PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1200766)

Clipboard (0)
None

Related Articles

1.  Carbon Monoxide Confers Protection in Sepsis by Enhancing Beclin 1-Dependent Autophagy and Phagocytosis 
Antioxidants & Redox Signaling  2014;20(3):432-442.
Abstract
Aims: Sepsis, a systemic inflammatory response to infection, represents the leading cause of death in critically ill patients. However, the pathogenesis of sepsis remains incompletely understood. Carbon monoxide (CO), when administered at low physiologic doses, can modulate cell proliferation, apoptosis, and inflammation in pre-clinical tissue injury models, though its mechanism of action in sepsis remains unclear. Results: CO (250 ppm) inhalation increased the survival of C57BL/6J mice injured by cecal ligation and puncture (CLP) through the induction of autophagy, the down-regulation of pro-inflammatory cytokines, and by decreasing the levels of bacteria in blood and vital organs, such as the lung and liver. Mice deficient in the autophagic protein, Beclin 1 (Becn1+/−) were more susceptible to CLP-induced sepsis, and unresponsive to CO therapy, relative to their corresponding wild-type (Becn1+/+) littermate mice. In contrast, mice deficient in autophagic protein microtubule-associated protein-1 light chain 3B (LC3B) (Map1lc3b−/−) and their corresponding wild-type (Map1lc3b+/+) mice showed no differences in survival or response to CO, during CLP-induced sepsis. CO enhanced bacterial phagocytosis in Becn1+/+ but not Becn1+/− mice in vivo and in corresponding cultured macrophages. CO also enhanced Beclin 1-dependent induction of macrophage protein signaling lymphocyte-activation molecule, a regulator of phagocytosis. Innovation: Our findings demonstrate a novel protective effect of CO in sepsis, dependent on autophagy protein Beclin 1, in a murine model of CLP-induced polymicrobial sepsis. Conclusion: CO increases the survival of mice injured by CLP through systemic enhancement of autophagy and phagocytosis. Taken together, we suggest that CO gas may represent a novel therapy for patients with sepsis. Antioxid. Redox Signal. 20, 432–442.
doi:10.1089/ars.2013.5368
PMCID: PMC3894711  PMID: 23971531
2.  Emblica officinalis Extract Induces Autophagy and Inhibits Human Ovarian Cancer Cell Proliferation, Angiogenesis, Growth of Mouse Xenograft Tumors 
PLoS ONE  2013;8(8):e72748.
Patients with ovarian cancer (OC) may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla), have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE) has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α) in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen – CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC.
doi:10.1371/journal.pone.0072748
PMCID: PMC3794841  PMID: 24133573
3.  AUTOPHAGY MEDIATES PARACRINE REGULATION OF VASCULAR ENDOTHELIAL CELLS 
Gastrin-releasing peptide (GRP) is a pro-angiogenic ligand secreted by tumors and acts directly upon binding to GRP-receptor in endothelial cells. Angiogenesis plays a critical role in the pathology of various diseases, including cancer, as the formation of new blood vessels potentiates the rate of tumor growth and dissemination. GRP increases the migration of endothelial cells, but much is unknown about its role on endothelial cell proliferation and survival, as well as the signaling pathways involved. In the present study, we showed that GRP increases endothelial cell proliferation and tubule formation. There was a time-dependent increase in the levels of phosphorylated AKT, mTOR, and S6R in human umbilical vein endothelial cells treated with GRP. Interestingly, GRP treatment decreased the expression of pro-autophagic factors, ATG5, BECN1 and LC3 proteins. GRP also attenuated rapamycin-induced formation of autophagosomes. Moreover, overexpression of ATG5 or BECN1 significantly decreased tubule formation induced by exogenous GRP, whereas, siRNA against ATG5 or BECN1 resulted in increased tubule formation with GRP treatment. Our results show that GRP inhibits the process of autophagy in vascular endothelial cells, thereby, increasing endothelial cell proliferation and tubule formation. Here, we describe a novel role of GRP in the regulation of autophagy of endothelial cells, thereby, providing a potential new therapeutic strategy in targeting angiogenesis during cancer progression.
doi:10.1038/labinvest.2013.57
PMCID: PMC3669233  PMID: 23608754
AKT; autophagy; endothelial cells; GRP; mTOR
4.  HIF-1α/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs) 
Introduction
Carcinoma-associated fibroblasts (CAFs) play a pivotal role in cancer progression by contributing to invasion, metastasis and angiogenesis. Solid tumors possess a unique microenvironment characterized by local hypoxia, which induces gene expression changes and biological features leading to poor outcomes. Hypoxia Inducible Factor 1 (HIF-1) is the main transcription factor that mediates the cell response to hypoxia through different mechanisms that include the regulation of genes strongly associated with cancer aggressiveness. Among the HIF-1 target genes, the G-protein estrogen receptor (GPER) exerts a stimulatory role in diverse types of cancer cells and in CAFs.
Methods
We evaluated the regulation and function of the key angiogenic mediator vascular endothelial growth factor (VEGF) in CAFs exposed to hypoxia. Gene expression studies, Western blotting analysis and immunofluorescence experiments were performed in CAFs and breast cancer cells in the presence of cobalt chloride (CoCl2) or cultured under low oxygen tension (2% O2), in order to analyze the involvement of the HIF-1α/GPER signaling in the biological responses to hypoxia. We also explored the role of the HIF-1α/GPER transduction pathway in functional assays like tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in CAFs.
Results
We first determined that hypoxia induces the expression of HIF-1α and GPER in CAFs, then we ascertained that the HIF-1α/GPER signaling is involved in the regulation of VEGF expression in breast cancer cells and in CAFs exposed to hypoxia. We also assessed by ChIP assay that HIF-1α and GPER are both recruited to the VEGF promoter sequence and required for VEGF promoter stimulation upon hypoxic condition. As a biological counterpart of these findings, conditioned medium from hypoxic CAFs promoted tube formation in HUVECs in a HIF-1α/GPER dependent manner. The functional cooperation between HIF-1α and GPER in CAFs was also evidenced in the hypoxia-induced cell migration, which involved a further target of the HIF-1α/GPER signaling like connective tissue growth factor (CTGF).
Conclusions
The present results provide novel insight into the role elicited by the HIF-1α/GPER transduction pathway in CAFs towards the hypoxia-dependent tumor angiogenesis. Our findings further extend the molecular mechanisms through which the tumor microenvironment may contribute to cancer progression.
doi:10.1186/bcr3458
PMCID: PMC3978922  PMID: 23947803
5.  Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes 
The Journal of Clinical Investigation  2012;122(4):1427-1443.
