PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (790987)

Clipboard (0)
None

Related Articles

1.  IFN-γ Production during Initial Infection Determines the Outcome of Reinfection with Respiratory Syncytial Virus 
Rationale: Severe respiratory syncytial virus (RSV) bronchiolitis has been associated with deficient IFN-γ production in humans, but the role of this cytokine in determining the outcome of reinfection is unknown.
Objectives: To define the role of IFN-γ in the development of RSV-mediated airway hyperresponsiveness (AHR) and lung histopathology in mice.
Methods: Wild-type (WT) and IFN-γ knockout mice were infected with RSV in the newborn or weaning stages and reinfected 5 weeks later. Airway responses were assessed on Day 6 after the primary or secondary infection.
Measurements and Main Results: Both WT and IFN-γ knockout mice developed similar levels of AHR and airway inflammation after primary infection. After reinfection, IFN-γ knockout mice, but not WT mice, developed AHR, airway eosinophilia, and mucus hyperproduction. Intranasal administration of IFN-γ during primary infection but not during reinfection prevented the development of these altered airway responses on reinfection in IFN-γ knockout mice. Adoptive transfer of WT T cells into IFN-γ knockout mice before primary infection restored IFN-γ production in the lungs and prevented the development of altered airway responses on reinfection. Treatment of mice with IFN-γ during primary neonatal infection prevented the enhancement of AHR and the development of airway eosinophilia and mucus hyperproduction on reinfection.
Conclusions: IFN-γ production during primary RSV infection is critical to the development of protection against AHR and lung histopathology on reinfection. Provision of IFN-γ during primary infection in infancy may be a potential therapeutic approach to alter the course of RSV-mediated long-term sequelae.
doi:10.1164/rccm.200612-1890OC
PMCID: PMC2204078  PMID: 17962634
respiratory syncytial virus; interferon-γ; asthma; airway hyperresponsiveness; mice
2.  Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults 
Respiratory Research  2006;7(1):107.
Background
Respiratory syncytial virus (RSV) is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age of initial RSV infection is a key factor in determining airway response to RSV rechallenge. We hypothesized that severe RSV infection during neonatal development significantly alters lung structure and the pulmonary immune micro-environment; and thus, neonatal RSV infection is crucial in the development of or predisposition to allergic inflammatory diseases such as asthma.
Methods
To investigate this hypothesis the present study was conducted in a neonatal mouse model of RSV-induced pulmonary inflammation and airway dysfunction. Seven-day-old mice were infected with RSV (2 × 105 TCID50/g body weight) and allowed to mature to adulthood. To determine if neonatal RSV infection predisposed adult animals to enhanced pathophysiological responses to allergens, these mice were then sensitized and challenged with ovalbumin. Various endpoints including lung function, histopathology, cytokine production, and cellularity in bronchoalveolar lavage were examined.
Results
RSV infection in neonates alone led to inflammatory airway disease characterized by airway hyperreactivity, peribronchial and perivascular inflammation, and subepithelial fibrosis in adults. If early RSV infection was followed by allergen exposure, this pulmonary phenotype was exacerbated. The initial response to neonatal RSV infection resulted in increased TNF-α levels in bronchoalveolar lavage. Interestingly, increased levels of IL-13 and mucus hyperproduction were observed almost three months after the initial infection with RSV.
Conclusion
Neonatal RSV exposure results in long term pulmonary inflammation and exacerbates allergic airways disease. The early increase in TNF-α in the bronchoalveolar lavage implicates this inflammatory cytokine in orchestrating these events. Finally, the data presented emphasize IL-13 and TNF-α as potential therapeutic targets for treating RSV induced-asthma.
doi:10.1186/1465-9921-7-107
PMCID: PMC1563465  PMID: 16893457
3.  Responsiveness to respiratory syncytial virus in neonates is mediated through thymic stromal lymphopoietin and OX40 ligand 
Background
Recent studies revealed a critical role for thymic stromal lymphopoietin (TSLP) released from epithelial cells and OX40 ligand (OX40L) expressed on dendritic cells (DCs) in TH2 priming and polarization.
Objectives
We sought to determine the importance of the TSLP-OX40L axis in neonatal respiratory syncytial virus (RSV) infection.
Methods
Mice were initially infected with RSV as neonates or adults and reinfected 5 weeks later. Anti-OX40L or anti-TSLP were administered during primary or secondary infection. Outcomes included assessment of airway function and inflammation and expression of OX40L, TSLP, and IL-12.
Results
OX40L was expressed mainly on CD11c+MHC class II (MHCII)+CD11b+ DCs but not CD103+ DCs. Treatment of neonates with OX40L antibody during primary RSV infection prevented the subsequent enhancement of airway hyperresponsiveness and the development of airway eosinophilia and mucus hyperproduction on reinfection. Administration of anti-TSLP before neonatal RSV infection reduced the accumulation of lung DCs, decreased OX40L expression on lung DCs, and attenuated the enhancement of airway responses after reinfection.
Conclusions
In mice initially infected as neonates, TSLP expression induced by RSV infection is an important upstream event that controls OX40L expression, lung DC migration, and TH2 polarization, accounting for the enhanced response on reinfection.
doi:10.1016/j.jaci.2012.08.033
PMCID: PMC3593657  PMID: 23036746
Respiratory syncytial virus; OX40 ligand; thymic stromal lymphopoietin
4.  Delayed Sequelae of Neonatal Respiratory Syncytial Virus Infection Are Dependent on Cells of the Innate Immune System 
Journal of Virology  2014;88(1):604-611.
Infection with respiratory syncytial virus (RSV) in neonatal mice leads to exacerbated disease if mice are reinfected with the same virus as adults. Both T cells and the host major histocompatibility complex genotype contribute to this phenomenon, but the part played by innate immunity has not been defined. Since macrophages and natural killer (NK) cells play key roles in regulating inflammation during RSV infection of adult mice, we studied the role of these cells in exacerbated inflammation following neonatal RSV sensitization/adult reinfection. Compared to mice undergoing primary infection as adults, neonatally sensitized mice showed enhanced airway fluid levels of interleukin-6 (IL-6), alpha interferon (IFN-α), CXCL1 (keratinocyte chemoattractant/KC), and tumor necrosis factor alpha (TNF-α) at 12 to 24 h after reinfection and IL-4, IL-5, IFN-γ, and CCL11 (eotaxin) at day 4 after reinfection. Weight loss during reinfection was accompanied by an initial influx of NK cells and granulocytes into the airways and lungs, followed by T cells. NK cell depletion during reinfection attenuated weight loss but did not alter T cell responses. Depletion of alveolar macrophages with inhaled clodronate liposomes reduced both NK and T cell numbers and attenuated weight loss. These findings indicate a hitherto unappreciated role for the innate immune response in governing the pathogenic recall responses to RSV infection.
doi:10.1128/JVI.02620-13
PMCID: PMC3911760  PMID: 24173217
5.  Respiratory syncytial virus-induced acute and chronic airway disease is independent of genetic background: An experimental murine model 
Virology Journal  2005;2:46.
