-1 levels. Resistin and acetaminophen levels were comparable in both interventions. By immunocytochemistry, GIP receptors were present on human and mouse α-cells. In αTC1 cell line, GIP induced an increase in intracellular cAMP and glucagon secretion.
GIP, given to achieve supraphysiological plasma levels, still had an early, short-lived insulinotropic effect in type 2 diabetes. However, with a concomitant increase in glucagon, the glucose-lowering effect was lost. GIP infusion further worsened hyperglycemia postprandially, most likely through its suppressive effect on GLP-1. These findings make it unlikely that GIP or GIP receptor agonists will be useful in treating the hyperglycemia of patients with type 2 diabetes.
PMCID: PMC2682676  PMID: 19276444
16.  The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells 
Whey protein increases postprandial serum insulin levels. This has been associated with increased serum levels of leucine, isoleucine, valine, lysine, threonine and the incretin hormone glucose-dependent insulinotropic polypeptide (GIP). We have examined the effects of these putative mediators of whey’s action on insulin secretion from isolated mouse Langerhans islets.
Mouse pancreatic islets were incubated with serum drawn from healthy individuals after ingestion of carbohydrate equivalent meals of whey protein (whey serum), or white wheat bread (control serum). In addition the effect of individual amino acid combinations on insulin secretion was also tested. Furthermore, the stimulatory effects of whey serum on insulin secretion was tested in vitro in the absence and presence of a GIP receptor antagonist ((Pro(3))GIP[mPEG]).
Postprandial amino acids, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses were higher after whey compared to white wheat bread. A stimulatory effect on insulin release from isolated islets was observed with serum after whey obtained at 15 min (+87%, P < 0.05) and 30 min (+139%, P < 0.05) postprandially, compared with control serum. The combination of isoleucine, leucine, valine, lysine and threonine exerted strong stimulatory effect on insulin secretion (+270%, P < 0.05), which was further augmented by GIP (+558% compared to that produced by glucose, P < 0.05). The stimulatory action of whey on insulin secretion was reduced by the GIP-receptor antagonist (Pro(3))GIP[mPEG]) at both 15 and 30 min (−56% and −59%, P < 0.05).
Compared with white wheat bread meal, whey causes an increase of postprandial insulin, plasma amino acids, GIP and GLP-1 responses. The in vitro data suggest that whey protein exerts its insulinogenic effect by preferential elevation of the plasma concentrations of certain amino acids, GIP and GLP-1.
PMCID: PMC3471010  PMID: 22647249
Amino acids; GIP-antagonist; Incretins; Insulin release; In vitro; Isolated Langerhans islets; Whey
17.  Duodenal-jejunal bypass liner implantation provokes rapid weight loss and improved glycemic control, accompanied by elevated fasting ghrelin levels 
Endoscopy International Open  2014;2(1):E21-E27.
Background and study aims: Endoscopic implantation of a duodenal-jejunal bypass liner (DJBL) is a novel bariatric technique to induce weight loss and remission of type 2 diabetes mellitus. Placement of the DJBL mimics the bypass component of the Roux-en-Y gastric bypass (RYGB) procedure. In this observational study, we evaluated improvement of glycemic control and weight loss in the course of the treatment (0 – 24 weeks after DJBL implantation) and analyzed accompanying gut hormone responses.
Patients and methods: 12 obese individuals with type 2 diabetes were selected for DJBL implantation. Body weight, fat mass, and fasting plasma levels of glucose, insulin, C-peptide, and glycated hemoglobin (HbA1c), were analyzed at 0, 1, 4 and 24 weeks post-implant. Fasting ghrelin, gastric inhibitory peptide (GIP), and glucagon-like peptide (GLP-1) were determined at 0, 1 and 4 weeks post-implant.
Results: Besides significant weight loss, fat mass, fasting insulin, and homeostasis model assessment-estimated insulin resistance (HOMA-IR) index were also significantly decreased after DJBL implantation and a 42 % reduction was found in diabetes medication (P < 0.05). The fasting GLP-1 response in the first 4 weeks post-implant was significantly correlated with the fasting insulin and HOMA-IR response. Fasting ghrelin was found to be significantly elevated, in contrast to the decrease in ghrelin that is found after RYGB surgery.
Conclusions: DJBL implantation provoked significant weight loss, a decrease in fat mass, and an early remission of type 2 diabetes, comparable to results seen after RYGB surgery. Gut hormone analyses revealed a potential role of fasting GLP-1 in early remission of type 2 diabetes. Interestingly, the DJBL-induced elevation of ghrelin contradicts the suggested role of reduced ghrelin levels after RYGB in improvement of glycemic control.