Localized tissue hypoxia is a consequence of vascular compromise or rapid cellular proliferation and is a potent inducer of compensatory angiogenesis. The oxygen-responsive transcriptional regulator hypoxia-inducible factor 2α (HIF-2α) is highly expressed in vascular ECs and, along with HIF-1α, activates expression of target genes whose products modulate vascular functions and angiogenesis. However, the mechanisms by which HIF-2α regulates EC function and tissue perfusion under physiological and pathological conditions are poorly understood. Using mice in which Hif2a was specifically deleted in ECs, we demonstrate here that HIF-2α expression is required for angiogenic responses during hindlimb ischemia and for the growth of autochthonous skin tumors. EC-specific Hif2a deletion resulted in increased vessel formation in both models; however, these vessels failed to undergo proper arteriogenesis, resulting in poor perfusion. Analysis of cultured HIF-2α–deficient ECs revealed cell-autonomous increases in migration, invasion, and morphogenetic activity, which correlated with HIF-2α–dependent expression of specific angiogenic factors, including delta-like ligand 4 (Dll4), a Notch ligand, and angiopoietin 2. By stimulating Dll4 signaling in cultured ECs or restoring Dll4 expression in ischemic muscle tissue, we rescued most of the HIF-2α–dependent EC phenotypes in vitro and in vivo, emphasizing the critical role of Dll4/Notch signaling as a downstream target of HIF-2α in ECs. These results indicate that HIF-1α and HIF-2α fulfill complementary, but largely nonoverlapping, essential functions in pathophysiological angiogenesis.
doi:10.1172/JCI57322
PMCID: PMC3314446  PMID: 22426208
6.  HIF-1α and HIF-2α have divergent roles in colon cancer 
Hypoxia-inducible factor (HIF)-1 and HIF-2 are heterodimeric transcription factors that mediate the cellular response to hypoxia. Their key regulatory subunits, HIF-1α and HIF-2α, are induced similarly by hypoxia, but their functional roles in cancer may be distinct and isoform-specific. SW480 colon cancer cells with stable expression of siRNA to HIF-1α or HIF-2α or both were established. HIF-1α-deficient cells displayed lower rates of proliferation and migration, but HIF-2α-deficient cells exhibited enhanced anchorage independent growth in a soft agar assay. Xenograft studies revealed that HIF-1α deficiency inhibited overall tumor growth, whereas deficiency of HIF-2α stimulated tumor growth. In human colon cancer tissues, expression of HIF-1α and to a lesser extent, HIF-2α, was linked to upregulation of VEGF and tumor angiogenesis. However, loss of expression of HIF-2α but not HIF-1α was strongly correlated with advanced tumor stage. DNA microarray analysis identified distinct sets of HIF-1α and HIF-2α target genes that may explain these phenotypic differences. Collectively, these findings suggest that HIF isoforms may have differing cellular functions in colon cancer. In particular, HIF-1α promoted the growth of SW480 colon cancer cells but HIF-2α appeared to restrain growth. Consequently, therapeutic approaches that target HIF may need to consider these isoform-specific properties.
doi:10.1002/ijc.24032
PMCID: PMC2682346  PMID: 19030186
colon cancer; HIF; angiogenesis
7.  CDK1 stabilizes HIF-1α via direct phosphorylation of Ser668 to promote tumor growth 
Cell Cycle  2013;12(23):3689-3701.
Hypoxia-inducible factor 1 (HIF-1) is a major mediator of tumor physiology, and its activation is correlated with tumor progression, metastasis, and therapeutic resistance. HIF-1 is activated in a broad range of solid tumors due to intratumoral hypoxia or genetic alterations that enhance its expression or inhibit its degradation. As a result, decreasing HIF-1α expression represents an attractive strategy to sensitize hypoxic tumors to anticancer therapies. Here, we show that cyclin-dependent kinase 1 (CDK1) regulates the expression of HIF-1α, independent of its known regulators. Overexpression of CDK1 and/or cyclin B1 is sufficient to stabilize HIF-1α under normoxic conditions, whereas inhibition of CDK1 enhances the proteasomal degradation of HIF-1α, reducing its half-life and steady-state levels. In vitro kinase assays reveal that CDK1 directly phosphorylates HIF-1α at a previously unidentified regulatory site, Ser668. HIF-1α is stabilized under normoxic conditions during G2/M phase via CDK1-mediated phosphorylation of Ser668. A phospho-mimetic construct of HIF-1α at Ser668 (S668E) is significantly more stable under both normoxic and hypoxic conditions, resulting in enhanced transcription of HIF-1 target genes and increased tumor cell invasion and migration. Importantly, HIF-1α (S668E) displays increased tumor angiogenesis, proliferation, and tumor growth in vivo compared with wild-type HIF-1α. Thus, we have identified a novel link between CDK1 and HIF-1α that provides a potential molecular explanation for the elevated HIF-1 activity observed in primary and metastatic tumors, independent of hypoxia, and offers a molecular rationale for the clinical translation of CDK inhibitors for use in tumors with constitutively active HIF-1.
doi:10.4161/cc.26930
PMCID: PMC3903720  PMID: 24189531
CDK1; HIF-1α; angiogenesis; cell cycle; hypoxia
8.  Differential Regulation of Pulmonary Vascular Cell Growth by Hypoxia-Inducible Transcription Factor–1α and Hypoxia-Inducible Transcription Factor–2α 
Hypoxia-inducible transcription factors HIF-1α and HIF-2α can contribute to pulmonary hypertension and vascular remodeling, but their mechanisms remain unknown. This study investigated the role of HIF-1α and HIF-2α in pulmonary artery endothelial and smooth muscle cells. The exposure of human pulmonary artery endothelial cells (HPAECs) to hypoxia (10% O2 or 5% O2) increased proliferation over 48 hours, compared with cells during normoxia (21% O2). The adenovirus-mediated overexpression of HIF-2α that is transcriptionally active during normoxia (mutHIF-2α) increased HPAEC proliferation, whereas the overexpression of HIF-1α, which is transcriptionally active during normoxia (mutHIF-1α), exerted no effect. The knockdown of HIF-2α decreased proliferation during both hypoxia and normoxia. Both HIFs increased migration toward fibrinogen, used as a chemoattractant. In an angiogenesis tube formation assay, mutHIF-2α–transduced cells demonstrated increased tube formation, compared with the mutHIF-1α–transduced cells. In addition, the tubes formed in HIF-2α–transduced cells were more enduring than those in the other groups. In human pulmonary artery smooth muscle cells (HPASMCs), chronic exposure to hypoxia increased proliferation, compared with cells during normoxia. For HPASMCs transduced with adenoviral HIFs, HIF-1α increased proliferation, whereas HIF-2α exerted no such effect. Thus, HIF-1α and HIF-2α exert differential effects in isolated cells of the human pulmonary vasculature. This study demonstrates that HIF-2α plays a predominant role in the endothelial growth pertinent to the remodeling process. In contrast, HIF-1α appears to play a major role in pulmonary smooth muscle growth. The selective targeting of each HIF in specific target cells may more effectively counteract hypoxic pulmonary hypertension and vascular remodeling.
doi:10.1165/rcmb.2012-0107OC
PMCID: PMC3727885  PMID: 23492195
HIF-2α; hypoxia; proliferation; endothelial; pulmonary
9.  Association of FKBP51 with Priming of Autophagy Pathways and Mediation of Antidepressant Treatment Response: Evidence in Cells, Mice, and Humans 
PLoS Medicine  2014;11(11):e1001755.