Background
Respiratory syncytial virus (RSV) is the leading respiratory viral pathogen in young children worldwide. RSV disease is associated with acute airway obstruction (AO), long-term airway hyperresponsiveness (AHR), and chronic lung inflammation. Using two different mouse strains, this study was designed to determine whether RSV disease patterns are host-dependent. C57BL/6 and BALB/c mice were inoculated with RSV and followed for 77 days. RSV loads were measured by plaque assay and polymerase chain reaction (PCR) in bronchoalveolar lavage (BAL) and whole lung samples; cytokines were measured in BAL samples. Lung inflammation was evaluated with a histopathologic score (HPS), and AO and AHR were determined by plethysmography.
Results
Viral load dynamics, histopathologic score (HPS), cytokine concentrations, AO and long-term AHR were similar in both strains of RSV-infected mice, although RSV-infected C57BL/6 mice developed significantly greater AO compared with RSV-infected BALB/c mice on day 5. PCR detected RSV RNA in BAL samples of RSV infected mice until day 42, and in whole lung samples through day 77. BAL concentrations of cytokines TNF-α, IFN-γ, and chemokines MIG, RANTES and MIP-1α were significantly elevated in both strains of RSV-infected mice compared with their respective controls. Viral load measured by PCR significantly correlated with disease severity on days 14 and 21.
Conclusion
RSV-induced acute and chronic airway disease is independent of genetic background.
doi:10.1186/1743-422X-2-46
PMCID: PMC1183251  PMID: 15916706
Viral pneumonia; mouse model; airway hyperresponsiveness; PCR; cytokines
6.  Resveratrol Inhibits the TRIF-Dependent Pathway by Upregulating Sterile Alpha and Armadillo Motif Protein, Contributing to Anti-Inflammatory Effects after Respiratory Syncytial Virus Infection 
Journal of Virology  2014;88(8):4229-4236.
ABSTRACT
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infection in young children and the leading cause of infant hospitalization worldwide. Uncontrolled response to RSV is mediated by a toll-like receptor (TLR)-mediated immune response. Resveratrol possesses anti-RSV activity and is an inhibitor of the TRIF/TBK1/IRF-3 complex. We hypothesize that resveratrol inhibits the TRIF-dependent pathway through upregulation of SARM post-RSV infection. BALB/c mice were infected with RSV and were injected with resveratrol 1 h postinoculation. SARM short interfering RNA was administered to RSV-infected and resveratrol-treated mice. Lung function was measured by whole-body plethysmography, lung histopathology was examined, and lymphocytes in bronchoalveolar lavage fluid were quantified. SARM and TRIF protein expression were detected in the lung by Western blot analyses. The expression of gamma interferon in bronchoalveolar lavage fluid (BALF) was evaluated by enzyme-linked immunosorbent assay (ELISA). SARM expression was reduced and TRIF expression was increased after infection with RSV. Resveratrol increased SARM expression and decreased TRIF expression after RSV infection. SARM knockdown in resveratrol-treated mice enhanced gamma interferon production, RSV-induced airway inflammation, and airway hyperresponsiveness (AHR). Resveratrol decreased TRIF expression and prevented the RSV-mediated reduction of SARM expression. Resveratrol-mediated inhibition of the TRIF-dependent pathway may be dependent on SARM expression.
IMPORTANCE Our study provides insights into the regulation of innate immunity in response to RSV infection. The results suggest that resveratrol-mediated alterations in SARM have therapeutic potential against RSV immunopathology caused by deregulation of the TLR-mediated immune response. Ultimately, improved insight into the complex interplay between TLR adaptor proteins and the occurrence of severe RSV infection might lead to novel therapeutic treatment strategies, such as TLR adjuvants.
doi:10.1128/JVI.03637-13
PMCID: PMC3993725  PMID: 24478430
7.  Resveratrol-Mediated Gamma Interferon Reduction Prevents Airway Inflammation and Airway Hyperresponsiveness in Respiratory Syncytial Virus-Infected Immunocompromised Mice ▿  
Journal of Virology  2011;85(24):13061-13068.
Respiratory syncytial virus (RSV) is the most important cause of severe, lower respiratory tract infections in infants, and RSV infections have been associated with chronic wheezing and asthma during childhood. However, the mechanism of RSV-induced airway inflammation and airway hyperresponsiveness (AHR) is poorly understood. Furthermore, there are presently neither effective vaccines nor drugs available for the prevention or treatment of RSV infections. In this study, we investigated the effect of the plant extract resveratrol as a means of preventing airway inflammation and attenuating RSV-induced AHR. Our data showed that resveratrol reduced RSV lung titers and the number of infiltrating lymphocytes present in bronchoalveolar lavage fluid (BALF) and reduced inflammation. Furthermore, resveratrol attenuated airway responses to methacholine following RSV infection and significantly decreased gamma interferon (IFN-γ) levels in BALF of RSV-infected mice. Data presented in this report demonstrated that resveratrol controlled Toll-like receptor 3 (TLR3) expression, inhibited the TRIF signaling pathway, and induced M2 receptor expression following RSV infection. These data support a role for the use of resveratrol as a means of reducing IFN-γ levels associated with RSV-mediated airway inflammation and AHR, which may be mediated via TLR3 signaling.
doi:10.1128/JVI.05869-11
PMCID: PMC3233156  PMID: 21937650
8.  Hyperresponsiveness to inhaled but not intravenous methacholine during acute respiratory syncytial virus infection in mice 
Respiratory Research  2005;6(1):142.
Background
To characterise the acute physiological and inflammatory changes induced by low-dose RSV infection in mice.
Methods
BALB/c mice were infected as adults (8 wk) or weanlings (3 wk) with 1 × 105 pfu of RSV A2 or vehicle (intranasal, 30 μl). Inflammation, cytokines and inflammatory markers in bronchoalveolar lavage fluid (BALF) and airway and tissue responses to inhaled methacholine (MCh; 0.001 – 30 mg/ml) were measured 5, 7, 10 and 21 days post infection. Responsiveness to iv MCh (6 – 96 μg/min/kg) in vivo and to electrical field stimulation (EFS) and MCh in vitro were measured at 7 d. Epithelial permeability was measured by Evans Blue dye leakage into BALF at 7 d. Respiratory mechanics were measured using low frequency forced oscillation in tracheostomised and ventilated (450 bpm, flexiVent) mice. Low frequency impedance spectra were calculated (0.5 – 20 Hz) and a model, consisting of an airway compartment [airway resistance (Raw) and inertance (Iaw)] and a constant-phase tissue compartment [coefficients of tissue damping (G) and elastance (H)] was fitted to the data.