PMCID: PMC4423279  PMID: 26134609
18.  Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans 
Nutrients often stimulate gut hormone secretion, but the effects of fructose are incompletely understood. We studied the effects of fructose on a number of gut hormones with particular focus on glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In healthy humans, fructose intake caused a rise in blood glucose and plasma insulin and GLP-1, albeit to a lower degree than isocaloric glucose. Cholecystokinin secretion was stimulated similarly by both carbohydrates, but neither peptide YY3–36 nor glucagon secretion was affected by either treatment. Remarkably, while glucose potently stimulated GIP release, fructose was without effect. Similar patterns were found in the mouse and rat, with both fructose and glucose stimulating GLP-1 secretion, whereas only glucose caused GIP secretion. In GLUTag cells, a murine cell line used as model for L cells, fructose was metabolized and stimulated GLP-1 secretion dose-dependently (EC50 = 0.155 mM) by ATP-sensitive potassium channel closure and cell depolarization. Because fructose elicits GLP-1 secretion without simultaneous release of glucagonotropic GIP, the pathways underlying fructose-stimulated GLP-1 release might be useful targets for type 2 diabetes mellitus and obesity drug development.
PMCID: PMC3962593  PMID: 24525020
enteroendocrine axis; gastric inhibitory peptide; glucagon-like peptide-1
19.  Upregulated insulin secretion in insulin-resistant mice: evidence of increased islet GLP1 receptor levels and GPR119-activated GLP1 secretion 
Endocrine Connections  2013;2(2):69-78.
We previously demonstrated that the overall incretin effect and the β-cell responsiveness to glucagon-like peptide-1 (GLP1) are increased in insulin-resistant mice and may contribute to the upregulated β-cell function. Now we examined whether this could, first, be explained by increased islet GLP1 receptor (GLP1R) protein levels and, secondly, be leveraged by G-protein-coupled receptor 119 (GPR119) activation, which stimulates GLP1 secretion. Female C57BL/6J mice, fed a control (CD, 10% fat) or high-fat (HFD, 60% fat) diet for 8 weeks, were anesthetized and orally given a GPR119 receptor agonist (GSK706A; 10 mg/kg) or vehicle, followed after 10 min with gavage with a liquid mixed meal (0.285 kcal). Blood was sampled for determination of glucose, insulin, intact GLP1, and glucagon, and islets were isolated for studies on insulin and glucagon secretion and GLP1R protein levels. In HFD vs CD mice, GPR119 activation augmented the meal-induced increase in the release of both GLP1 (AUCGLP1 81±9.6 vs 37±6.9 pM×min, P=0.002) and insulin (AUCINS 253±29 vs 112±19 nM×min, P<0.001). GPR119 activation also significantly increased glucagon levels in both groups (P<0.01) with, however, no difference between the groups. By contrast, GPR119 activation did not affect islet hormone secretion from isolated islets. Glucose elimination after meal ingestion was significantly increased by GPR119 activation in HFD mice (0.57±0.04 vs 0.43±0.03% per min, P=0.014) but not in control mice. Islet GLP1R protein levels was higher in HFD vs CD mice (0.8±0.1 vs 0.5±0.1, P=0.035). In conclusion, insulin-resistant mice display increased islet GLP1R protein levels and augmented meal-induced GLP1 and insulin responses to GPR119 activation, which results in increased glucose elimination. We suggest that the increased islet GLP1R protein levels together with the increased GLP1 release may contribute to the upregulated β-cell function in insulin resistance.
PMCID: PMC3680955  PMID: 23781322
GLP1; GLP1R; GPR119; insulin; insulin resistance
20.  Discovery of Dual-Action Membrane-Anchored Modulators of Incretin Receptors 
PLoS ONE  2011;6(9):e24693.
The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function.
Methodology/Principal Findings
Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G7]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G7 into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4), did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G7]tGIP and tEXE4) failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes.
These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target.
PMCID: PMC3173463  PMID: 21935440
21.  Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice 
Glucagon-like peptide-1 (GLP-1) circulates at low levels and acts as an incretin hormone, potentiating glucose-dependent insulin secretion from islet β cells. GLP-1 also modulates gastric emptying and engages neural circuits in the portal region and CNS that contribute to GLP-1 receptor–dependent (GLP-1R–dependent) regulation of glucose homeostasis. To elucidate the importance of pancreatic GLP-1R signaling for glucose homeostasis, we generated transgenic mice that expressed the human GLP-1R in islets and pancreatic ductal cells (Pdx1-hGLP1R:Glp1r–/– mice). Transgene expression restored GLP-1R–dependent stimulation of cAMP and Akt phosphorylation in isolated islets, conferred GLP-1R–dependent stimulation of β cell proliferation, and was sufficient for restoration of GLP-1–stimulated insulin secretion in perifused islets. Systemic GLP-1R activation with the GLP-1R agonist exendin-4 had no effect on food intake, hindbrain c-fos expression, or gastric emptying but improved glucose tolerance and stimulated insulin secretion in Pdx1-hGLP1R:Glp1r–/– mice. i.c.v. GLP-1R blockade with the antagonist exendin(9–39) impaired glucose tolerance in WT mice but had no effect in Pdx1-hGLP1R:Glp1r–/– mice. Nevertheless, transgenic expression of the pancreatic GLP-1R was sufficient to normalize both oral and i.p. glucose tolerance in Glp1r–/– mice. These findings illustrate that low levels of endogenous GLP-1 secreted from gut endocrine cells are capable of augmenting glucoregulatory activity via pancreatic GLP-1Rs independent of communication with neural pathways.