Theo Rein and colleagues examine the role of FKBP51 in the actions of antidepressants, with a particular focus on pathways of autophagy.
Please see later in the article for the Editors' Summary
Background
FK506 binding protein 51 (FKBP51) is an Hsp90 co-chaperone and regulator of the glucocorticoid receptor, and consequently of stress physiology. Clinical studies suggest a genetic link between FKBP51 and antidepressant response in mood disorders; however, the underlying mechanisms remain elusive. The objective of this study was to elucidate the role of FKBP51 in the actions of antidepressants, with a particular focus on pathways of autophagy.
Methods and Findings
Established cell lines, primary neural cells, human blood cells of healthy individuals and patients with depression, and mice were treated with antidepressants. Mice were tested for several neuroendocrine and behavioral parameters. Protein interactions and autophagic pathway activity were mainly evaluated by co-immunoprecipitation and Western blots. We first show that the effects of acute antidepressant treatment on behavior are abolished in FKBP51 knockout (51KO) mice. Autophagic markers, such as the autophagy initiator Beclin1, were increased following acute antidepressant treatment in brains from wild-type, but not 51KO, animals. FKBP51 binds to Beclin1, changes decisive protein interactions and phosphorylation of Beclin1, and triggers autophagic pathways. Antidepressants and FKBP51 exhibited synergistic effects on these pathways. Using chronic social defeat as a depression-relevant stress model in combination with chronic paroxetine (PAR) treatment revealed that the stress response, as well as the effects of antidepressants on behavior and autophagic markers, depends on FKBP51. In human blood cells of healthy individuals, FKBP51 levels correlated with the potential of antidepressants to induce autophagic pathways.
Importantly, the clinical antidepressant response of patients with depression (n = 51) could be predicted by the antidepressant response of autophagic markers in patient-derived peripheral blood lymphocytes cultivated and treated ex vivo (Beclin1/amitriptyline: r = 0.572, p = 0.003; Beclin1/PAR: r = 0.569, p = 0.004; Beclin1/fluoxetine: r = 0.454, p = 0.026; pAkt/amitriptyline: r = −0.416, p = 0.006; pAkt/PAR: r = −0.355, p = 0.021; LC3B-II/PAR: r = 0.453, p = 0.02), as well as by the lymphocytic expression levels of FKBP51 (r = 0.631, p<0.0001), pAkt (r = −0.515, p = 0.003), and Beclin1 (r = 0.521, p = 0.002) at admission. Limitations of the study include the use of male mice only and the relatively low number of patients for protein analyses.
Conclusions
To our knowledge, these findings provide the first evidence for the molecular mechanism of FKBP51 in priming autophagic pathways; this process is linked to the potency of at least some antidepressants. These newly discovered functions of FKBP51 also provide novel predictive markers for treatment outcome, consistent with physiological and potential clinical relevance.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Everyone feels miserable sometimes, but about one in six people will have an episode of clinical depression during their lifetime. For people who are clinically depressed, overwhelming feelings of sadness, anxiety, and hopelessness can last for months or years. Affected individuals lose interest in activities they used to enjoy, they sometimes have physical symptoms such as disturbed sleep, and they may contemplate suicide. Clinicians diagnose depression and determine its severity using questionnaires (“depression rating scales”) that explore the patient's feelings and symptoms. Mild depression is often treated with talking therapies (psychotherapy) such as cognitive behavioral therapy, which helps people change negative ways of thinking. For more severe depression, patients are also usually prescribed an antidepressant, most commonly a “selective serotonin reuptake inhibitor” such as paroxetine or a tricyclic antidepressant such as amitriptyline.
Why Was This Study Done?
Unfortunately, antidepressants don't work for more than half of patients. Moreover, because it is unclear how antidepressants work, it is not possible to predict which patients will respond to which antidepressants. Thus, matching patient to drug can be a lengthy, sometimes unsuccessful, process. Here, the researchers use several approaches to test the hypothesis that a protein called FK506 binding protein 51 (FKBP51) is involved in the actions of antidepressants and to investigate whether the ability of both FKBP51 and antidepressants to regulate a process called autophagy underlies the impact of FKBP51 on antidepressant responses. FKBP51 is a regulator of stress physiology, which is connected to the development and treatment of depression; genetic studies have suggested a link between FKBP51 expression and the antidepressant response rate. Some antidepressants are known to alter the initial steps in the autophagy pathway, a multistep process that maintains the integrity of cells through regulated degradation and recycling of cellular components; however, the potential synergistic role of FKBP51 and antidepressants in regulating pathways of autophagy are unknown.
What Did the Researchers Do and Find?
The researchers first treated wild-type mice and FKBP51 knockout mice (genetically altered animals that make no FKBP51) with an acute dose of antidepressant and compared their behavior in a forced swim test, an assay that measures the action of antidepressants in mice by determining how long the mice struggle or float inertly when placed in deep water. As expected, acute antidepressant treatment increased the time that wild-type mice spent struggling. However, this effect of antidepressant treatment was greatly attenuated in the FKBP51 knockout mice. Moreover, the levels of several autophagy markers increased in the brains of wild-type mice following antidepressant treatment but not in the brains of FKBP51 knockout mice. Next, using “chronic social defeat stress” to model the “endophenotype” of depression (a combination of physiological, hormonal, and behavioral traits seen in people with depression) in mice, the researchers showed that the stress response and the effect of chronic antidepressants on behavior and on autophagic markers all depend on FKBP51. Using cell-based assays, the researchers showed that antidepressants and FKBP51 had synergistic (interactive) effects on the autophagic pathway and that, in human blood cells, FKBP51 levels correlated with the potential of antidepressants to induce autophagic pathways. Finally, the researchers report that the clinical response to antidepressant treatment in 51 patients with depression was associated with the response of autophagic markers in their peripheral blood lymphocytes to antidepressant treatment in test tubes, and that the expression levels of FKBP51 and autophagy markers in patient lymphocytes at admission were associated with subsequent clinical responses to antidepressants.
What Do These Findings Mean?