Results
Inflammation in adult mouse BALF peaked at 7 d (RSV 15.6 (4.7 SE) vs. control 3.7 (0.7) × 104 cells/ml; p < 0.001), resolving by 21 d, with no increase in weanlings at any timepoint. RSV-infected mice were hyperresponsive to aerosolised MCh at 5 and 7 d (PC200 Raw adults: RSV 0.02 (0.005) vs. control 1.1 (0.41) mg/ml; p = 0.003) (PC200 Raw weanlings: RSV 0.19 (0.12) vs. control 10.2 (6.0) mg/ml MCh; p = 0.001). Increased responsiveness to aerosolised MCh was matched by elevated levels of cysLT at 5 d and elevated VEGF and PGE2 at 7 d in BALF from both adult and weanling mice. Responsiveness was not increased in response to iv MCh in vivo or EFS or MCh challenge in vitro. Increased epithelial permeability was not detected at 7 d.
Conclusion
Infection with 1 × 105 pfu RSV induced extreme hyperresponsiveness to aerosolised MCh during the acute phase of infection in adult and weanling mice. The route-specificity of hyperresponsiveness suggests that epithelial mechanisms were important in determining the physiological effects. Inflammatory changes were dissociated from physiological changes, particularly in weanling mice.
doi:10.1186/1465-9921-6-142
PMCID: PMC1325022  PMID: 16324223
forced oscillation; airway resistance; physiology
9.  Respiratory Syncytial Virus Persistence in the Lungs Correlates with Airway Hyperreactivity in the Mouse Model 
The Journal of infectious diseases  2008;198(10):1435-1443.
Background
Previous studies in mice showed that respiratory syncytial virus (RSV) infection was associated with RSV RNA persistence. This study was designed to characterize the significance of RSV RNA persistence and its relation to RSV-induced chronic airway disease.
Methods
Mice were inoculated with live RSV, UV light–treated RSV, heat-inactivated RSV, or medium. Bronchoal-veolar lavage fluid samples were obtained and lung specimens were harvested on days 1, 5, and 42 after inoculation to assess lung inflammation, lung mRNA expression of interleukin (IL)–4, IL-5, IL-15, and interferon (IFN)–γ; RSV loads were assessed by culture and real-time polymerase chain reaction (PCR) and correlated with pulmonary function.
Results
During the acute phase of infection, RSV loads as indicated by culture and PCR were significantly higher in mice inoculated with live RSV. On day 42, RSV RNA remained detectable only in mice inoculated with live or UV light–treated RSV. Lung inflammation, IFN-γ:IL-4 mRNA expression ratios, airway obstruction (AO), and airway hyperreactivity (AHR) were significantly increased in mice inoculated with live RSV. AO on day 5 and AHR on day 42 were significantly correlated with RSV RNA copy number in lung samples.
Conclusions
Infection with live RSV induced acute and chronic airway disease that was associated with a predominantly Th-1 immune response and RSV RNA persistence that significantly correlated with pulmonary function abnormalities.
doi:10.1086/592714
PMCID: PMC3689551  PMID: 18828742
10.  MMP-12-mediated by SARM-TRIF signaling pathway contributes to IFN-γ-independent airway inflammation and AHR post RSV infection in nude mice 
Respiratory Research  2015;16(1):11.
Background
Respiratory syncytial virus (RSV) is one of the most frequently observed pathogens during infancy and childhood. However, the corresponding pathogenesis has not been determined to date. We previously demonstrated that IFN-γ plays an important role in RSV pathogenesis, and SARM-TRIF-signaling pathway could regulate the production of IFN-γ. This study is to investigate whether T cells or innate immune cells are the predominant producers of IFN-γ, and further to explore other culprits in addition to IFN-γ in the condition of RSV infection.
Methods
Normal BALB/c mice and nude mice deficient in T cells were infected intranasally with RSV. Leukocytes in bronchoalveolar lavage fluid were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. IFN-γ and MMP-12 were detected by ELISA. MMP408, a selective MMP-12 inhibitor, was given intragastrically. Resveratrol, IFN-γ neutralizing antibody and recombinant murine IFN-γ were administered intraperitoneally. SARM and TRIF protein were semi-quantified by Western blot. siRNA was used to knock-down SARM expression.
Results
RSV induced significant airway inflammation and AHR in both mice; IFN-γ was significantly increased in BALB/c mice but not in nude mice. MMP-12 was dramatically increased in both mice but earlier in nude mice. When MMP-12 was inhibited by MMP408, RSV-induced respiratory symptoms were alleviated. SARM was significantly suppressed while TRIF was significantly enhanced in both mice strains. Following resveratrol administration in nude mice, 1) SARM inhibition was prevented, 2) TRIF and MMP-12 were correspondingly down-regulated and 3) airway disorders were subsequently alleviated. Moreover, when SARM was efficiently knocked down using siRNA, TRIF and MMP-12 were markedly enhanced, and the anti-RSV effects of resveratrol were remarkably abrogated. MMP-12 was significantly increased in the IFN-γ neutralizing antibody-treated BALB/c mice but reduced in the recombinant murine IFN-γ-treated nude mice.
Conclusions
MMP-12 can result in at least part of the airway inflammation and AHR independent of IFN-γ. And SARM-TRIF- signaling pathway is involved in regulating the overproduction of MMP-12. To the best of our knowledge, this study is the first that has examined the effects of SARM on MMP-12 and further highlights the potential to target SARM-TRIF-MMP-12 cascades to treat RSV infection.
Electronic supplementary material
The online version of this article (doi:10.1186/s12931-015-0176-8) contains supplementary material, which is available to authorized users.
doi:10.1186/s12931-015-0176-8
PMCID: PMC4332892  PMID: 25652021
RSV; MMP-12; SARM; TRIF; Airway inflammation; AHR
11.  IL-17A inhibits airway reactivity induced by RSV infection during allergic airway inflammation 
Thorax  2013;68(8):717-723.
Background
Viral infections are the most frequent cause of asthma exacerbations and are linked to increased airway reactivity (AR) and inflammation. Mice infected with respiratory syncytial virus (RSV) during ovalbumin (OVA)-induced allergic airway inflammation (OVA/RSV) had increased AR compared to OVA or RSV mice alone. Further, IL-17A was only increased in OVA/RSV mice.
Objective
To determine if IL-17A increases AR and inflammation in the OVA/RSV model.
Methods
Wild-type BALB/c and IL-17A KO mice underwent mock, RSV, OVA, or OVA/RSV protocols. Lungs, bronchoalveolar lavage (BAL) fluid, and/or mediastinal lymph nodes (MLNs) were harvested post infection. Cytokine expression was determined by flow cytometry and ELISA in the lungs or BAL fluid. MLNs were restimulated with either OVA (323–229) peptide or RSV M2 (127–135) peptide and IL-17A protein expression was analyzed. AR was determined by methacholine challenge.
Results
RSV increased IL-17A protein expression by OVA-specific T cells 6 days post infection. OVA/RSV mice had decreased IFN-α and IFN-β protein expression compared to RSV mice. OVA/RSV mice had increased IL-23 mRNA expression in lung homogenates compared to mock, OVA, or RSV mice. Unexpectedly, IL-17A KO OVA/RSV mice had increased AR compared to WT OVA/RSV mice. Further, IL-17A KO OVA/RSV mice had increased eosinophils, lymphocytes, and IL-13 protein expression in BAL fluid compared to WT OVA/RSV mice.
