Search tips
Search criteria

Results 1-25 (1256795)

Clipboard (0)

Related Articles

1.  Neurovascular Saturation Thresholds Under High Intensity Auditory Stimulation During Wake 
Neuroscience  2012;227:191-200.
Coupling between neural activity and hemodynamic responses is important in understanding brain function, interpreting brain imaging signals, and assessing pathological conditions. Tissue state is a major factor in neurovascular coupling and may alter the relationship between neural and hemodynamic activity. However, most neurovascular coupling studies are performed under anesthetized or sedated states which may have severe consequences on coupling mechanisms. Our previous studies showed that following prolonged periods of sleep deprivation, evoked hemodynamic responses were muted despite consistent electrical responses, suggesting that sustained neural activity may decrease vascular compliance and limit blood perfusion. To investigate potential perfusion limitations during natural waking conditions, we simultaneously measured evoked response potentials (ERPs) and evoked hemodynamic responses using optical imaging techniques to increasing intensity auditory stimulation. The relationship between evoked hemodynamic responses and integrated ERPs followed a sigmoid relationship where the hemodynamic response approached saturation at lower stimulus intensities than the ERP. If limits in blood perfusion are caused by stretching of the vessel wall, then these results suggest there may be decreased vascular compliance due to sustained neural activity during wake, which could limit vascular responsiveness and local blood perfusion. Conditions that stress cerebral vasculature, such as sleep deprivation and some pathologies (e.g., epilepsy), may further decrease vascular compliance, limit metabolic delivery, and cause tissue trauma. While ERPs and evoked hemodynamic responses provide an indication of the correlated neural activity and metabolic demand, the relationship between these two responses is complex and the different measurement techniques are not directly correlated. Future studies are required to verify these findings and further explore neurovascular coupling during wake by assessing local field potentials, vascular expansion, hemodynamic response localization.
PMCID: PMC3544216  PMID: 23041761
ERP; neurovascular coupling; NIRS
2.  Homeostatic regulation of sleep in the white-crowned sparrow (Zonotrichia leucophrys gambelii) 
BMC Neuroscience  2008;9:47.
Sleep is regulated by both a circadian and a homeostatic process. The homeostatic process reflects the duration of prior wakefulness: the longer one stays awake, the longer and/or more intense is subsequent sleep. In mammals, the best marker of the homeostatic sleep drive is slow wave activity (SWA), the electroencephalographic (EEG) power spectrum in the 0.5–4 Hz frequency range during non-rapid eye movement (NREM) sleep. In mammals, NREM sleep SWA is high at sleep onset, when sleep pressure is high, and decreases progressively to reach low levels in late sleep. Moreover, SWA increases further with sleep deprivation, when sleep also becomes less fragmented (the duration of sleep episodes increases, and the number of brief awakenings decreases). Although avian and mammalian sleep share several features, the evidence of a clear homeostatic response to sleep loss has been conflicting in the few avian species studied so far. The aim of the current study was therefore to ascertain whether established markers of sleep homeostasis in mammals are also present in the white-crowned sparrow (Zonotrichia leucophrys gambelii), a migratory songbird of the order Passeriformes. To accomplish this goal, we investigated amount of sleep, sleep time course, and measures of sleep intensity in 6 birds during baseline sleep and during recovery sleep following 6 hours of sleep deprivation.
Continuous (24 hours) EEG and video recordings were used to measure baseline sleep and recovery sleep following short-term sleep deprivation. Sleep stages were scored visually based on 4-sec epochs. EEG power spectra (0.5–25 Hz) were calculated on consecutive 4-sec epochs. Four vigilance states were reliably distinguished based on behavior, visual inspection of the EEG, and spectral EEG analysis: Wakefulness (W), Drowsiness (D), slow wave sleep (SWS) and rapid-eye movement (REM) sleep. During baseline, SWA during D, SWS, and NREM sleep (defined as D and SWS combined) was highest at the beginning of the major sleep period and declined thereafter. Moreover, peak SWA in both SWS and NREM sleep increased significantly immediately following sleep deprivation relative to baseline.
As in mammals, sleep deprivation in the white-crowned sparrow increases the intensity of sleep as measured by SWA.
PMCID: PMC2424059  PMID: 18505569
3.  Time- and Behavioral State-Dependent Changes in Posterior Hypothalamic GABAA Receptors Contribute to the Regulation of Sleep 
PLoS ONE  2014;9(1):e86545.
Sleep-wake behavior is regulated by a circadian rhythm, homeostatically and by additional mechanisms that determine the timing of slow-wave sleep and rapid eye movement sleep (REMS) episodes. The posterior hypothalamus coordinates the neural and humoral signals with the rest-activity cycle. It contains wake-active neurons, and is a site where stimulation of inhibitory GABAA receptors promotes sleep, whereas their antagonism enhances wakefulness. We explored whether GABAergic mechanisms present in the posterior hypothalamus contribute to the homeostatic and other aspects of sleep-wake regulation. Using micropunches of tissue extracted from either the perifornical (PF) or dorsomedial (DM) regions of the posterior hypothalamus of rats, we determined that mRNA levels for selected subunits of GABAA receptors (β1, β3 and ε) were higher at the end of the active period or following sleep deprivation, when the need for sleep is high, than after several hours of sleep, when sleep need is partially fulfilled. Such a pattern was present in the PF region only, and was consistent with changes in β1 subunit and GABA synthesizing enzyme (GAD) protein levels. In contrast, in the DM region, the levels of GABAA receptor subunit mRNAs and proteins (α1, α2, β1) and GAD varied with circadian time, but were not responsive to sleep deprivation. Separate experiments with sleep-wake monitoring and local perfusion of the PF region with the GABAA receptor antagonist bicuculline revealed that the antagonist had a weaker sleep-reducing effect when sleep need was enhanced by sleep deprivation and that the increased amount of REMS characteristic of the late sleep period was dependent on endogenous GABAergic inhibition. These results support the concept that a varying magnitude of GABAergic inhibition exerted within the PF region contributes to the homeostatic regulation of sleep and shapes its temporal pattern, whereas GABAergic mechanisms in the DM region contribute to circadian regulation.
PMCID: PMC3897747  PMID: 24466145
4.  Isoflurane Anesthesia Does Not Satisfy the Homeostatic Need for Rapid Eye Movement Sleep 
Anesthesia and analgesia  2010;110(5):1283-1289.