These findings suggest that the protein FKBP51 is required for the effects of both acute and chronic treatment with some antidepressants on behavior and on autophagic pathways in mice. These findings also reveal an association between antidepressant treatment responses in patients and both the expression levels of FKBP51 and autophagy markers in lymphocytes at admission and the response of autophagic markers to antidepressant treatment in patient lymphocytes. The accuracy of these findings is limited by the small number of clinical samples available for analysis, by the use of only male mice in the animal experiments, and by the inability of animal models of depression to fully replicate the human condition. Nevertheless, these findings identify the early stages of autophagy as potential targets for the development of new antidepressants and identify several potential biomarkers that might, after further clinical validation, help clinicians predict antidepressant efficacy in patients with depression.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001755.
The US National Institute of Mental Health provides information on all aspects of depression (in English and Spanish), including information on antidepressants
The UK National Health Service Choices website provides detailed information about depression and about antidepressants; it also provides personal stories about depression
The UK charity Mind provides information on depression, including some personal stories about depression
More personal stories about depression are available from healthtalk.org
MedlinePlus provides links to other resources about depression
Wikipedia has a page on autophagy (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The patients included in this study were all enrolled in the Munich Antidepressant Response Signature project, which aims to identify gene variants and biomarkers that predict treatment outcomes with antidepressants
doi:10.1371/journal.pmed.1001755
PMCID: PMC4227651  PMID: 25386878
10.  Potent antitumor activity of oncolytic adenovirus expressing Beclin-1 via induction of autophagic cell death in leukemia 
Oncotarget  2013;4(6):860-874.
An attractive strategy among adenovirus-based oncolytic systems is to design adenoviral vectors to express pro-apoptotic genes, in which this gene-virotherapy approach significantly enhances tumor cell death by activating apoptotic pathways. However, the existence of cancer cells with apoptotic defects is one of the major obstacles in gene-virotherapy. Here, we investigated whether a strategy that combines the oncolytic effects of an adenoviral vector with simultaneous expression of Beclin-1, an autophagy gene, offers a therapeutic advantage for leukemia. A Beclin-1 cDNA was cloned in an oncolytic adenovirus with chimeric Ad5/11 fiber (SG511-BECN). SG511-BECN treatment induced significant autophagic cell death, and resulted in enhanced cell killing in a variety of leukemic cell lines and primary leukemic blasts. SG511-BECN effects were seen in chronic myeloid leukemia and acute myeloid leukemia with resistance to imatinib or chemotherapy, but exhibited much less cytotoxicity on normal cells. The SG511-BECN-induced autophagic cell death could be partially reversed by RNA interference knockdown of UVRAG, ATG5, and ATG7. We also showed that SG511-BECN strongly inhibited the growth of leukemic progenitors in vitro. In murine leukemia models, SG511-BECN prolonged the survival and decreased the xenograft tumor size by inducing autophagic cell death. Our results suggest that infection of leukemia cells with an oncolytic adenovirus overexpressing Beclin-1 can induce significant autophagic cell death and provide a new strategy for the elimination of leukemic cells via a unique mechanism of action distinct from apoptosis.
PMCID: PMC3757243  PMID: 23765161
leukemia; oncolytic adenovirus; autophagy; Beclin-1; autophagic cell death; UVRAG
11.  Disparate effects of simvastatin on angiogenesis during hypoxia and inflammation 
Life sciences  2008;83(23-24):801-809.
Aims
Studies have shown that some of statin's pleiotropic effects were achieved by either promotion or inhibition of angiogenesis, depending on the underlying disease. This study tested the hypothesis that the angiogenic potential of simvastatin is related to the microenvironmental conditions.
Main methods
Human umbilical vein endothelial cells (HUVEC) were studied after exposure to hypoxia or the inflammatory factors tumor necrosis factor (TNF)-α, with or without co-incubation with simvastatin (1μmol/L) and mevalonate. HUVEC angiogenesis was evaluated by tube formation, migration, and proliferation assays. Hypoxia inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), Akt, endothelium nitric oxide synthase (e-NOS), and oxidative stress were evaluated.
Key findings
HUVEC angiogenesis increased during hypoxia (tube length 14.7±0.5 vs. 7.8±0.6 mm, p<0.05) and further enhanced by simvastatin (19.3±1.1 mm, p<0.05 vs. hypoxia alone), which downregulated the expression of the HIF-1 inhibitor PHD2 and upregulated HIF-1α, VEGF, and Akt, without changing oxidative stress or eNOS. Incubation with TNF-α promoted HUVEC angiogenesis (7.4±0.2 vs. 6.5±0.2 mm, p<0.05) with increased oxidative stress. However, simvastatin inhibited this promotion (2.5±0.3 mm, p<0.001 vs. TNF-α alone) by decreasing oxidative stress, VEGF, Akt, and eNOS.
Significance
We conclude that at the same dosage, simvastatin can either promote or inhibit angiogenesis, possibly by activating upstream regulators of HIF-1α in hypoxia, but conversely interfering with angiogenic signaling downstream to inflammation. These opposing angiogenic effects should be considered in the therapeutic strategies with statins.
doi:10.1016/j.lfs.2008.09.029
PMCID: PMC2596882  PMID: 18976673
Simvastatin; hypoxia; angiogenesis; inflammation
12.  Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene 
Journal of Clinical Investigation  2003;112(12):1809-1820.
Malignant cells often display defects in autophagy, an evolutionarily conserved pathway for degrading long-lived proteins and cytoplasmic organelles. However, as yet, there is no genetic evidence for a role of autophagy genes in tumor suppression. The beclin 1 autophagy gene is monoallelically deleted in 40–75% of cases of human sporadic breast, ovarian, and prostate cancer. Therefore, we used a targeted mutant mouse model to test the hypothesis that monoallelic deletion of beclin 1 promotes tumorigenesis. Here we show that heterozygous disruption of beclin 1 increases the frequency of spontaneous malignancies and accelerates the development of hepatitis B virus–induced premalignant lesions. Molecular analyses of tumors in beclin 1 heterozygous mice show that the remaining wild-type allele is neither mutated nor silenced. Furthermore, beclin 1 heterozygous disruption results in increased cellular proliferation and reduced autophagy in vivo. These findings demonstrate that beclin 1 is a haplo-insufficient tumor-suppressor gene and provide genetic evidence that autophagy is a novel mechanism of cell-growth control and tumor suppression. Thus, mutation of beclin 1 or other autophagy genes may contribute to the pathogenesis of human cancers.