Conclusions
IL-17A negatively regulated AR and airway inflammation in OVA/RSV mice. This finding is important because IL-17A has been identified as a potential therapeutic target in asthma, and inhibiting IL-17A in the setting of virally induced asthma exacerbations may have adverse consequences.
doi:10.1136/thoraxjnl-2012-202404
PMCID: PMC3916091  PMID: 23422214
IL-17A; airway reactivity; CD4+ T cells; allergic inflammation; RSV
12.  Immunomodulation with IL-4 Receptor-α Antisense Oligonucleotide Prevents RSV-Mediated Pulmonary Disease1 
Respiratory syncytial virus (RSV) causes significant morbidity and mortality in infants worldwide. Severe RSV infections in infants cause bronchiolitis, wheeze, and/or cough and significantly increase the risk of developing asthma. RSV pathogenesis is thought to be due to a Th2-type immune response initiated in response to RSV infection specifically in the infant. Using a neonatal mouse system as an appropriate model for human infants, we sought to determine if local inhibition of IL-4Rα expression during primary RSV infection in the neonate would prevent Th2-skewed responses to secondary RSV infection and improve long-term pulmonary function. To reduce IL-4Rα expression, antisense oligonucleotides (ASO) specific for IL-4Rα were administered intranasally to neonatal mice at the time of primary infection. Mice were initially infected with RSV at one week of age and reinfected at six weeks of age. Administration of IL-4Rα ASO during primary RSV infection in neonatal mice abolished the pulmonary dysfunction normally observed following reinfection in the adult. This ablation of pulmonary dysfunction correlated with a persistent rebalancing of the Th cell compartment with decreased Th2 responses (i.e. reduced goblet cell hyperplasia and Th2 cells and cytokine secretion) and increased Th1 responses (i.e. elevated Th1 cell numbers and type I antibodies and cytokines). Our data support our hypothesis that a reduction in the Th2 immune response during primary infection in neonates prevents Th2-mediated pulmonary pathology initially and upon reinfection; and further suggest that vaccine strategies incorporating IL-4Rα ASO may be of significant benefit to infants.
doi:10.4049/jimmunol.1000484
PMCID: PMC3063095  PMID: 20861354
13.  A role for airway remodeling during respiratory syncytial virus infection 
Respiratory Research  2005;6(1):122.
Background
Severe respiratory syncytial virus infection (RSV) during infancy has been shown to be a major risk factor for the development of subsequent wheeze. However, the reasons for this link remain unclear. The objective of this research was to determine the consequences of early exposure to RSV and allergen in the development of subsequent airway hyperreactivity (AHR) using a developmental time point in the mouse that parallels that of the human neonate.
Methods
Weanling mice were sensitized and challenged with ovalbumin (Ova) and/or infected with RSV. Eight days after the last allergen challenge, various pathophysiological endpoints were examined.
Results
AHR in response to methacholine was enhanced only in weanling mice exposed to Ova and subsequently infected with RSV. The increase in AHR appeared to be unrelated to pulmonary RSV titer. Total bronchoalveolar lavage cellularity in these mice increased approximately two-fold relative to Ova alone and was attributable to increases in eosinophil and lymphocyte numbers. Enhanced pulmonary pathologies including persistent mucus production and subepithelial fibrosis were observed. Interestingly, these data correlated with transient increases in TNF-α, IFN-γ, IL-5, and IL-2.
Conclusion
The observed changes in pulmonary structure may provide an explanation for epidemiological data suggesting that early exposure to allergens and RSV have long-term physiological consequences. Furthermore, the data presented here highlight the importance of preventative strategies against RSV infection of atopic individuals during neonatal development.
doi:10.1186/1465-9921-6-122
PMCID: PMC1283984  PMID: 16242038
respiratory syncytial virus; pulmonary; inflammation; age factors; asthma; mice
14.  Combined fluticasone propionate and salmeterol reduces RSV infection more effectively than either of them alone in allergen-sensitized mice 
Virology Journal  2006;3:32.
Background
Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in infants and is a risk factor for the development of asthma. Allergic asthmatics are more susceptible to RSV infection and viral exacerbation.
Methods
Since the effectiveness of corticosteroids in treating RSV infection has been controversial, we tested fluticasone propionate (FP) and salmeterol (Sal) alone versus FP plus Sal (FPS) on RSV-induced airway inflammation. Mice were sensitized and challenged with ovalbumin (OVA) and infected with RSV. Following infection they were treated with FP, Sal, or FPS intranasally and airway hyperreactivity (AHR), inflammation and RSV titers were examined.
Results
The group treated with FPS showed significantly lower AHR compared to the group treated with FP or Sal alone. The group treated with FP alone showed slightly decreased (non-significant) AHR compared to controls. Treatment with FPS resulted in significant decreases in the percentage of eosinophils and neutrophils in bronchoalveolar lavage fluid and in lung pathology compared to FP or Sal. FP alone decreased eosinophils but not neutrophils or lymphocytes, while Sal alone decreased eosinophils and neutrophils but not lymphocytes. FPS treatment of mice infected with RSV in the absence of allergen sensitization resulted in a 50% decrease of RSV titer in the lung and a reduction in neutrophils compared to FP or Sal.
Conclusion
Together, these results indicate that fluticasone in combination with salmeterol is a more effective treatment for decreasing airway hyperreactivity and inflammation than either of them alone in allergen-sensitized, RSV-infected mice.
doi:10.1186/1743-422X-3-32
PMCID: PMC1488829  PMID: 16719922
15.  Enhanced virulence, airway inflammation and impaired lung function induced by respiratory syncytial virus deficient in secreted G protein 
Thorax  2004;59(6):517-521.
Background: Respiratory syncytial virus (RSV) infection can cause bronchial hyperresponsiveness and asthma exacerbations. In mice it results in airway inflammation and airway hyperresponsiveness. Since viral factors influencing these responses are not well defined, a study was undertaken to investigate the role of secreted G protein of human RSV in determining virulence, inflammatory responses, and changes in lung function.
Methods: BALB/c mice were infected with a spontaneous mutant of RSV deficient in secreted G protein (RSV-ΔsG) or with wild type RSV (RSV-WT). Viral titres, numbers of pulmonary inflammatory cells, and concentrations of interferon (IFN)-γ, interleukin (IL)-4, IL-5 and IL-10 in bronchoalveolar lavage (BAL) fluid were determined. Airway function was assessed at baseline and following methacholine provocation using barometric whole body plethysmography.
Result: Following infection with RSV-ΔsG, viral titres were increased 50-fold compared with RSV-WT. Influx of eosinophils and macrophages to the lung and concentrations of IFN-γ and IL-10 in BAL fluid were also significantly higher following infection with RSV-ΔsG. Airway function, both at baseline and after methacholine provocation, was significantly decreased following infection with RSV-ΔsG compared with RSV-WT.