Sleep and general anesthesia are distinct states of consciousness that share many traits. Prior studies suggest that propofol anesthesia facilitates recovery from rapid eye movement (REM) and non-REM (NREM) sleep deprivation, but the effects of inhaled anesthetics have not yet been studied. We tested the hypothesis that isoflurane anesthesia would also facilitate recovery from REM sleep deprivation.
Six rats were implanted with superficial cortical, deep hippocampal, and nuchal muscle electrodes. Animals were deprived of REM sleep for 24 hours and then (1) allowed to sleep ad libitum for 8 hours or (2) were immediately anesthetized with isoflurane for a 4-hour period followed by ad libitum sleep for 4 hours. The percentage of REM and NREM sleep after the protocols was compared with similar conditions without sleep deprivation. Hippocampal θ activity during isoflurane anesthesia was also compared with θ activity during REM sleep and active waking.
Recovery after deprivation was associated with a 5.7-fold increase (P = 0.0005) in REM sleep in the first 2 hours and a 2.6-fold increase (P = 0.004) in the following 2 hours. Animals that underwent isoflurane anesthesia after deprivation demonstrated a 3.6-fold increase (P = 0.001) in REM sleep in the first 2 hours of recovery and a 2.2-fold increase (P = 0.003) in the second 2 hours. There were no significant differences in REM sleep rebound between the first 4 hours after deprivation and the first 4 hours after both deprivation and isoflurane anesthesia. Hippocampal θ activity during isoflurane anesthesia was not affected by REM sleep deprivation, and the probability distribution of θ events during anesthesia was more similar to that of waking than to REM sleep.
Unlike propofol, isoflurane does not satisfy the homeostatic need for REM sleep. Furthermore, the regulation and organization of hippocampal θ events during anesthesia are unlike sleep. We conclude that different anesthetics have distinct interfaces with sleep.
PMCID: PMC3767968  PMID: 20418293
5.  DQB1*0602 predicts interindividual differences in physiologic sleep, sleepiness, and fatigue 
Neurology  2010;75(17):1509-1519.
The human leukocyte antigen (HLA) DQB1*0602 allele is closely associated with narcolepsy, a neurologic disorder characterized by excessive daytime sleepiness, fragmented sleep, and shortened REM sleep latency. We evaluated whether DQB1*0602 was a novel marker of interindividual differences by determining its relationship to sleep homeostatic, sleepiness, and cognitive responses to baseline and chronic partial sleep deprivation (PSD) conditions.
Ninety-two DQB1*0602-negative and 37 DQB1*0602-positive healthy adults participated in a protocol of 2 baseline 10 hours time in bed (TIB) nights followed by 5 consecutive 4 hours TIB nights. DQB1*0602 allelic frequencies did not differ significantly between Caucasians and African Americans.
During baseline, although DQB1*0602-positive subjects were subjectively sleepier and more fatigued, they showed greater sleep fragmentation, and decreased sleep homeostatic pressure and differentially sharper declines during the night (measured by non-REM EEG slow-wave energy [SWE]). During PSD, DQB1*0602-positive subjects were sleepier and showed more fragmented sleep, despite SWE elevation comparable to negative subjects. Moreover, they showed differentially greater REM sleep latency reductions and smaller stage 2 reductions, along with differentially greater increases in fatigue. Both groups demonstrated comparable cumulative decreases in cognitive performance.
DQB1*0602 positivity in a healthy population may represent a continuum of some sleep–wake features of narcolepsy. DQB1*0602 was associated with interindividual differences in sleep homeostasis, physiologic sleep, sleepiness, and fatigue—but not in cognitive measures—during baseline and chronic PSD. Thus, DQB1*0602 may represent a genetic biomarker for predicting such individual differences in basal and sleep loss conditions.
= analysis of variance;
= Controlled Oral Word Association Test;
= Digit Span;
= Digit Symbol Substitution Task;
= human leukocyte antigen;
= Karolinska Sleepiness Scale;
= Maintenance of Wakefulness Test;
= Profile of Mood States;
= partial sleep deprivation;
= polysomnography;
= Psychomotor Vigilance Task;
= sleep onset latency;
= sleep deprivation/restriction;
= slow-wave activity;
= slow-wave energy;
= time in bed;
= Tower of London;
= total sleep deprivation;
= visual analog scale;
= wake after sleep onset.
PMCID: PMC2974463  PMID: 20975052
6.  Sleep-Disordered Breathing and Mortality: A Prospective Cohort Study 
PLoS Medicine  2009;6(8):e1000132.
In a cohort of 6,441 volunteers followed over an average of 8.2 years, Naresh Punjabi and colleagues find sleep-disordered breathing to be independently associated with mortality and identify predictive characteristics.
Sleep-disordered breathing is a common condition associated with adverse health outcomes including hypertension and cardiovascular disease. The overall objective of this study was to determine whether sleep-disordered breathing and its sequelae of intermittent hypoxemia and recurrent arousals are associated with mortality in a community sample of adults aged 40 years or older.
Methods and Findings
We prospectively examined whether sleep-disordered breathing was associated with an increased risk of death from any cause in 6,441 men and women participating in the Sleep Heart Health Study. Sleep-disordered breathing was assessed with the apnea–hypopnea index (AHI) based on an in-home polysomnogram. Survival analysis and proportional hazards regression models were used to calculate hazard ratios for mortality after adjusting for age, sex, race, smoking status, body mass index, and prevalent medical conditions. The average follow-up period for the cohort was 8.2 y during which 1,047 participants (587 men and 460 women) died. Compared to those without sleep-disordered breathing (AHI: <5 events/h), the fully adjusted hazard ratios for all-cause mortality in those with mild (AHI: 5.0–14.9 events/h), moderate (AHI: 15.0–29.9 events/h), and severe (AHI: ≥30.0 events/h) sleep-disordered breathing were 0.93 (95% CI: 0.80–1.08), 1.17 (95% CI: 0.97–1.42), and 1.46 (95% CI: 1.14–1.86), respectively. Stratified analyses by sex and age showed that the increased risk of death associated with severe sleep-disordered breathing was statistically significant in men aged 40–70 y (hazard ratio: 2.09; 95% CI: 1.31–3.33). Measures of sleep-related intermittent hypoxemia, but not sleep fragmentation, were independently associated with all-cause mortality. Coronary artery disease–related mortality associated with sleep-disordered breathing showed a pattern of association similar to all-cause mortality.
Sleep-disordered breathing is associated with all-cause mortality and specifically that due to coronary artery disease, particularly in men aged 40–70 y with severe sleep-disordered breathing.