doi:10.1172/JCI200320039
PMCID: PMC297002  PMID: 14638851
13.  Overcoming evasive resistance from vascular endothelial growth factor a inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducible factor 1α 
Increased levels of hypoxia and hypoxia-inducible factor 1α (HIF-1α) in human sarcomas correlate with tumor progression and radiation resistance. Prolonged antiangiogenic therapy of tumors not only delays tumor growth but may also increase hypoxia and HIF-1α activity. In our recent clinical trial, treatment with the vascular endothelial growth factor A (VEGF-A) antibody, bevacizumab, followed by a combination of bevacizumab and radiation led to near complete necrosis in nearly half of sarcomas. Gene Set Enrichment Analysis of microarrays from pretreatment biopsies found that the Gene Ontology category “Response to hypoxia” was upregulated in poor responders and that the hierarchical clustering based on 140 hypoxia-responsive genes reliably separated poor responders from good responders. The most commonly used chemotherapeutic drug for sarcomas, doxorubicin (Dox), was recently found to block HIF-1α binding to DNA at low metronomic doses. In four sarcoma cell lines, HIF-1α shRNA or Dox at low concentrations blocked HIF-1α induction of VEGF-A by 84–97% and carbonic anhydrase 9 by 83–93%. HT1080 sarcoma xenografts had increased hypoxia and/or HIF-1α activity with increasing tumor size and with anti-VEGF receptor antibody (DC101) treatment. Combining DC101 with HIF-1α shRNA or metronomic Dox had a synergistic effect in suppressing growth of HT1080 xenografts, at least in part via induction of tumor endothelial cell apoptosis. In conclusion, sarcomas respond to increased hypoxia by expressing HIF-1α target genes that may promote resistance to antiangiogenic and other therapies. HIF-1α inhibition blocks this evasive resistance and augments destruction of the tumor vasculature.
What’s new?
Despite their initial promise, anti-angiogenic therapies have been a disappointment in the clinic. One reason is that solid tumors often become resistant to these drugs. Tumors that respond poorly to this type of therapy have increased activation of the hypoxia-induced transcription factor HIF-1α which can enhance tumor survival and progression. In this study, the authors report that this evasive resistance can be overcome by adding low-dose doxorubicin or shRNA to inhibit HIF-1α activity. They are thus developing a clinical trial combining the angiogenesis inhibitor bevacizumab with metronomic doxorubicin in sarcoma patients.
doi:10.1002/ijc.27666
PMCID: PMC3677782  PMID: 22684860
sarcomas; hypoxia; HIF-1α; VEGF-A
14.  Gene Network Signaling in Hormone Responsiveness Modifies Apoptosis and Autophagy in Breast Cancer Cells 
Resistance to endocrine therapies, whether de novo or acquired, remains a major limitation in the ability to cure many tumors that express detectable levels of the estrogen receptor alpha protein (ER). While several resistance phenotypes have been described, endocrine unresponsiveness in the context of therapy-induced tumor growth appears to be the most prevalent. The signaling that regulates endocrine resistant phenotypes is poorly understood but it involves a complex signaling network with a topology that includes redundant and degenerative features. To be relevant to clinical outcomes, the most pertinent features of this network are those that ultimately affect the endocrine-regulated components of the cell fate and cell proliferation machineries. We show that autophagy, as supported by the endocrine regulation of monodansylcadaverine staining, increased LC3 cleavage, and reduced expression of p62/SQSTM1, plays an important role in breast cancer cells responding to endocrine therapy. We further show that the cell fate machinery includes both apoptotic and autophagic functions that are potentially regulated through integrated signaling that flows through key members of the BCL2 gene family and beclin-1 (BECN1). This signaling links cellular functions in mitochondria and endoplasmic reticulum, the latter as a consequence of induction of the unfolded protein response. We have taken a seed-gene approach to begin extracting critical nodes and edges that represent central signaling events in the endocrine regulation of apoptosis and autophagy. Three seed nodes were identified from global gene or protein expression analyses and supported by subsequent functional studies that established their abilities to affect cell fate. The seed nodes of nuclear factor kappa B (NFκB), interferon regulatory factor-1 (IRF1), and X-box binding protein-1 (XBP1) are linked by directional edges that support signal flow through a preliminary network that is grown to include key regulators of their individual function: NEMO/IKKγ, nucleophosmin and ER respectively. Signaling proceeds through BCL2 gene family members and BECN1 ultimately to regulate cell fate.
doi:10.1016/j.jsbmb.2008.12.023
PMCID: PMC2768542  PMID: 19444933
Antiestrogen; autophagy; apoptosis; breast cancer; cell signaling; endoplasmic reticulum; estrogens; gene networks; unfolded protein response
15.  Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α 
Journal of Clinical Investigation  1999;103(5):691-696.
Chronic hypoxia induces polycythemia, pulmonary hypertension, right ventricular hypertrophy, and weight loss. Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that mediate adaptive responses to hypoxia, including erythropoietin, vascular endothelial growth factor, and glycolytic enzymes. Expression of the HIF-1α subunit increases exponentially as O2 concentration is decreased. Hif1a–/– mouse embryos with complete deficiency of HIF-1α due to homozygosity for a null allele at the Hif1a locus die at midgestation, with multiple cardiovascular malformations and mesenchymal cell death. Hif1a+/– heterozygotes develop normally and are indistinguishable from Hif1a+/+ wild-type littermates when maintained under normoxic conditions. In this study, the physiological responses of Hif1a+/– and Hif1a+/+ mice exposed to 10% O2 for one to six weeks were analyzed. Hif1a+/– mice demonstrated significantly delayed development of polycythemia, right ventricular hypertrophy, pulmonary hypertension, and pulmonary vascular remodeling and significantly greater weight loss compared with wild-type littermates. These results indicate that partial HIF-1α deficiency has significant effects on multiple systemic responses to chronic hypoxia.
J. Clin. Invest. 103:691–696 (1999)
PMCID: PMC408131  PMID: 10074486
16.  Autophagic Protein LC3B Confers Resistance against Hypoxia-induced Pulmonary Hypertension 
Rationale: Pulmonary hypertension (PH) is a progressive disease with unclear etiology. The significance of autophagy in PH remains unknown.
Objectives: To determine the mechanisms by which autophagic proteins regulate tissue responses during PH.
Methods: Lungs from patients with PH, lungs from mice exposed to chronic hypoxia, and human pulmonary vascular cells were examined for autophagy using electron microscopy and Western analysis. Mice deficient in microtubule-associated protein-1 light chain-3B (LC3B−/−), or early growth response-1 (Egr-1−/−), were evaluated for vascular morphology and hemodynamics.
Measurements and Main Results: Human PH lungs displayed elevated lipid-conjugated LC3B, and autophagosomes relative to normal lungs. These autophagic markers increased in hypoxic mice, and in human pulmonary vascular cells exposed to hypoxia. Egr-1, which regulates LC3B expression, was elevated in PH, and increased by hypoxia in vivo and in vitro. LC3B−/− or Egr-1−/−, but not Beclin 1+/−, mice displayed exaggerated PH during hypoxia. In vitro, LC3B knockdown increased reactive oxygen species production, hypoxia-inducible factor-1α stabilization, and hypoxic cell proliferation. LC3B and Egr-1 localized to caveolae, associated with caveolin-1, and trafficked to the cytosol during hypoxia.