Conclusion: Secreted G protein is likely to be a regulatory factor in RSV infection limiting infectivity of the virus, inflammatory responses in the lungs, and reduction in lung function.
doi:10.1136/thx.2003.017343
PMCID: PMC1747027  PMID: 15170038
16.  Whole Blood Gene Expression Profiles to Assess Pathogenesis and Disease Severity in Infants with Respiratory Syncytial Virus Infection 
PLoS Medicine  2013;10(11):e1001549.
In this study, Mejias and colleagues found that specific blood RNA profiles of infants with RSV LRTI allowed for specific diagnosis, better understanding of disease pathogenesis, and better assessment of disease severity.
Please see later in the article for the Editors' Summary
Background
Respiratory syncytial virus (RSV) is the leading cause of viral lower respiratory tract infection (LRTI) and hospitalization in infants. Mostly because of the incomplete understanding of the disease pathogenesis, there is no licensed vaccine, and treatment remains symptomatic. We analyzed whole blood transcriptional profiles to characterize the global host immune response to acute RSV LRTI in infants, to characterize its specificity compared with influenza and human rhinovirus (HRV) LRTI, and to identify biomarkers that can objectively assess RSV disease severity.
Methods and Findings
This was a prospective observational study over six respiratory seasons including a cohort of infants hospitalized with RSV (n = 135), HRV (n = 30), and influenza (n = 16) LRTI, and healthy age- and sex-matched controls (n = 39). A specific RSV transcriptional profile was identified in whole blood (training cohort, n = 45 infants; Dallas, Texas, US) and validated in three different cohorts (test cohort, n = 46, Dallas, Texas, US; validation cohort A, n = 16, Turku, Finland; validation cohort B, n = 28, Columbus, Ohio, US) with high sensitivity (94% [95% CI 87%–98%]) and specificity (98% [95% CI 88%–99%]). It classified infants with RSV LRTI versus HRV or influenza LRTI with 95% accuracy. The immune dysregulation induced by RSV (overexpression of neutrophil, inflammation, and interferon genes, and suppression of T and B cell genes) persisted beyond the acute disease, and immune dysregulation was greatly impaired in younger infants (<6 mo). We identified a genomic score that significantly correlated with outcomes of care including a clinical disease severity score and, more importantly, length of hospitalization and duration of supplemental O2.
Conclusions
Blood RNA profiles of infants with RSV LRTI allow specific diagnosis, better understanding of disease pathogenesis, and assessment of disease severity. This study opens new avenues for biomarker discovery and identification of potential therapeutic or preventive targets, and demonstrates that large microarray datasets can be translated into a biologically meaningful context and applied to the clinical setting.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lower respiratory tract infections (LRTIs)—bacterial and viral infections of the lungs and airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for 14% of all child deaths. The leading cause of viral LTRIs in children is respiratory syncytial virus (RSV), which is readily transmitted from person to person by direct contact with nasal fluids or airborne droplets. Almost all children have an RSV infection before their second birthday, but most have only minor symptoms similar to those of a common cold and are cared for at home. Unfortunately, some children develop more serious conditions when they become infected with RSV, such as pneumonia or bronchiolitis (swelling and mucus build-up in the bronchioles, the smallest air passages in the lungs). These children have to be admitted to the hospital for supportive care—there is no specific treatment for RSV infection—such as the provision of supplemental oxygen.
Why Was This Study Done?
The lack of a treatment (and of a vaccine) for RSV is largely due to our incomplete understanding of the cellular events and reactions, including the host immune response, that occur during the development of an RSV infection (disease pathogenesis). Moreover, based on physical examination and available diagnostic tools, it is impossible to predict which children infected with RSV will develop a serious condition that requires hospitalization and which ones can be safely nursed at home. Here, the researchers use microarrays to analyze the global host response to acute RSV LTRI in infants, to define gene expression patterns that are specific to RSV infection rather than infection with other common respiratory viruses, and to identify biomarkers that indicate the severity of RSV infection. “Microarray” analysis allows researchers to examine gene expression patterns (“RNA transcriptional profiles”) in, for example, whole blood; a biomarker is a molecule whose level in bodily fluids or tissues indicates how a disease might develop and helps with patient classification.
What Did the Researchers Do and Find?
The researchers compared the RNA transcriptional profile in whole blood taken from children less than two years old hospitalized with RSV, human rhinovirus, or influenza virus infection (rhinovirus and influenza are two additional viral causes of LRTI), and from healthy infants. Using “statistical group comparisons,” they identified more than 2,000 transcripts that were differentially expressed in blood from 45 infants with RSV infection and from 14 healthy matched controls. Genes related to interferon function (interferons are released by host cells in response to the presence of disease-causing organisms) and neutrophil function (neutrophils are immune system cells that, like interferons, are involved in the innate immune response, the body's first line of defense against infection) were among the most overexpressed genes in infants infected with RSV. Genes regulating T and B cells (components of the adaptive immune response, the body's second-line of defense against infection) were among the most underexpressed genes. This specific transcriptional profile, which was validated in three additional groups of infants, accurately distinguished between infants infected with RSV and those infected with human rhinovirus or influenza virus. Finally, a “molecular distance to health” score (a numerical score that quantifies the transcriptional perturbation associated with an illness) was correlated with the clinical disease severity score of the study participants, with how long they needed supplemental oxygen, and with their duration of hospitalization.
What Do These Findings Mean?
These findings suggest that it might be possible to use whole blood RNA transcriptional profiles to distinguish between infants infected with RSV and those with other viruses that commonly cause LRTI. Moreover, if these findings can be replicated in more patients (including non-hospitalized children), gene expression profiling might provide a strategy for triaging patients with RSV infections when they first present to an emergency department and for monitoring clinical changes during the course of the infection, particularly given the development of molecular tools that might soon enable the “real time” acquisition of transcriptional profiles in the clinical setting. Finally, although certain aspects of the study design limit the accuracy and generalizability of the study's findings, these data provide new insights into the pathogenesis of RSV infection and open new avenues for the discovery of biomarkers for RSV infection and for the identification of therapeutic and preventative targets.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001549.
This study is further discussed in a PLOS Medicine Perspective by Peter Openshaw
The US Centers for Disease Control and Prevention provides information about RSV infection
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about RSV infections
The UK National Health Service Choices website provides information about bronchiolitis
The British Lung Foundation also provides information on RSV and on bronchiolitis
MedlinePlus provides links to other resources about RSV infections and about pneumonia (in English and Spanish); the MedlinePlus encyclopedia has a page on bronchiolitis (in English and Spanish)
PATH is an international non-profit organization investigating new RSV vaccines
doi:10.1371/journal.pmed.1001549
PMCID: PMC3825655  PMID: 24265599
17.  Antioxidant Treatment Ameliorates Respiratory Syncytial Virus–induced Disease and Lung Inflammation 
Rationale: Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection in children. No treatment has been shown to significantly improve the clinical outcome of patients with this infection. Recent evidence suggests that oxidative stress could play an important role in the pathogenesis of acute and chronic lung inflammatory diseases. We do not known whether RSV induces pulmonary oxidative stress and whether antioxidant treatment can modulate RSV-induced lung disease.