Please see later in the article for the Editors' Summary
Editors' Summary
About 1 in 10 women and 1 in 4 men have a chronic condition called sleep-disordered breathing although most are unaware of their problem. Sleep-disordered breathing, which is commonest in middle-aged and elderly people, is characterized by numerous, brief (10 second or so) interruptions of breathing during sleep. These interruptions, which usually occur when relaxation of the upper airway muscles decreases airflow, lower the level of oxygen in the blood and, as a result, affected individuals are frequently aroused from deep sleep as they struggle to breathe. Symptoms of sleep-disordered breathing include loud snoring and daytime sleepiness. Treatments include lifestyle changes such as losing weight (excess fat around the neck increases airway collapse) and smoking cessation. Affected people can also use special devices to prevent them sleeping on their backs, but for severe sleep-disordered breathing, doctors often recommend continuous positive airway pressure (CPAP), a machine that pressurizes the upper airway through a face mask to keep it open.
Why Was This Study Done?
Sleep-disordered breathing is a serious condition. It is associated with several adverse health conditions including coronary artery disease (narrowing of the blood vessels that supply the heart, a condition that can cause a heart attack) and daytime sleepiness that can affect an individual's driving ability. In addition, several clinic- and community-based studies suggest that sleep-disordered sleeping may increase a person's risk of dying. However, because these studies have been small and have often failed to allow for other conditions and characteristics that affect an individual's risk of dying (“confounding factors”), they provide inconsistent or incomplete information about the potential association between sleep-disordered breathing and the risk of death. In this prospective cohort study (part of the Sleep Heart Health Study, which is researching the effects of sleep-disordered breathing on cardiovascular health), the researchers examine whether sleep-disordered breathing is associated with all-cause mortality (death from any cause) in a large community sample of adults. A prospective cohort study is one in which a group of participants is enrolled and then followed forward in time (in this case for several years) to see what happens to them.
What Did the Researchers Do and Find?
At enrollment, the study participants—more than 6,000 people aged 40 years or older, none of whom were being treated for sleep-disordered breathing—had a health examination. Their night-time breathing, sleep patterns, and blood oxygen levels were also assessed and these data used to calculate each participant's apnea-hypopnea index (AHI)—the number of apneas and hypopneas per hour. During the study follow-up period, 1,047 participants died. Compared to participants without sleep-disordered sleeping, participants with severe sleep-disordered breathing (an AHI of ≥30) were about one and a half times as likely to die from any cause after adjustment for potential confounding factors. People with milder sleep-disordered breathing did not have a statistically significant increased risk of dying. After dividing the participants into subgroups according to their age and sex, men aged 40–70 years with severe sleep-disordered breathing had a statistically increased risk of dying from any cause (twice the risk of men of a similar age without sleep-disordered breathing). Finally, death from coronary artery disease was also associated with sleep-disordered breathing in men but not in women.
What Do These Findings Mean?
These findings indicate that sleep-disordered breathing is associated with an increased risk of all-cause mortality, particularly in men aged 40–70 years, even after allowing for known confounding factors. They also suggest that the increased risk of death is specifically associated with coronary artery disease although further studies are needed to confirm this finding because it was based on the analysis of a small subgroup of study participants. Although this study is much larger than previous investigations into the association between sleep-disordered breathing and all-cause mortality, it has several limitations including its reliance on a single night's measurements for the diagnosis of sleep-disordered breathing. Nevertheless, these findings suggest that clinical trials should now be started to assess whether treatment can reduce the increased risk of death that seems to be associated with this common disorder.
Additional Information
Please access these Web sites via the online version of this summary at
The US National Heart Lung and Blood Institute has information (including a video) about sleep-disordered breathing (sleep apnea) (in English and Spanish)
The UK National Heath Service also provides information for patients about sleep apnea
MedlinePlus provides links to further information and advice about sleep-disordered breathing (in English and Spanish)
More information on the Sleep Heart Health Study is available
PMCID: PMC2722083  PMID: 19688045
7.  Altered Sleep Regulation in a Mouse Model of SCN1A-Derived Genetic Epilepsy with Febrile Seizures Plus (GEFS+) 
Epilepsia  2013;54(4):625-634.
Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In addition to seizures, patients with SCN1A mutations often experience sleep abnormalities, suggesting that SCN1A may also play a role in the neuronal pathways involved in the regulation of sleep. However, to date, a role for SCN1A in the regulation of sleep architecture has not been directly examined. To fill this gap, we tested the hypothesis that SCN1A contributes to the regulation of sleep architecture, and by extension, that SCN1A dysfunction contributes to the sleep abnormalities observed in patients with SCN1A mutations.
Using immunohistochemistry we first examined the expression of Scn1a in regions of the mouse brain that are known to be involved in seizure generation and sleep regulation. Next, we performed detailed analysis of sleep and wake electroencephalographic (EEG) patterns during 48 continuous hours of baseline recordings in a knock-in mouse line that expresses the human SCN1A GEFS+ mutation R1648H (RH mutants). We also characterized the sleep-wake pattern following 6 hours of sleep deprivation.
Key Findings
Immunohistochemistry revealed broad expression of Scn1a in the neocortex, hippocampus, hypothalamus, thalamic reticular nuclei, dorsal raphe nuclei, pedunculopontine and laterodorsal tegmental nuclei. Co-localization between Scn1a immunoreactivity and critical cell types within these regions was also observed. EEG analysis under baseline conditions revealed increased wakefulness and reduced non-rapid eye movement (NREM) and rapid eye movement (REM) sleep amounts during the dark phase in the RH mutants, suggesting a sleep deficit. Nevertheless, the mutants exhibited levels of NREM and REM sleep that were generally similar to WT littermates during the recovery period following 6-hours of sleep deprivation.
These results establish a direct role for SCN1A in the regulation of sleep and suggest that patients with SCN1A mutations may experience chronic alterations in sleep, potentially leading to negative outcomes over time. In addition, the expression of Scn1a in specific cells types/brain regions that are known to play critical roles in seizure generation and sleep now provides a mechanistic basis for the clinical features (seizures and sleep abnormalities) associated with human SCN1A mutations.
PMCID: PMC3703918  PMID: 23311867
sleep; epilepsy; Scn1a; sodium channel; sleep deprivation
8.  Sleep Patterns and Homeostatic Mechanisms in Adolescent Mice 
Brain sciences  2013;3(1):318-343.