Conclusions: The results demonstrate elevated LC3B in the lungs of humans with PH, and of mice with hypoxic PH. The increased susceptibility of LC3B−/− and Egr-1−/− mice to hypoxia-induced PH and increased hypoxic proliferation of LC3B knockdown cells suggest adaptive functions of these proteins during hypoxic vascular remodeling. The results suggest that autophagic protein LC3B exerts a protective function during the pathogenesis of PH, through the regulation of hypoxic cell proliferation.
doi:10.1164/rccm.201005-0746OC
PMCID: PMC3081281  PMID: 20889906
autophagy; hypoxia; hypertension, pulmonary
17.  EAF2 loss enhances angiogenic effects of Von Hippel-Lindau heterozygosity on the murine liver and prostate 
Angiogenesis  2011;14(3):331-343.
Von Hippel-Lindau (VHL) disease results from the inactivation of the VHL gene and is characterized by highly vascular tumors. A consequence of VHL loss is the stabilization of hypoxia-inducible factor (HIF) alpha subunits and increased expression of HIF target genes, which include pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF). In mice, homozygous deletion of VHL is embryonic lethal due to vascular abnormalities in the placenta; and, VHL+/- mice develop proliferative vascular lesions in several major organs, most prominently the liver. Loss of ELL-associated factor (EAF2) in murine models has also been shown to induce increased vascular density in the liver as well as the prostate. Previously, EAF2 was determined to be a binding partner of VHL and loss of EAF2 induced a reduction in pVHL levels and an increase in hypoxia induced factor 1α (HIF1α) levels in vitro. Here we characterized the cooperative effects of VHL- and EAF2-deficiency on angiogenesis in the liver and prostate of male mice. VHL deficiency consistently increased the incidence of hepatic vascular lesions across three mouse strains. These vascular lesions where characterized by an increase in microvessel density, and staining intensity of VHL target proteins HIF1α and VEGF. EAF2-/-VHL+/- mice had increased incidence of proliferative hepatic vascular lesions (4/4) compared to VHL+/- (10/18) and EAF2-/- (0/5) mice. Prostates of EAF2-/-VHL+/- mice also displayed an increase in microvessel density, as well as stromal inflammation and prostatic intraepithelial neoplasia. These results suggest that cooperation of VHL and EAF2 may be critical for angiogenic regulation of the liver and prostate, and concurrent loss of these two tumor suppressors may result in a pro-angiogenic phenotype.
doi:10.1007/s10456-011-9217-1
PMCID: PMC3155049  PMID: 21638067
Von Hippel-Lindau (VHL); ELL-associated factor 2 (EAF2); Hepatic vascular lesion; Prostatic intraepithelial neoplasia (PIN)
18.  EAF2 loss enhances angiogenic effects of Von Hippel-Lindau heterozygosity on the murine liver and prostate 
Angiogenesis  2011;14(3):331-343.
Von Hippel-Lindau (VHL) disease results from the inactivation of the VHL gene and is characterized by highly vascular tumors. A consequence of VHL loss is the stabilization of hypoxia-inducible factor (HIF) alpha subunits and increased expression of HIF target genes, which include pro-angiogenic growth factors such as vascular endothelial growth factor (VEGF). In mice, homozygous deletion of VHL is embryonic lethal due to vascular abnormalities in the placenta; and, VHL+/− mice develop proliferative vascular lesions in several major organs, most prominently the liver. Loss of ELL-associated factor (EAF2) in murine models has also been shown to induce increased vascular density in the liver as well as the prostate. Previously, EAF2 was determined to be a binding partner of VHL and loss of EAF2 induced a reduction in pVHL levels and an increase in hypoxia induced factor 1α (HIF1α) levels in vitro. Here we characterized the cooperative effects of VHL- and EAF2-deficiency on angiogenesis in the liver and prostate of male mice. VHL deficiency consistently increased the incidence of hepatic vascular lesions across three mouse strains. These vascular lesions where characterized by an increase in microvessel density, and staining intensity of VHL target proteins HIF1α and VEGF. EAF2−/−VHL+/− mice had increased incidence of proliferative hepatic vascular lesions (4/4) compared to VHL+/− (10/18) and EAF2−/− (0/5) mice. Prostates of EAF2−/−VHL+/− mice also displayed an increase in microvessel density, as well as stromal inflammation and prostatic intraepithelial neoplasia. These results suggest that cooperation of VHL and EAF2 may be critical for angiogenic regulation of the liver and prostate, and concurrent loss of these two tumor suppressors may result in a pro-angiogenic phenotype.
Electronic supplementary material
The online version of this article (doi:10.1007/s10456-011-9217-1) contains supplementary material, which is available to authorized users.
doi:10.1007/s10456-011-9217-1
PMCID: PMC3155049  PMID: 21638067
Von Hippel-Lindau (VHL); ELL-associated factor 2 (EAF2); Hepatic vascular lesion; Prostatic intraepithelial neoplasia (PIN)
19.  Identification of the angiogenic gene signature induced by EGF and hypoxia in colorectal cancer 
BMC Cancer  2013;13:518.
Background
Colorectal cancer (CRC) is characterised by hypoxia, which activates gene transcription through hypoxia-inducible factors (HIF), as well as by expression of epidermal growth factor (EGF) and EGF receptors, targeting of which has been demonstrated to provide therapeutic benefit in CRC. Although EGF has been demonstrated to induce expression of angiogenic mediators, potential interactions in CRC between EGF-mediated signalling and the hypoxia/HIF pathway remain uncharacterised.
Methods
PCR-based profiling was applied to identify angiogenic genes in Caco-2 CRC cells regulated by hypoxia, the hypoxia mimetic dimethyloxallylglycine (DMOG) and/or EGF. Western blotting was used to determine the role of HIF-1alpha, HIF-2alpha and MAPK cell signalling in mediating the angiogenic responses.
Results
We identified a total of 9 angiogenic genes, including angiopoietin-like (ANGPTL) 4, ephrin (EFNA) 3, transforming growth factor (TGF) β1 and vascular endothelial growth factor (VEGF), to be upregulated in a HIF dependent manner in Caco-2 CRC cells in response to both hypoxia and the hypoxia mimetic dimethyloxallylglycine (DMOG). Stimulation with EGF resulted in EGFR tyrosine autophosphorylation, activation of p42/p44 MAP kinases and stabilisation of HIF-1α and HIF-2α proteins. However, expression of 84 angiogenic genes remained unchanged in response to EGF alone. Crucially, addition of DMOG in combination with EGF significantly increased expression of a further 11 genes (in addition to the 9 genes upregulated in response to either DMOG alone or hypoxia alone). These additional genes included chemokines (CCL-11/eotaxin-1 and interleukin-8), collagen type IV α3 chain, integrin β3 chain, TGFα and VEGF receptor KDR.