Objectives: To investigate the effect of antioxidant administration on RSV-induced lung inflammation, clinical disease, and airway hyperreactivity (AHR).
Methods: BALB/c mice were infected with 107 plaque-forming units of RSV, in the presence or absence of orally administered butylated hydroxyanisole (BHA), an antioxidant. Malondialdehyde and 4-hydroxynonenal were measured in bronchoalveoar lavage (BAL) by colorimetric assay. Cytokines and chemokines were measured in BAL by Bio-Plex and leukotrienes were measured by enzyme-linked immunosorbent assay. AHR to methacholine challenge was measured by whole-body plethysmography.
Results: BHA treatment significantly attenuated RSV-induced lung oxidative stress, as indicated by the decrease of malondialdehyde and 4-hydroxynonenal content in BAL of RSV-infected mice. RSV-induced clinical illness and body weight loss were also reduced by BHA treatment, which inhibited neutrophil recruitment to the lung and significantly reduced pulmonary cytokine and chemokine production after RSV infection. Similarly, antioxidant treatment attenuated RSV-induced AHR.
Conclusion: Modulation of oxidative stress represents a potential novel pharmacologic approach to ameliorate RSV-induced acute lung inflammation and potentially prevent long-term consequences associated with RSV infection, such as bronchial asthma.
doi:10.1164/rccm.200603-319OC
PMCID: PMC2648297  PMID: 17008643
antioxidant; chemokines; lung inflammation; oxidative stress; respiratory syncytial virus
18.  Comparative Effects of Two Neutralizing Anti-Respiratory Syncytial Virus (RSV) Monoclonal Antibodies in the RSV Murine Model: Time versus Potency 
Antimicrobial Agents and Chemotherapy  2005;49(11):4700-4707.
Respiratory syncytial virus (RSV) is the leading viral pathogen responsible for bronchiolitis and pneumonia in infants and young children worldwide. We have previously shown in the mouse model that treatment with an anti-RSV neutralizing monoclonal antibody (MAb) against the F glycoprotein of RSV, palivizumab, decreased lung inflammation, airway obstruction, and postmethacholine airway hyperresponsiveness. MEDI-524, or Numax, is a new MAb derived from palivizumab with enhanced neutralizing activity against RSV. We compared the effects of these two MAbs on different markers of disease severity using the murine model of RSV infection. BALB/c mice were intranasally inoculated with RSV A2. Palivizumab or MEDI-524 was administered once at either 24 h before or 48 h after RSV inoculation. Regardless of the time of administration, all treated mice showed significantly decreased RSV loads in bronchoalveolar lavage samples measured by plaque assay. Only MEDI-524 given at −24 h significantly decreased lung RSV RNA loads on days 5 and 28 after RSV inoculation. Pulmonary histopathologic scores, airway obstruction, and postmethacholine airway hyperresponsiveness were significantly reduced in mice treated with MEDI-524 at 24 h before inoculation, compared with untreated controls and the other regimens evaluated. MEDI-524 was superior to palivizumab on several outcome variables of RSV disease assessed in the mouse model: viral replication, inflammatory and clinical markers of acute disease severity, and long-term pulmonary abnormalities.
doi:10.1128/AAC.49.11.4700-4707.2005
PMCID: PMC1280119  PMID: 16251314
19.  Th17 cytokines are critical for RSV associated airway hyperreponsiveness through regulation by complement C3a and tachykinins1 
Respiratory syncytial virus (RSV) infection is associated with serious lung disease in infants and immunocompromised individuals and is linked to development of asthma. In mice, acute RSV infection causes airway hyperresponsiveness (AHR), inflammation, and mucus hypersecretion. Infected cells induce complement activation, producing the anaphylatoxin C3a. Here we show RSV infected wild type mice produce Th17 cytokines, a response not previously associated with viral infections. Mice deficient in the C3aR (C3aR1−/−) fail to develop AHR following acute RSV infection, and production of Th17 cytokines was significantly attenuated. Tachykinin production has also been implicated in RSV pathophysiology, and tachykinin receptor null mice (TACR1−/−) were similarly protected from developing AHR. These animals were also deficient in production of Th17 cytokines. Tachykinin release was absent in C3aR1−/− mice, while C3a levels were unchanged in TACR1−/− animals. Thus, our data reveal a crucial sequence following acute RSV infection where initial C3a production causes tachykinin release, followed by activation of the IL-17A pathway. Deficiency of either receptor affords protection from AHR, identifying two potential therapeutic targets.
doi:10.4049/jimmunol.1101789
PMCID: PMC3186836  PMID: 21918196
respiratory syncytial virus; C3a anaphylatoxin; complement; inflammation; IL17A; airway hyperresponsiveness; tachykinins; substance P; hemokinin-1
20.  Limited Type I Interferons and Plasmacytoid Dendritic Cells during Neonatal Respiratory Syncytial Virus Infection Permit Immunopathogenesis upon Reinfection 
Journal of Virology  2014;88(16):9350-9360.
ABSTRACT
Respiratory syncytial virus (RSV) infection is the number one cause of bronchiolitis in infants, yet no vaccines are available because of a lack of knowledge of the infant immune system. Using a neonatal mouse model, we previously revealed that mice initially infected with RSV as neonates develop Th2-biased immunopathophysiologies during reinfection, and we demonstrated a role for enhanced interleukin-4 receptor α (IL-4Rα) expression on T helper cells in these responses. Here we show that RSV infection in neonates induced limited type I interferon (IFN) and plasmacytoid dendritic cell (pDC) responses. IFN alpha (IFN-α) treatment or adoptive transfer of adult pDCs capable of inducing IFN-α prior to neonatal RSV infection decreased Th2-biased immunopathogenesis during reinfection. A reduced viral load and downregulation of IL-4Rα on Th2 cells were observed in IFN-α-treated neonatal mice, suggesting dual mechanisms of action.
IMPORTANCE Respiratory syncytial virus (RSV) is the most significant cause of lower respiratory tract infection in infancy worldwide. Despite the dire need, we have failed to produce efficacious RSV vaccines or therapeutics. Part of the reason for this failure is our lack of understanding of how RSV interacts with the infant immune system to suppress the development of protective immunity. In the study described in the present paper, we used a neonatal mouse model, which more closely mimics human infants, to study the role of the innate immune system, particularly type I interferons (IFNs) and plasmacytoid dendritic cells (pDCs), in the pathogenesis of RSV infection. RSV infection in neonates induced limited type I IFN and pDC responses. IFN-α treatment or adoptive transfer of adult pDCs capable of producing IFN-α prior to neonatal RSV infection decreased Th2-biased immunopathogenesis during reinfection. These data suggest that IFN-α is a promising target for future RSV vaccine design.
doi:10.1128/JVI.00818-14
PMCID: PMC4136292  PMID: 24920801
21.  Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data 
PLoS Medicine  2015;12(1):e1001776.