Sleep changes were studied in mice (n = 59) from early adolescence to adulthood (postnatal days P19–111). REM sleep declined steeply in early adolescence, while total sleep remained constant and NREM sleep increased slightly. Four hours of sleep deprivation starting at light onset were performed from ages P26 through adulthood (>P60). Following this acute sleep deprivation all mice slept longer and with more consolidated sleep bouts, while NREM slow wave activity (SWA) showed high interindividual variability in the younger groups, and increased consistently only after P42. Three parameters together explained up to 67% of the variance in SWA rebound in frontal cortex, including weight-adjusted age and increase in alpha power during sleep deprivation, both of which positively correlated with the SWA response. The third, and strongest predictor was the SWA decline during the light phase in baseline: mice with high peak SWA at light onset, resulting in a large SWA decline, were more likely to show no SWA rebound after sleep deprivation, a result that was also confirmed in parietal cortex. During baseline, however, SWA showed the same homeostatic changes in adolescents and adults, declining in the course of sleep and increasing across periods of spontaneous wake. Thus, we hypothesize that, in young adolescent mice, a ceiling effect and not the immaturity of the cellular mechanisms underlying sleep homeostasis may prevent the SWA rebound when wake is extended beyond its physiological duration.
PMCID: PMC3682503  PMID: 23772316
adolescence; cerebral cortex; sleep deprivation; slow wave activity
9.  Sleep Patterns and Homeostatic Mechanisms in Adolescent Mice 
Brain Sciences  2013;3(1):318-343.
Sleep changes were studied in mice (n = 59) from early adolescence to adulthood (postnatal days P19–111). REM sleep declined steeply in early adolescence, while total sleep remained constant and NREM sleep increased slightly. Four hours of sleep deprivation starting at light onset were performed from ages P26 through adulthood (>P60). Following this acute sleep deprivation all mice slept longer and with more consolidated sleep bouts, while NREM slow wave activity (SWA) showed high interindividual variability in the younger groups, and increased consistently only after P42. Three parameters together explained up to 67% of the variance in SWA rebound in frontal cortex, including weight-adjusted age and increase in alpha power during sleep deprivation, both of which positively correlated with the SWA response. The third, and strongest predictor was the SWA decline during the light phase in baseline: mice with high peak SWA at light onset, resulting in a large SWA decline, were more likely to show no SWA rebound after sleep deprivation, a result that was also confirmed in parietal cortex. During baseline, however, SWA showed the same homeostatic changes in adolescents and adults, declining in the course of sleep and increasing across periods of spontaneous wake. Thus, we hypothesize that, in young adolescent mice, a ceiling effect and not the immaturity of the cellular mechanisms underlying sleep homeostasis may prevent the SWA rebound when wake is extended beyond its physiological duration.
PMCID: PMC3682503  PMID: 23772316
adolescence; cerebral cortex; sleep deprivation; slow wave activity
10.  Obstructive Sleep Apnea and Risk of Cardiovascular Events and All-Cause Mortality: A Decade-Long Historical Cohort Study 
PLoS Medicine  2014;11(2):e1001599.
Tetyana Kendzerska and colleagues explore the association between physiological measures of obstructive sleep apnea other than the apnea-hypopnea index and the risk of cardiovascular events.
Please see later in the article for the Editors' Summary
Obstructive sleep apnea (OSA) has been reported to be a risk factor for cardiovascular (CV) disease. Although the apnea-hypopnea index (AHI) is the most commonly used measure of OSA, other less well studied OSA-related variables may be more pathophysiologically relevant and offer better prediction. The objective of this study was to evaluate the relationship between OSA-related variables and risk of CV events.
Methods and Findings
A historical cohort study was conducted using clinical database and health administrative data. Adults referred for suspected OSA who underwent diagnostic polysomnography at the sleep laboratory at St Michael's Hospital (Toronto, Canada) between 1994 and 2010 were followed through provincial health administrative data (Ontario, Canada) until May 2011 to examine the occurrence of a composite outcome (myocardial infarction, stroke, congestive heart failure, revascularization procedures, or death from any cause). Cox regression models were used to investigate the association between baseline OSA-related variables and composite outcome controlling for traditional risk factors. The results were expressed as hazard ratios (HRs) and 95% CIs; for continuous variables, HRs compare the 75th and 25th percentiles. Over a median follow-up of 68 months, 1,172 (11.5%) of 10,149 participants experienced our composite outcome. In a fully adjusted model, other than AHI OSA-related variables were significant independent predictors: time spent with oxygen saturation <90% (9 minutes versus 0; HR = 1.50, 95% CI 1.25–1.79), sleep time (4.9 versus 6.4 hours; HR = 1.20, 95% CI 1.12–1.27), awakenings (35 versus 18; HR = 1.06, 95% CI 1.02–1.10), periodic leg movements (13 versus 0/hour; HR = 1.05, 95% CI 1.03–1.07), heart rate (70 versus 56 beats per minute [bpm]; HR = 1.28, 95% CI 1.19–1.37), and daytime sleepiness (HR = 1.13, 95% CI 1.01–1.28).The main study limitation was lack of information about continuous positive airway pressure (CPAP) adherence.
OSA-related factors other than AHI were shown as important predictors of composite CV outcome and should be considered in future studies and clinical practice.
Please see later in the article for the Editors' Summary
Editors' Summary
Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder, particularly among middle-aged and elderly people. It is characterized by apnea—a brief interruption in breathing that lasts at least 10 seconds—and hypopnea—a decrease of more than 50% in the amplitude of breathing that lasts at least 10 seconds or clear but smaller decrease in amplitude associated with either oxygen desaturation or an arousal. Patients with OSA experience numerous episodes of apnea and hypopnea during the night; severe OSA is defined as having 30 or more episodes per hour (an apnea-hypopnea index [AHI] of >30). These breathing interruptions occur when relaxation of the upper airway muscles decreases the airflow, which lowers the amount of oxygen in the blood. As a result, affected individuals frequently wake from deep sleep as they struggle to breathe. Symptoms of OSA include loud snoring and daytime sleepiness. Treatments include lifestyle changes such as losing weight (excess fat around the neck increases airway collapse) and smoking cessation. For severe OSA, doctors recommend continuous positive airway pressure (CPAP), in which a machine blows pressurized air through a face mask into the airway to keep it open.
Why Was This Study Done?