Conclusion
These findings suggest that although EGFR phosphorylation activates the MAP kinase signalling and promotes HIF stabilisation in CRC, this alone is not sufficient to induce angiogenic gene expression. In contrast, HIF activation downstream of hypoxia/DMOG drives expression of genes such as ANGPTL4, EFNA3, TGFβ1 and VEGF. Finally, HIF activation synergises with EGF-mediated signalling to additionally induce a unique sub-group of candidate angiogenic genes. Our data highlight the complex interrelationship between tumour hypoxia, EGF and angiogenesis in the pathogenesis of CRC.
doi:10.1186/1471-2407-13-518
PMCID: PMC4228238  PMID: 24180698
Colorectal cancer; Angiogenesis; Hypoxia; EGF
20.  Co-culture of Retinal and Endothelial Cells Results in the Modulation of Genes Critical to Retinal Neovascularization 
Vascular Cell  2011;3:27.
Background
Neovascularization (angiogenesis) is a multistep process, controlled by opposing regulatory factors, which plays a crucial role in several ocular diseases. It often results in vitreous hemorrhage, retinal detachment, neovascularization glaucoma and subsequent vision loss. Hypoxia is considered to be one of the key factors to trigger angiogenesis by inducing angiogenic factors (like VEGF) and their receptors mediated by hypoxia inducible factor-1 (HIF-1α) a critical transcriptional factor. Another factor, nuclear factor kappa B (NFκB) also regulates many of the genes required for neovascularization, and can also be activated by hypoxia. The aim of this study was to elucidate the mechanism of interaction between HRPC and HUVEC that modulates a neovascularization response.
Methods
Human retinal progenitor cells (HRPC) and human umbilical vein endothelial cells (HUVEC) were cultured/co-cultured under normoxia (control) (20% O2) or hypoxia (1% O2) condition for 24 hr. Controls were monolayer cultures of each cell type maintained alone. We examined the secretion of VEGF by ELISA and influence of conditioned media on blood vessel growth (capillary-like structures) via an angiogenesis assay. Total RNA and protein were extracted from the HRPC and HUVEC (cultured and co-cultured) and analyzed for the expression of VEGF, VEGFR-2, NFκB and HIF-1α by RT-PCR and Western blotting. The cellular localization of NFκB and HIF-1α were studied by immunofluorescence and Western blotting.
Results
We found that hypoxia increased exogenous VEGF expression 4-fold in HRPC with a further 2-fold increase when cultured with HUVEC. Additionally, we found that hypoxia induced the expression of the VEGF receptor (VEGFR-2) for HRPC co-cultured with HUVEC. Hypoxia treatment significantly enhanced (8- to 10-fold higher than normoxia controls) VEGF secretion into media whether cells were cultured alone or in a co-culture. Also, hypoxia was found to result in a 3- and 2-fold increase in NFκB and HIF-1α mRNA expression by HRPC and a 4- and 6-fold increase in NFκB and HIF-1α protein by co-cultures, whether non-contacting or contacting.
Treatment of HRPC cells with hypoxic HUVEC-CM activated and promoted the translocation of NFκB and HIF-1α to the nuclear compartment. This finding was subsequently confirmed by finding that hypoxic HUVEC-CM resulted in higher expression of NFκB and HIF-1α in the nuclear fraction of HRPC and corresponding decrease in cytoplasmic NFκB and HIF-1α. Lastly, hypoxic conditioned media induced a greater formation of capillary-like structures (angiogenic response) compared to control conditioned media. This effect was attenuated by exogenous anti-human VEGF antibody, suggesting that VEGF was the primary factor in the hypoxic conditioned media responsible for the angiogenic response.
Conclusions
These findings suggest that intercellular communications between HRPC and HUVEC lead to the modulation of expression of transcription factors associated with the production of pro-angiogenic factors under hypoxic conditions, which are necessary for an enhanced neovascular response. Our data suggest that the hypoxia treatment results in the up-regulation of both mRNA and protein expression for VEGF and VEGFR-2 through the translocation of NFκB and HIF-1α into the nucleus, and results in enhanced HRPC-induced neovascularization. Hence, a better understanding of the underlying mechanism for these interactions might open perspectives for future retinal neovascularization therapy.
doi:10.1186/2045-824X-3-27
PMCID: PMC3253041  PMID: 22112782
Neovascularization; Human retinal progenitor cells (HRPC); Human umbilical vein endothelial cells (HUVEC); Hypoxia, Vascular endothelial growth factor; Conditioned medium; Co-culture
21.  The β3-Integrin Binding Protein β3-Endonexin Is a Novel Negative Regulator of Hypoxia-Inducible Factor-1 
Antioxidants & Redox Signaling  2014;20(13):1964-1976.
Abstract
Aims: Integrins are multifunctional heterodimeric adhesion receptors that mediate the attachment between a cell and the extracellular matrix or other surrounding cells. In endothelial cells, integrins can modulate cell migration and motility. In particular, β3-integrin is expressed in angiogenic vessels. Signal transduction by β3-integrins requires the recruitment of intracellular signaling molecules. β3-endonexin is a highly spliced molecule that has been identified as a β3-integrin binding protein. β3-endonexin isoforms are expressed in endothelial cells and have been suggested to act as shuttle proteins between the membrane and the nucleus. However, their functional role in angiogenesis is unclear. In this study, we investigated whether β3-endonexin isoforms are involved in endothelial angiogenic processes under hypoxia. Results: The overexpression of β3-endonexin isoforms decreased endothelial proliferation and tube formation under hypoxia, while the depletion of β3-endonexin by RNAi promoted angiogenic responses in vitro and in vivo. In hypoxia, β3-endonexin accumulated in the nucleus, and prevention of this response by depletion of β3-endonexin increased hypoxic activation and induction of the hypoxia-inducible factor (HIF)-1 and its target genes VEGF and PAI-1. β3-endonexin diminished nuclear factor kappa B (NFκB) activation and decreased NFκB binding to the HIF-1α promoter under hypoxia, subsequently diminishing NFκB-dependent transcription of HIF-1α under hypoxia. Innovation: Our results indicate for the first time that the overexpression of β3-endonexin can decrease hypoxic induction and activation of HIF-1α and can prevent hypoxic endothelial proliferation and angiogenic responses. Conclusion: β3-endonexin can act as a novel anti-angiogenic factor specifically in the response to hypoxia due to its negative impact on the activation of HIF-1. Antioxid. Redox Signal. 20, 1964–1976.
doi:10.1089/ars.2013.5286
PMCID: PMC3993052  PMID: 24386901
22.  Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis 
PLoS ONE  2012;7(3):e33418.
Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.
doi:10.1371/journal.pone.0033418
PMCID: PMC3302812  PMID: 22428047
23.  The autophagic tumor stroma model of cancer or “battery-operated tumor growth” 
Cell Cycle  2010;9(21):4297-4306.