Daniel Weinberger and colleagues examine a possible interaction between two serious respiratory infections in children under 2 years of age.
Please see later in the article for the Editors' Summary
Background
The importance of bacterial infections following respiratory syncytial virus (RSV) remains unclear. We evaluated whether variations in RSV epidemic timing and magnitude are associated with variations in pneumococcal disease epidemics and whether changes in pneumococcal disease following the introduction of seven-valent pneumococcal conjugate vaccine (PCV7) were associated with changes in the rate of hospitalizations coded as RSV.
Methods and Findings
We used data from the State Inpatient Databases (Agency for Healthcare Research and Quality), including >700,000 RSV hospitalizations and >16,000 pneumococcal pneumonia hospitalizations in 36 states (1992/1993–2008/2009). Harmonic regression was used to estimate the timing of the average seasonal peak of RSV, pneumococcal pneumonia, and pneumococcal septicemia. We then estimated the association between the incidence of pneumococcal disease in children and the activity of RSV and influenza (where there is a well-established association) using Poisson regression models that controlled for shared seasonal variations. Finally, we estimated changes in the rate of hospitalizations coded as RSV following the introduction of PCV7. RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern (correlation of peak timing: ρ = 0.70, 95% CI: 0.45, 0.84). RSV was associated with a significant increase in the incidence of pneumococcal pneumonia in children aged <1 y (attributable percent [AP]: 20.3%, 95% CI: 17.4%, 25.1%) and among children aged 1–2 y (AP: 10.1%, 95% CI: 7.6%, 13.9%). Influenza was also associated with an increase in pneumococcal pneumonia among children aged 1–2 y (AP: 3.2%, 95% CI: 1.7%, 4.7%). Finally, we observed a significant decline in RSV-coded hospitalizations in children aged <1 y following PCV7 introduction (−18.0%, 95% CI: −22.6%, −13.1%, for 2004/2005–2008/2009 versus 1997/1998–1999/2000). This study used aggregated hospitalization data, and studies with individual-level, laboratory-confirmed data could help to confirm these findings.
Conclusions
These analyses provide evidence for an interaction between RSV and pneumococcal pneumonia. Future work should evaluate whether treatment for secondary bacterial infections could be considered for pneumonia cases even if a child tests positive for RSV.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Respiratory infections—bacterial and viral infections of the lungs and the airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for about 15% of all child deaths. The leading cause of bacterial pneumonia in children is Streptococcus pneumoniae, which is transmitted through contact with infected respiratory secretions. S. pneumoniae usually causes noninvasive diseases such as bronchitis, but sometimes the bacteria invade the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, or meningitis, respectively. These potentially fatal invasive pneumococcal diseases can be treated with antibiotics but can also be prevented by vaccination with pneumococcal conjugate vaccines such as PCV7. The leading cause of viral pneumonia is respiratory syncytial virus (RSV), which is also readily transmitted through contact with infected respiratory secretions. Almost all children have an RSV infection before their second birthday—RSV usually causes a mild cold-like illness. However, some children infected with RSV develop pneumonia and have to be admitted to hospital for supportive care such as the provision of supplemental oxygen; there is no specific treatment for RSV infection.
Why Was This Study Done?
Co-infections with bacteria and viruses can sometimes have a synergistic effect and lead to more severe disease than an infection with either type of pathogen (disease-causing organism) alone. For example, influenza infections increase the risk of invasive pneumococcal disease. But does pneumococcal disease also interact with RSV infection? It is important to understand the interaction between pneumococcal disease and RSV to improve the treatment of respiratory infections in young children, but the importance of bacterial infections following RSV infection is currently unclear. Here, the researchers undertake a time series analysis of US hospitalization data to investigate the association between RSV activity and pneumococcal disease in infants. Time series analysis uses statistical methods to analyze data collected at successive, evenly spaced time points.
What Did the Researchers Do and Find?
For their analysis, the researchers used data collected between 1992/1993 and 2008/2009 by the State Inpatient Databases on more than 700,000 hospitalizations for RSV and more than 16,000 hospitalizations for pneumococcal pneumonia or septicemia among children under two years old in 36 US states. Using a statistical technique called harmonic regression to measure seasonal variations in disease incidence (the rate of occurrence of new cases of a disease), the researchers show that RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern over the study period. Next, using Poisson regression models (another type of statistical analysis), they show that RSV was associated with significant increases (increases unlikely to have happened by chance) in the incidence of pneumococcal disease. Among children under one year old, 20.3% of pneumococcal pneumonia cases were associated with RSV activity; among children 1–2 years old, 10.1% of pneumococcal pneumonia cases were associated with RSV activity. Finally, the researchers report that following the introduction of routine vaccination in the US against S. pneumoniae with PCV7 in 2000, there was a significant decline in hospitalizations for RSV among children under one year old.
What Do These Findings Mean?
These findings provide evidence for an interaction between RSV and pneumococcal pneumonia and indicate that RSV is associated with increases in the incidence of pneumococcal pneumonia, particularly in young infants. Notably, the finding that RSV hospitalizations declined after the introduction of routine pneumococcal vaccination suggests that some RSV hospitalizations may have a joint viral–bacterial etiology (cause), although it is possible that PCV7 vaccination reduced the diagnosis of RSV because fewer children were hospitalized with pneumococcal disease and subsequently tested for RSV. Because this is an ecological study (an observational investigation that looks at risk factors and outcomes in temporally and geographically defined populations), these findings do not provide evidence for a causal link between hospitalizations for RSV and pneumococcal pneumonia. The similar spatiotemporal patterns for the two infections might reflect another unknown factor shared by the children who were hospitalized for RSV or pneumococcal pneumonia. Moreover, because pooled hospitalization discharge data were used in this study, these results need to be confirmed through analysis of individual-level, laboratory-confirmed data. Importantly, however, these findings support the initiation of studies to determine whether treatment for bacterial infections should be considered for children with pneumonia even if they have tested positive for RSV.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001776.
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about pneumonia
The US Centers for Disease Control and Prevention provides information on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories and information about RSV infection
The UK National Health Service Choices website provides information about pneumonia (including a personal story) and about pneumococcal diseases
KidsHealth, a website provided by the US-based non-profit Nemours Foundation, includes information on pneumonia and on RSV (in English and Spanish)
MedlinePlus provides links to other resources about pneumonia, RSV infections, and pneumococcal infections (in English and Spanish)
HCUPnet provides aggregated hospitalization data from the State Inpatient Databases used in this study
doi:10.1371/journal.pmed.1001776
PMCID: PMC4285401  PMID: 25562317
22.  Respiratory Syncytial Virus Reverses Airway Hyperresponsiveness to Methacholine in Ovalbumin-Sensitized Mice 
PLoS ONE  2012;7(10):e46660.