OSA can be life-threatening. Most directly, daytime sleepiness can cause accidents, but OSA is also associated with an increased risk of developing cardiovascular disease (CVD, disease that affects the heart and the circulation). To date, studies that have investigated the association between OSA and the risk of myocardial infarction (heart attack), congestive heart failure, stroke, and other CVDs have used the AHI to diagnose and categorize the severity of OSA. However, by focussing on AHI, clinicians and researchers may be missing opportunities to improve their ability to predict which patients are at the highest risk of CVD. In this historical cohort study, the researchers investigate the association between other OSA-related variables (for example, blood oxygen saturation and sleep fragmentation) and the risk of cardiovascular events and all-cause mortality (death). A historical cohort study examines the medical records of groups of individuals who have different characteristics at baseline for the subsequent occurrence of specific outcomes.
What Did the Researchers Do and Find?
The researchers used administrative data (including hospitalization records and physicians' claims for services supplied to patients) to follow up adults referred for suspected OSA who underwent diagnostic polysomnography (a sleep study) at a single Canadian hospital between 1994 and 2010. A database of the polysomnography results provided information on OSA-related variables for all the study participants. Over an average follow-up of about 6 years, 11.5% of the 10,149 participants were hospitalized for a myocardial infarction, stroke, or congestive heart failure, underwent a revascularization procedure (an intervention that restores the blood supply to an organ or tissue after CVD has blocked a blood vessel), or had died from any cause. After adjusting for multiple established risk factors for CVD such as smoking and age in Cox regression models (a statistical approach that examines associations between patient variables and outcomes), several OSA-related variables (but not AHI) were significant predictors of CVD. The strongest OSA-related predictor of cardiovascular events or all-cause mortality was total sleep time spent with oxygen saturation below 90%, which increased the risk of a cardiovascular event or death by 50%. Other statistically significant OSA-related predictors (predictors that were unlikely to be associated with the outcome through chance) of cardiovascular events or death included total sleep time, number of awakenings, frequency of periodic leg movements, heart rate, and daytime sleepiness.
What Do These Findings Mean?
These findings indicate that OSA-related factors other than AHI are important predictors of the composite outcome of a cardiovascular event or all-cause mortality. Indeed, although AHI was significantly associated with the researchers' composite outcome in an analysis that did not consider other established risk factors for CVD (“confounders”), the association became non-significant after controlling for potential confounders. The accuracy of these findings, which need to be confirmed in other settings, is likely to be limited by the lack of information available about the use of CPAP by study participants and by the lack of adjustment for some important confounders. Importantly, however, these findings suggest that OSA-related factors other than AHI should be considered as predictors of CVD in future studies and in clinical practice.
Additional Information
Please access these websites via the online version of this summary at
The US National Heart Lung and Blood Institute has information (including several videos) about obstructive sleep apnea (in English and Spanish), sleep studies, heart disease, and other cardiovascular diseases (some information in English and Spanish)
The UK National Health Service Choices website provides information (including personal stories) about sleep apnea and about cardiovascular disease
The not-for-profit American Sleep Apnea Association provides detailed information about sleep apnea for patients and health-care professionals, including personal stories about the condition
The MedlinePlus encyclopedia has pages on obstructive sleep apnea and on polysomnography; MedlinePlus provides links to further information and advice about obstructive sleep apnea, heart diseases, and vascular diseases (in English and Spanish)
PMCID: PMC3913558  PMID: 24503600
11.  The Perilipin Homologue, Lipid Storage Droplet 2, Regulates Sleep Homeostasis and Prevents Learning Impairments Following Sleep Loss 
PLoS Biology  2010;8(8):e1000466.
Starvation, which is common in the wild, appears to initiate a genetic program that allows fruitflies to remain awake without the sleepiness and cognitive impairments that typically follow sleep deprivation.
Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm) and Lipid storage droplet 2 (Lsd2), have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.
Author Summary
It is well established in humans that sleep deficits lead to adverse outcomes, including cognitive impairments and an increased risk for obesity. Given the relationship between sleep and lipid stores, we hypothesized that metabolic pathways play a role in sleep regulation and contribute to deficits induced by sleep loss. Since starvation has a large impact on metabolic pathways and is an environmental condition that is encountered by animals living in the wild, we examined its effects on sleep in the fruit fly Drosophila melanogaster. Interestingly, when flies are starved they display an immediate increase in waking. However, in contrast to sleep deprivation, waking induced by starvation does not result in increased sleepiness or impairments in short-term memory. To identify the mechanisms underlying these processes, we evaluated mutants for genes that have been shown to alter an animal's response to starvation. Interestingly, brummer mutants, which are fat, show an exaggerated response to sleep loss. In contrast, mutants for Lipid storage droplet 2 are lean and are able to stay awake without becoming sleepy or showing signs of cognitive impairment. These results indicate that while sleep loss can alter lipids, lipid enzymes may, in turn, play a role in regulating sleep and influence the response to sleep deprivation.
PMCID: PMC2930866  PMID: 20824166
12.  Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats 
Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH) impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound. Throughout 96 hours of sleep deprivation, separate groups of rats were treated i.c.v. with vehicle, CRH or with alphahelical CRH9−41, a CRH receptor blocker, twice/day, at 07:00 h and 19:00 h. Both treatments impaired sleep homeostasis, especially in regards to length of rapid eye movement sleep (REM) and theta/delta ratio and induced a later decrease in NREM and REM sleep and increased waking bouts. These changes suggest that activation of the CRH system impact negatively on the homeostatic sleep response to prolonged forced waking. These results indicate that indeed, activation of the HPA axis—at least at the hypothalamic level—is capable to reduce the sleep rebound induced by sleep deprivation.
PMCID: PMC2902042  PMID: 20628511
13.  Physiological Markers of Local Sleep 
The European journal of neuroscience  2009;29(9):1771-1778.
Substantial evidence suggests that brain regions that have been disproportionately used during waking will require a greater intensity and/or duration of subsequent sleep. For example, rats use their whiskers in the dark and their eyes during the light which manifests as a greater magnitude of electroencephalogram (EEG) slow wave activity in the somatosensory and visual cortex during sleep in the corresponding light and dark periods respectively. The parsimonious interpretation of such findings is that sleep is distributed across local brain regions and is use-dependent. The fundamental properties of sleep can also be experimentally defined locally at the level of small neural assemblies such as cortical columns. In this view, sleep is orchestrated, but not fundamentally driven, by central mechanisms. We explore two physiological markers of local, use-dependent sleep, namely, an electrical marker apparent as a change in the size and shape of an electrical evoked response, and a metabolic marker evident as an evoked change in blood volume and oxygenation delivered to activated tissue. Both markers, applied to cortical columns, provide a means to investigate physiological mechanisms for the distributed homeostatic regulation of sleep, and may yield new insights into the consequences of sleep loss and sleep pathologies on waking brain function.