PMCID: PMC3248276  PMID: 22182839
22.  Exenatide can inhibit calcification of human VSMCs through the NF-kappaB/RANKL signaling pathway 
Arterial calcification is an important pathological change of diabetic vascular complication. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) plays an important cytopathologic role in arterial calcification. The glucagon-like peptide-1 receptor agonists (GLP-1RA), a novel type of antidiabetic drugs, exert cardioprotective effects through the GLP-1 receptor (GLP-1R). However, the question of whether or not GLP-1RA regulates osteoblastic differentiation and calcification of VSMCs has not been answered, and the associated molecular mechanisms have not been examined.
Calcifying VSMCs (CVSMCs) were isolated from cultured human arterial smooth muscle cells through limiting dilution and cloning. The extent of matrix mineralization was measured by Alizarin Red S staining. Protein expression and phosphorylation were detected by Western blot. Gene expression of receptor activator of nuclear factor-κB ligand (RANKL) was silenced by small interference RNA (siRNA).
Exenatide, an agonist of GLP-1 receptor, attenuated β-glycerol phosphate (β-GP) induced osteoblastic differentiation and calcification of human CVSMCs in a dose- and time-dependent manner. RANKL siRNA also inhibited osteoblastic differentiation and calcification. Exenatide decreased the expression of RANKL in a dose-dependent manner. 1,25 vitD3 (an activator of RANKL) upregulated, whereas BAY11-7082 (an inhibitor of NF-κB) downregulated RANKL, alkaline phosphatase (ALP), osteocalcin (OC), and core binding factor α1 (Runx2) protein levels and reduced mineralization in human CVSMCs. Exenatide decreased p-NF-κB and increased p-AMPKα levels in human CVSMCs 48 h after treatment. Significant decrease in p-NF-κB (p-Ser276, p-Ser536) level was observed in cells treated with exenatide or exenatide + BAY11-7082.
GLP-1RA exenatide can inhibit human VSMCs calcification through NF-κB/RANKL signaling.
PMCID: PMC4241215  PMID: 25407893
Arterial calcification; Vascular smooth muscle cells; Osteoblastic differentiation; Glucagon-like peptide-1; Diabetes
23.  Prebiotic Fiber Increases Hepatic Acetyl CoA Carboxylase Phosphorylation and Suppresses Glucose-Dependent Insulinotropic Polypeptide Secretion More Effectively When Used with Metformin in Obese Rats1,2 
The Journal of nutrition  2012;142(2):213-220.
Independently, metformin (MET) and the prebiotic, oligofructose (OFS), have been shown to increase glucagon-like peptide (GLP-1) secretion. Our objective was to determine whether using OFS as an adjunct with MET augments GLP-1 secretion in obese rats. Male, diet-induced obese Sprague Dawley rats were randomized to: 1) high-fat/-sucrose diet [HFHS; control (C); 20% fat, 50% sucrose wt:wt]; 2) HFHS+10% OFS (OFS); 3) HFHS + MET [300 mg/kg/d (MET)]; 4) HFHS+10% OFS+MET (OFS +MET). Body composition, glycemia, satiety hormones, and mechanisms related to dipeptidyl peptidase 4 (DPP4) activity in plasma, hepatic AMP-activated protein kinase (AMPK; Western blots), and gut microbiota (qPCR) were examined. Direct effects of MET and SCFA were examined in human enteroendocrine cells. The interaction between OFS and MET affected fat mass, hepatic TG, secretion of glucose-dependent insulinotropic polypeptide (GIP) and leptin, and AMPKα2 mRNA and phosphorylated acetyl CoA carboxylase (pACC) levels (P < 0.05). Combined, OFS and MET reduced GIP secretion to a greater extent than either treatment alone (P < 0.05). The hepatic pACC level was increased by OFS+MET by at least 50% above all other treatments, which did not differ from each other (P < 0.05). OFS decreased plasma DPP4 activity (P < 0.001). Cecal Bifidobacteria (P < 0.001) were markedly increased and C. leptum decreased (P < 0.001) with OFS consumption. In human enteroendocrine cells, the interaction between MET and SCFA affected GLP-1 secretion (P < 0.04) but was not associated with higher GLP-1 than the highest individual doses. In conclusion, the combined actions of OFS and MET were associated with important interaction effects that have the potential to improve metabolic outcomes associated with obesity.