Each year, approximately 20% of asthmatics in the United States experience acute symptom exacerbations, which commonly result from pulmonary viral infections. The majority of asthma exacerbations in very young children follow infection with respiratory syncytial virus (RSV). However, pathogenic mechanisms underlying induction of asthma exacerbations by RSV are not well understood. We therefore investigated the effect of post-sensitization RSV infection on lung function in ovalbumin (OVA)-sensitized BALB/c mice as a model of RSV asthma exacerbations. OVA sensitization of uninfected female BALB/c mice increased bronchoalveolar lavage fluid (BALF) eosinophil levels and induced airway hyperresponsiveness to the muscarinic agonist methacholine, as measured by the forced-oscillation technique. In contrast, intranasal infection with replication-competent RSV strain A2 for 2–8 days reduced BALF eosinophil counts and reversed airway hyperresponsiveness in a pertussis toxin-sensitive manner. BALF levels of the chemokine keratinocyte cytokine (KC; a murine homolog of interleukin-8) were elevated in OVA-sensitized, RSV-infected mice and reversal of methacholine hyperresponsiveness in these animals was rapidly inhibited by KC neutralization. Hyporesponsiveness could be induced in OVA-sensitized, uninfected mice by recombinant KC or the Gαi agonist melittin. These data suggest that respiratory syncytial virus induces KC-mediated activation of Gαi, resulting in cross-inhibition of Gαq-mediated M3-muscarinic receptor signaling and reversal of airway hyperresponsiveness. As in unsensitized mice, KC therefore appears to play a significant role in induction of airway dysfunction by respiratory syncytial virus. Hence, interleukin-8 may be a promising therapeutic target to normalize lung function in both asthmatics and non-asthmatics with bronchiolitis. However, the OVA-sensitized, RSV-infected mouse may not be an appropriate model for investigating the pathogenesis of viral asthma exacerbations.
doi:10.1371/journal.pone.0046660
PMCID: PMC3462783  PMID: 23056391
23.  An immunocompromised BALB/c mouse model for respiratory syncytial virus infection 
Virology Journal  2005;2:3.
Background
Respiratory syncytial virus (RSV) infection causes bronchiolitis in infants and children, which can be fatal, especially in immunocompromised patients. The BALB/c mouse, currently used as a model for studying RSV immunopathology, is semi-permissive to the virus. A mouse model that more closely mimics human RSV infection is needed. Since immunocompromised conditions increase risk of RSV infection, the possibility of enhancing RSV infection in the BALB/c mouse by pretreatment with cyclophosphamide was examined in this study. BALB/c mice were treated with cyclophosphamide (CYP) and five days later, they were infected with RSV intranasally. Pulmonary RSV titers, inflammation and airway hyperresponsiveness were measured five days after infection.
Results
CYP-treated mice show higher RSV titers in their lungs of than the untreated mice. Also, a decreased percentage of macrophages and an increased number of lymphocytes and neutrophils were present in the BAL of CYP-treated mice compared to controls. The CYP-treated group also exhibited augmented bronchoalveolar and interstitial pulmonary inflammation. The increased RSV infection in CYP-treated mice was accompanied by elevated expression of IL-10, IL-12 and IFN-γ mRNAs and proteins compared to controls. Examination of CYP-treated mice before RSV infection showed that CYP treatment significantly decreased both IFN-γ and IL-12 expression.
Conclusions
These results demonstrate that CYP-treated BALB/c mice provide a better model for studying RSV immunopathology and that decreased production of IL-12 and IFN-γ are important determinants of susceptibility to RSV infection.
doi:10.1186/1743-422X-2-3
PMCID: PMC549044  PMID: 15701174
24.  The Role of T Cells in the Enhancement of Respiratory Syncytial Virus Infection Severity during Adult Reinfection of Neonatally Sensitized Mice▿  
Journal of Virology  2008;82(8):4115-4124.
Respiratory syncytial virus (RSV) is the major cause of infantile bronchiolitis and hospitalization. Severe RSV disease is associated with the development of wheezing in later life. In a mouse model of the delayed effects of RSV, the age at primary infection determines responses to reinfection in adulthood. During primary RSV infection, neonatal BALB/c mice developed only mild disease and recruited CD8 cells that were defective in gamma interferon production. Secondary reinfection of neonatally primed mice caused enhanced inflammation and profuse lung T-cell recruitment. CD4 cell depletion during secondary RSV challenge attenuated disease (measured by weight loss); depletion of CD8 cells also markedly attenuated disease severity but enhanced lung eosinophilia, and depletion of both CD4 and CD8 cells together completely abrogated weight loss. Depletion of CD8 (but not CD4) cells during primary neonatal infection was protective against weight loss during adult challenge. Therefore, T cells, in particular CD8 T cells, play a central role in the outcome of neonatal infection by enhancing disease during secondary challenge. These findings demonstrate a crucial role for T cells in the regulation of immune responses after neonatal infection.
doi:10.1128/JVI.02313-07
PMCID: PMC2293007  PMID: 18272579
25.  Early-life viral infection and allergen exposure interact to induce an asthmatic phenotype in mice 
Respiratory Research  2010;11(1):14.
Background
Early-life respiratory viral infections, notably with respiratory syncytial virus (RSV), increase the risk of subsequent development of childhood asthma. The purpose of this study was to assess whether early-life infection with a species-specific model of RSV and subsequent allergen exposure predisposed to the development of features of asthma.
Methods
We employed a unique combination of animal models in which BALB/c mice were neonatally infected with pneumonia virus of mice (PVM, which replicates severe RSV disease in human infants) and following recovery, were intranasally sensitised with ovalbumin. Animals received low-level challenge with aerosolised antigen for 4 weeks to elicit changes of chronic asthma, followed by a single moderate-level challenge to induce an exacerbation of inflammation. We then assessed airway inflammation, epithelial changes characteristic of remodelling, airway hyperresponsiveness (AHR) and host immunological responses.
Results
Allergic airway inflammation, including recruitment of eosinophils, was prominent only in animals that had recovered from neonatal infection with PVM and then been sensitised and chronically challenged with antigen. Furthermore, only these mice exhibited an augmented Th2-biased immune response, including elevated serum levels of anti-ovalbumin IgE and IgG1 as well as increased relative expression of Th2-associated cytokines IL-4, IL-5 and IL-13. By comparison, development of AHR and mucous cell change were associated with recovery from PVM infection, regardless of subsequent allergen challenge. Increased expression of IL-25, which could contribute to induction of a Th2 response, was demonstrable in the lung following PVM infection. Signalling via the IL-4 receptor α chain was crucial to the development of allergic inflammation, mucous cell change and AHR, because all of these were absent in receptor-deficient mice. In contrast, changes of remodelling were evident in mice that received chronic allergen challenge, regardless of neonatal PVM infection, and were not dependent on signalling via the IL-4 receptor.
Conclusion
In this mouse model, interaction between early-life viral infection and allergen sensitisation/challenge is essential for development of the characteristic features of childhood asthma, including allergic inflammation and a Th2-biased immune response.
doi:10.1186/1465-9921-11-14
PMCID: PMC2842242  PMID: 20122285

Results 1-25 (790987)