PMCID: PMC2688439  PMID: 19473232
Evoked Response Potential; Model; Homeostasis; Optical; Hemodynamic Response
14.  Proteomic profiling of the rat cerebral cortex in sleep and waking 
Archives italiennes de biologie  2009;147(3):59-68.
Transcriptomic studies have shown that hundreds of genes change their expression levels across the sleep/waking cycle, and found that waking-related and sleep-related mRNAs belong to different functional categories. Proteins, however, rather than DNA or RNA, carry out most of the cellular functions, and direct measurements of protein levels and activity are required to assess the effects of behavioral states on the overall functional state of the cell. Here we used surface-enhanced laser desorption-ionization (SELDI), followed by time-of-flight mass spectrometry, to obtain a large-scale profiling of the proteins in the rat cerebral cortex whose expression is affected by sleep, spontaneous waking, short (6 hours) and long (7 days) sleep deprivation. Each of the 94 cortical samples was profiled in duplicate on 4 different ProteinChip Array surfaces using 2 different matrix molecules. Overall, 1055 protein peaks were consistently detected in cortical samples and 15 candidate biomarkers were selected for identification based on significant changes in multiple conditions (conjunction analysis): 8 “sleep” peaks, 4 “waking” peaks, and 4 “long sleep deprivation” peaks. Four candidate biomarkers were purified and positively identified. The 3353 Da candidate sleep marker was identified as the 30 amino acid C-terminal fragment of rat histone H4. This regions encompasses the osteogenic growth peptide, but a possible link between sleep and this peptide remains highly speculative. Two peaks associated with short and long sleep deprivation were identified as hemoglobin alpha1/2 and beta, respectively, while another peak associated with long sleep deprivation was identified as cytochrome C. The upregulation of hemoglobins and cytochrome C may be part of a cellular stress response triggered by even short periods of sleep loss.
PMCID: PMC2796588  PMID: 20014652
rat; sleep; proteomics
15.  Prolonged wakefulness alters neuronal responsiveness to local electrical stimulation of the neocortex in awake rats 
Journal of sleep research  2012;10.1111/jsr.12009.
Prolonged wakefulness or a lack of sleep lead to cognitive deficits, but little is known about the underlying cellular mechanisms. We recently found that sleep deprivation affects spontaneous neuronal activity in the neocortex of sleeping and awake rats. While it is well known that synaptic responses are modulated by ongoing cortical activity, it remains unclear whether prolonged waking affects responsiveness of cortical neurons to incoming stimuli. By applying local electrical microstimulation to the frontal area of the neocortex, we found that after a 4-hour period of waking the initial neuronal response in the contralateral frontal cortex was stronger and more synchronous, and was followed by a more profound inhibition of neuronal spiking as compared to the control condition. These changes in evoked activity suggest increased neuronal excitability and indicate that after staying awake cortical neurons become transiently bistable. We propose that some of the detrimental effects of sleep deprivation may be a result of altered neuronal responsiveness to incoming intrinsic and extrinsic inputs.
PMCID: PMC3723708  PMID: 23607417
sleep; LFP; evoked responses; cerebral cortex; multi-unit recording; prolonged wakefulness
16.  Essential Roles of GABA Transporter-1 in Controlling Rapid Eye Movement Sleep and in Increased Slow Wave Activity after Sleep Deprivation 
PLoS ONE  2013;8(10):e75823.
GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.
PMCID: PMC3796508  PMID: 24155871
17.  Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators 
BMC Neuroscience  2014;15(1):109.
The current standard of care for insomnia includes gamma-aminobutyric acid receptor A (GABAA) activators, which promote sleep as well as general central nervous system depression. Dual orexin receptor antagonists (DORAs) represent an alternative mechanism for insomnia treatment that induces somnolence by blocking the wake-promoting effects of orexin neuropeptides. The current study compares the role and interdependence of these two mechanisms on their ability to influence sleep architecture and quantitative electroencephalography (qEEG) spectral profiles across preclinical species.
Active-phase dosing of DORA-22 induced consistent effects on sleep architecture in mice, rats, dogs, and rhesus monkeys; attenuation of active wake was accompanied by increases in both non─rapid eye movement (NREM) and rapid eye movement (REM) sleep. Eszopiclone, a representative GABAA receptor modulator, promoted sleep in rats and rhesus monkeys that was marked by REM sleep suppression, but had inconsistent effects in mice and paradoxically promoted wakefulness in dogs. Active-phase treatment of rats with DORA-12 similarly promoted NREM and REM sleep to magnitudes nearly identical to those seen during normal resting-phase sleep following vehicle treatment, whereas eszopiclone suppressed REM even to levels below those seen during the active phase. The qEEG changes induced by DORA-12 in rats also resembled normal resting-phase patterns, whereas eszopiclone induced changes distinct from normal active- or inactive-phase spectra. Co-dosing experiments, as well as studies in transgenic rats lacking orexin neurons, indicated partial overlap in the mechanism of sleep promotion by orexin and GABA modulation with the exception of the REM suppression exclusive to GABAA receptor modulation. Following REM deprivation in mice, eszopiclone further suppressed REM sleep while DORA-22 facilitated recovery including increased REM sleep.
DORAs promote NREM and importantly REM sleep that is similar in proportion and magnitude to that seen during the normal resting phase across mammalian animal models. While limited overlap exists between therapeutic mechanisms, orexin signaling does not appear involved in the REM suppression exhibited by GABAA receptor modulators. The ability of DORAs to promote proportional NREM and REM sleep following sleep deprivation suggests that this mechanism may be effective in alleviating recovery from sleep disturbance.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2202-15-109) contains supplementary material, which is available to authorized users.
PMCID: PMC4261741  PMID: 25242351
Orexin; Hypocretin; Benzodiazepine; Insomnia; Sleep; Electroencephalography; Sleep deprivation; REM sleep; NREM sleep; Suvorexant; Belsomra
Behavioral neuroscience  2010;124(1):69-78.