PMCID: PMC3742459  PMID: 22223580 CAMSID: cams3220
24.  Circulating ghrelin and GLP-1 are not affected by habitual diet 
Regulatory Peptides  2012;176(1-3):1-5.
Ghrelin and glucagon-like peptide-1 (GLP-1) are gut hormones known to induce hunger and satiety, respectively. Current knowledge about the effects of different macronutrients on circulating ghrelin and GLP-1 comes mainly from acute test meals, whereas little is known about the effects of chronic dietary intake on gut hormone secretion. This study was designed to examine whether 8-week habituation to diets with different percentages of carbohydrate and fat would affect serum ghrelin, GLP-1, and subjective hunger in a postabsorptive state and in response to a standard liquid mixed meal.
Sixty-one overweight men and women were provided all food for 8 weeks of either a higher-carbohydrate/lower-fat diet (High-CHO/Low-FAT; 55% CHO, 18% PRO, 27% FAT) or a lower-carbohydrate/higher-fat diet (Low-CHO/High-FAT; 43% CHO, 18% PRO, 39% FAT). After overnight fasts at baseline and week 8, participants consumed a standard liquid meal (7 kcals/kg, 58.6% CHO, 17.4% PRO, 24% FAT). Blood was sampled before the meal and at 15, 60, 90, 120, 180, and 240 minutes to determine total serum ghrelin and active GLP-1. Hunger was assessed by a visual analog scale. Mixed models were used to evaluate whether the temporal patterns of total serum ghrelin and active GLP-1 differed with diet.
Although both diet groups reported greater hunger after 8 weeks (p=0.03), circulating ghrelin and GLP-1 were not affected by acclimation to different macronutrients.
Habituation to different diets does not appear to influence fasting ghrelin, fasting GLP-1, or responses of these gut hormones to a standard meal.
PMCID: PMC3348389  PMID: 22387702
Macronutrients; ghrelin; glucagon-like peptide-1 (GLP-1)
25.  Antidiabetic Actions of Endogenous and Exogenous GLP-1 in Type 1 Diabetic Patients With and Without Residual β-Cell Function 
Diabetes  2011;60(5):1599-1607.
To investigate the effect of exogenous as well as endogenous glucagon-like peptide 1 (GLP-1) on postprandial glucose excursions and to characterize the secretion of incretin hormones in type 1 diabetic patients with and without residual β-cell function.
Eight type 1 diabetic patients with (T1D+), eight without (T1D−) residual β-cell function, and eight healthy matched control subjects were studied during a mixed meal with concomitant infusion of GLP-1 (1.2 pmol/kg/min), saline, or exendin 9-39 (300 pmol/kg/min). Before the meal, half dose of usual fast-acting insulin was injected. Plasma glucose (PG), glucagon, C-peptide, total GLP-1, intact glucose-dependent insulinotropic polypeptide (GIP), free fatty acids, triglycerides, and gastric emptying rate (GE) by plasma acetaminophen were measured.
Incretin responses did not differ between patients and control subjects. Infusion of GLP-1 decreased peak PG by 45% in both groups of type 1 diabetic patients. In T1D+ patients, postprandial PG decreased below fasting levels and was indistinguishable from control subjects infused with saline. In T1D− patients, postprandial PG remained at fasting levels. GLP-1 infusion reduced GE and glucagon levels in all groups and increased fasting C-peptide in T1D+ patients and control subjects. Blocking endogenous GLP-1 receptor action increased endogenous GLP-1 secretion in all groups and increased postprandial glucose, glucagon, and GE in T1D+ and T1D− patients. The insulinogenic index (the ratio of insulin to glucose) decreased in T1D+ patients during blockade of endogenous GLP-1 receptor action.
Type 1 diabetic patients have normal incretin responses to meals. In type 1 diabetic patients, exogenous GLP-1 decreases peak postprandial glucose by 45% regardless of residual β-cell function. Endogenous GLP-1 regulates postprandial glucose excursions by modulating glucagon levels, GE, and β-cell responsiveness to glucose. Long-term effects of GLP-1 in type 1 diabetic patients should be investigated in future clinical trials.
PMCID: PMC3292336  PMID: 21441444

Results 1-25 (1498995)