Sleep pressure and rebound comprise the two compensatory or “homeostatic” responses to sleep deprivation. Although sleep pressure is expressed by infant rats as early as postnatal day (P)5, sleep rebound does not appear to emerge until after P11. Here we reexamine the developmental expression of these sleep-regulatory processes in P2 and P8 rats by depriving them of sleep for 30 min using a cold, arousing stimulus delivered to a cold-sensitive region of the snout. This method effectively increased sleep pressure over the 30-min period, defined as increases in the number of arousing stimuli presented over time. Moreover, sleep rebound, defined as increased sleep during the recovery period, is demonstrated here for the first time at these ages. Next, we show that precollicular transections in P2 rats prevent sleep rebound without affecting sleep pressure, thus suggesting that the brainstem is sufficient to support sleep pressure, but sleep rebound depends upon neural mechanisms that lie rostral to the transection. Finally, again in P2 rats, we used c-fos immunohistochemistry to examine neural activation throughout the neuraxis during sleep deprivation and recovery. Sleep deprivation and rebound were accompanied by significant increases in neural activation in both brainstem and hypothalamic nuclei, including the ventrolateral preoptic area and median preoptic nucleus. This early developmental expression of sleep pressure and rebound and the apparent involvement of brainstem and hypothalamic structures in their expression further solidifies the notion that sleep-wake processes in newborns – defined at these ages without reference to state-dependent EEG activity – provide the foundation upon which the more familiar processes of adults are built.
PMCID: PMC2823806  PMID: 20141281
Development; c-fos; active sleep; sleep homeostasis; infant
19.  State Dependent Auditory Evoked Hemodynamic Responses Recorded Optically with Indwelling Photodiodes 
Applied optics  2009;48(10):D121-D129.
Implantable optical technologies provide measurements of cerebral hemodynamic activity from freely behaving animals without movement constraint or anesthesia. In order to study state-dependent neural evoked responses and the consequential hemodynamic response, we simultaneously measured EEG and scattered light changes in chronically implanted rats. Recordings took place under freely behaving conditions, allowing us to compare the evoked responses across wake, sleep, and anesthetized states. The largest evoked electrical and optical responses occurred during quiet sleep compared to wake and REM sleep while isoflurane anesthesia showed a large, late burst of electrical activity synchronized to the stimulus, but an earlier optical response.
PMCID: PMC2707279  PMID: 19340099
20.  Rapid eye movement (REM) sleep homeostatic regulatory processes in the rat: Changes in the sleep–wake stages and electroencephalographic power spectra 
Brain research  2008;1213:48-56.
The aim of this study was to elucidate physiological processes that are involved in the homeostatic regulation of REM sleep. Adult rats were chronically instrumented with sleep–wake recording electrodes. Following post-surgical recovery, rats were habituated extensively for freely moving polygraphic recording conditions. On the first experimental recording day (baseline day, BLD), polygraphic signs of undisturbed sleep–wake activities were recorded for 4 h (between 11:00 AM and 3:00 PM). During the second experimental recording day (REM sleep deprivation day, RDD), rats were selectively deprived of REM sleep for the first 2 h and then allowed to have normal sleep–wake for the following 2 h. The results demonstrated that during the first 2 h, compared to BLD, RDD recordings exhibited 87.80% less time in REM sleep and 16% more time in non-REM (NREM) sleep. The total percentages of wakefulness remained comparable between the BLD and RDD. During the RDD, the mean number of REM sleep episodes was much higher than in the BLD, indicating increased REM sleep drive. Electroencephalographic (EEG) power spectral analysis revealed that selective REM sleep deprivation increased delta power but decreased theta power during the residual REM sleep. During the last 2 h, after REM sleep deprivation, rats spent 51% more time in REM sleep compared to the BLD. Also during this period, the number of REM sleep episodes with the shortest (5–30 s) and longest (>120 s) duration increased during the RDD. These findings suggest that the REM sleep homeostatic process involves increased delta- and decreased theta-frequency wave activities in the cortical EEG.
PMCID: PMC2575066  PMID: 18455709
Homeostasis; REM sleep; Power spectrum; REM sleep deprivation; Slow-wave activity
21.  Altered Neural Responses to Sounds in Primate Primary Auditory Cortex during Slow-Wave Sleep 
The Journal of Neuroscience  2011;31(8):2965-2973.
How sounds are processed by the brain during sleep is an important question for understanding how we perceive the sensory environment in this unique behavioral state. While human behavioral data have indicated selective impairments of sound processing during sleep, brain imaging and neurophysiology studies have reported that overall neural activity in auditory cortex during sleep is surprisingly similar to that during wakefulness. This responsiveness to external stimuli leaves open the question of how neural responses during sleep differ, if at all, from wakefulness. Using extracellular neural recordings in the primary auditory cortex of naturally sleeping common marmosets, we show that slow-wave sleep (SWS) alters neural responses in the primate auditory cortex in two specific ways. SWS reduced the sensitivity of auditory cortex such that quiet sounds elicited weak responses in SWS compared with wakefulness, while loud sounds evoked similar responses in SWS and wakefulness. Furthermore, SWS reduced the extent of sound-evoked response suppression. This pattern of alterations was not observed during rapid eye movement sleep and could not be easily explained by the presence of slow rhythms in SWS. The alteration of excitatory and inhibitory responses during SWS suggests limitations in auditory processing and provides novel insights for understanding why certain sounds are processed while others are missed during deep sleep.
PMCID: PMC3758555  PMID: 21414918
Neuronal firing patterns, neuromodulators, and cerebral metabolism change across sleep waking states, and the synaptic release of glutamate is critically involved in these processes. Extrasynaptic glutamate can also affect neural function and may be neurotoxic, but whether and how extracellular glutamate is regulated across sleep-waking states is unclear. To assess the effect of behavioral state on extracellular glutamate at high temporal resolution, we recorded glutamate concentration in prefrontal and motor cortex using fixed-potential amperometry in freely behaving rats. Simultaneously, we recorded local field potentials (LFP) and electroencephalograms (EEG) from contralateral cortex. We observed dynamic, progressive changes in the concentration of glutamate that switched direction as a function of behavioral state. Specifically, the concentration of glutamate increased progressively during waking (0.329 ± 0.06 %/min) and rapid eye movement (REM) sleep (0.349 ±0.13 %/min). This increase was opposed by a progressive decrease during non-REM (NREM) sleep (0.338 ± 0.06 %/min). During a 3-hr sleep deprivation period, glutamate concentrations initially exhibited the progressive rise observed during spontaneous waking. As sleep pressure increased, glutamate concentrations ceased to increase and began decreasing despite continuous waking. During NREM sleep, the rate of decrease in glutamate was positively correlated with sleep intensity, as indexed by LFP slow wave activity. The rate of decrease doubled during recovery sleep after sleep deprivation. Thus, the progressive increase in cortical extrasynaptic glutamate during EEG-activated states is counteracted by a decrease during NREM sleep that is modulated by sleep pressure. These results provide evidence for a long-term homeostasis of extracellular glutamate across sleep-waking states.
PMCID: PMC2770705  PMID: 19158289
glutamate; in vivo amperometry; sleep; rat; cerebral cortex; EEG; slow wave activity
23.  Odor Fear Conditioning Modifies Piriform Cortex Local Field Potentials Both during Conditioning and during Post-Conditioning Sleep 
PLoS ONE  2011;6(3):e18130.
Sleep plays an active role in memory consolidation. Sleep structure (REM/Slow wave activity [SWS]) can be modified after learning, and in some cortical circuits, sleep is associated with replay of the learned experience. While the majority of this work has focused on neocortical and hippocampal circuits, the olfactory system may offer unique advantages as a model system for exploring sleep and memory, given the short, non-thalamic pathway from nose to primary olfactory (piriform cortex), and rapid cortex-dependent odor learning.
Methodology/Principal Findings
We examined piriform cortical odor responses using local field potentials (LFPs) from freely behaving Long-Evans hooded rats over the sleep-wake cycle, and the neuronal modifications that occurred within the piriform cortex both during and after odor-fear conditioning. We also recorded LFPs from naïve animals to characterize sleep activity in the piriform cortex and to analyze transient odor-evoked cortical responses during different sleep stages. Naïve rats in their home cages spent 40% of their time in SWS, during which the piriform cortex was significantly hypo-responsive to odor stimulation compared to awake and REM sleep states. Rats trained in the paired odor-shock conditioning paradigm developed enhanced conditioned odor evoked gamma frequency activity in the piriform cortex over the course of training compared to pseudo-conditioned rats. Furthermore, conditioned rats spent significantly more time in SWS immediately post-training both compared to pre-training days and compared to pseudo-conditioned rats. The increase in SWS immediately after training significantly correlated with the duration of odor-evoked freezing the following day.
The rat piriform cortex is hypo-responsive to odors during SWS which accounts for nearly 40% of each 24 hour period. The duration of slow-wave activity in the piriform cortex is enhanced immediately post-conditioning, and this increase is significantly correlated with subsequent memory performance. Together, these results suggest the piriform cortex may go offline during SWS to facilitate consolidation of learned odors with reduced external interference.
PMCID: PMC3063180  PMID: 21448432
24.  Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains 
BMC Neuroscience  2014;15(1):120.
Shortened rapid eye movement (REM) sleep latency and increased REM sleep amount are presumed biological markers of depression. These sleep alterations are also observable in several animal models of depression as well as during the rebound sleep after selective REM sleep deprivation (RD). Furthermore, REM sleep fragmentation is typically associated with stress procedures and anxiety. The selective serotonin reuptake inhibitor (SSRI) antidepressants reduce REM sleep time and increase REM latency after acute dosing in normal condition and even during REM rebound following RD. However, their therapeutic outcome evolves only after weeks of treatment, and the effects of chronic treatment in REM-deprived animals have not been studied yet.
Chronic escitalopram- (10 mg/kg/day, osmotic minipump for 24 days) or vehicle-treated rats were subjected to a 3-day-long RD on day 21 using the flower pot procedure or kept in home cage. On day 24, fronto-parietal electroencephalogram, electromyogram and motility were recorded in the first 2 h of the passive phase. The observed sleep patterns were characterized applying standard sleep metrics, by modelling the transitions between sleep phases using Markov chains and by spectral analysis.
Based on Markov chain analysis, chronic escitalopram treatment attenuated the REM sleep fragmentation [accelerated transition rates between REM and non-REM (NREM) stages, decreased REM sleep residence time between two transitions] during the rebound sleep. Additionally, the antidepressant avoided the frequent awakenings during the first 30 min of recovery period. The spectral analysis showed that the SSRI prevented the RD-caused elevation in theta (5–9 Hz) power during slow-wave sleep. Conversely, based on the aggregate sleep metrics, escitalopram had only moderate effects and it did not significantly attenuate the REM rebound after RD.
In conclusion, chronic SSRI treatment is capable of reducing several effects on sleep which might be the consequence of the sub-chronic stress caused by the flower pot method. These data might support the antidepressant activity of SSRIs, and may allude that investigating the rebound period following the flower pot protocol could be useful to detect antidepressant drug response. Markov analysis is a suitable method to study the sleep pattern.
PMCID: PMC4243313  PMID: 25406958
REM sleep deprivation; EEG; Serotonin; Markov chain model; Stage transition; Animal model; Depression; Anxiety; Theta; REM sleep fragmentation
25.  Effects of Sustained Sleep Restriction on Mitogen-Stimulated Cytokines, Chemokines and T Helper 1/ T Helper 2 Balance in Humans 
PLoS ONE  2013;8(12):e82291.
Recent studies suggest that acute sleep deprivation disrupts cellular immune responses by shifting T helper (Th) cell activity towards a Th2 cytokine profile. Since little is known about more long-term effects, we investigated how five days of sleep restriction would affect pro-inflammatory, chemotactic, Th1- and Th2 cytokine secretion.
Nine healthy males participated in an experimental sleep protocol with two baseline sleep-wake cycles (sleep 23.00 – 07.00 h) followed by 5 days with restricted sleep (03.00 – 07.00 h). On the second baseline day and on the fifth day with restricted sleep, samples were drawn every third hour for determination of cytokines/chemokines (tumor necrosis factor alpha (TNF-α), interleukin (IL) -1β, IL-2, IL-4 and monocyte chemoattractant protein-1 (MCP-1)) after in vitro stimulation of whole blood samples with the mitogen phytohemagglutinin (PHA). Also leukocyte numbers, mononuclear cells and cortisol were analysed.
5-days of sleep restriction affected PHA-induced immune responses in several ways. There was a general decrease of IL-2 production (p<.05). A shift in Th1/Th2 cytokine balance was also evident, as determined by a decrease in IL2/IL4 ratio. No other main effects of restricted sleep were shown. Two significant interactions showed that restricted sleep resulted in increased TNF-α and MCP-1 in the late evening and early night hours (p’s<.05). In addition, all variables varied across the 24 h day.
5-days of sleep restriction is characterized by a shift towards Th2 activity (i.e. lower 1L-2/IL-4 ratio) which is similar to the effects of acute sleep deprivation and psychological stress. This may have implications for people suffering from conditions characterized by excessive Th2 activity like in allergic disease, such as asthma, for whom restricted sleep could have negative consequences.
PMCID: PMC3859577  PMID: 24349251

Results 1-25 (1256795)