The role of autophagy in tumorigenesis is controversial. Both autophagy inhibitors (chloroquine) and autophagy promoters (rapamycin) block tumorigenesis by unknown mechanism(s). This is called the “Autophagy Paradox.” We have recently reported a simple solution to this paradox. We demonstrated that epithelial cancer cells use oxidative stress to induce autophagy in the tumor microenvironment. As a consequence, the autophagic tumor stroma generates recycled nutrients that can then be used as chemical building blocks by anabolic epithelial cancer cells. This model results in a net energy transfer from the tumor stroma to epithelial cancer cells (an energy imbalance), thereby promoting tumor growth. This net energy transfer is both unilateral and vectorial, from the tumor stroma to the epithelial cancer cells, representing a true host-parasite relationship. We have termed this new paradigm “The Autophagic Tumor Stroma Model of Cancer Cell Metabolism” or “Battery-Operated Tumor Growth.” In this sense, autophagy in the tumor stroma serves as a “battery” to fuel tumor growth, progression and metastasis, independently of angiogenesis. Using this model, the systemic induction of autophagy will prevent epithelial cancer cells from using recycled nutrients, while the systemic inhibiton of autophagy will prevent stromal cells from producing recycled nutrients—both effectively “starving” cancer cells. We discuss the idea that tumor cells could become resistant to the systemic induction of autophagy by the upregulation of natural, endogenous autophagy inhibitors in cancer cells. Alternatively, tumor cells could also become resistant to the systemic induction of autophagy by the genetic silencing/deletion of pro-autophagic molecules, such as Beclin1. If autophagy resistance develops in cancer cells, then the systemic inhibition of autophagy would provide a therapeutic solution to this type of drug resistance, as it would still target autophagy in the tumor stroma. As such, an anti-cancer therapy that combines the alternating use of both autophagy promoters and autophagy inhibitors would be expected to prevent the onset of drug resistance. We also discuss why anti-angiogenic therapy has been found to promote tumor recurrence, progression and metastasis. More specifically, anti-angiogenic therapy would induce autophagy in the tumor stroma via the induction of stromal hypoxia, thereby converting a non-aggressive tumor type to a “lethal” aggressive tumor phenotype. Thus, uncoupling the metabolic parasitic relationship between cancer cells and an autophagic tumor stroma may hold great promise for anti-cancer therapy. Finally, we believe that autophagy in the tumor stroma is the local microscopic counterpart of systemic wasting (cancer-associated cachexia), which is associated with advanced and metastatic cancers. Cachexia in cancer patients is not due to decreased energy intake, but instead involves an increased basal metabolic rate and increased energy expenditures, resulting in a negative energy balance. Importantly, when tumors were surgically excised, this increased metabolic rate returned to normal levels. This view of cachexia, resulting in energy transfer to the tumor, is consistent with our hypothesis. So, cancer-associated cachexia may start locally as stromal autophagy and then spread systemically. As such, stromal autophagy may be the requisite precursor of systemic cancer-associated cachexia.
doi:10.4161/cc.9.21.13817
PMCID: PMC3055183  PMID: 21051947
caveolin-1; autophagy; cancer associated fibroblasts; hypoxia; mitophagy; oxidative stress; DNA damage; genomic instability; tumor stroma; wasting (cancer cachexia); Warburg effect
24.  Identification of pY654-β-catenin as a critical co-factor in hypoxia-inducible factor-1α signaling and tumor responses to hypoxia 
Oncogene  2012;32(42):10.1038/onc.2012.530.
Hypoxia is linked to epithelial mesenchymal transition (EMT) and tumor progression in numerous carcinomas. Responses to hypoxia are thought to operate via hypoxia-inducible factors (HIFs), but the importance of co-factors that regulate HIF signaling within tumors is not well understood. Here we elucidate a signaling pathway that physically and functionally couples tyrosine phosphorylation of β-catenin to hypoxia-inducible factor-1α (HIF1α) signaling and HIF1α-mediated tumor EMT. Primary human lung adenocarcinomas accumulate pY654-β-catenin and HIF1α. All pY654-β-catenin, and only the tyrosine phosphorylated form, was found complexed with HIF1α and active Src, both within human tumors and in lung tumor cell lines exposed to hypoxia. Phosphorylation of Y654, generated by hypoxia mediated, reactive oxygen species (ROS)-dependent Src kinase activation, was required for β-catenin to interact with HIF1α and Src, to promote HIF1α transcriptional activity, and for hypoxia-induced EMT. Mice bearing hypoxic pancreatic islet adenomas, generated by treatment with anti-vascular endothelial growth factor antibodies, accumulate HIF1α/pY654-β-catenin complexes and develop an invasive phenotype. Concurrent administration of the ROS inhibitor N-acetylcysteine abrogated β-catenin/HIF pathway activity and restored adenoma architecture. Collectively, the findings implicate accumulation of pY654-β-catenin specifically complexed to HIF1α and Src kinase as critically involved in HIF1α signaling and tumor invasion. The findings also suggest that targeting ROS-dependent aspects of the pY654-β-catenin/ HIF1α pathway may attenuate untoward biological effects of anti-angiogenic agents and tumor hypoxia.
doi:10.1038/onc.2012.530
PMCID: PMC3871884  PMID: 23246962
hypoxia; signaling; transcription; tumor; epithelial
25.  Angiogenesis Impairment in Diabetes: Role of Methylglyoxal-Induced Receptor for Advanced Glycation Endproducts, Autophagy and Vascular Endothelial Growth Factor Receptor 2 
PLoS ONE  2012;7(10):e46720.
Diabetes impairs physiological angiogenesis by molecular mechanisms that are not fully understood. Methylglyoxal (MGO), a metabolite of glycolysis, is increased in patients with diabetes. This study defined the role of MGO in angiogenesis impairment and tested the mechanism in diabetic animals. Endothelial cells and mouse aortas were subjected to Western blot analysis of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels and angiogenesis evaluation by endothelial cell tube formation/migration and aortic ring assays. Incubation with MGO reduced VEGFR2 protein, but not mRNA, levels in a time and dose dependent manner. Genetic knockdown of the receptor for advanced glycation endproducts (RAGE) attenuated the reduction of VEGFR2. Overexpression of Glyoxalase 1, the enzyme that detoxifies MGO, reduced the MGO-protein adducts and prevented VEGFR2 reduction. The VEGFR2 reduction was associated with impaired angiogenesis. Suppression of autophagy either by inhibitors or siRNA, but not of the proteasome and caspase, normalized both the VEGFR2 protein levels and angiogenesis. Conversely, induction of autophagy either by rapamycin or overexpression of LC3 and Beclin-1 reduced VEGFR2 and angiogenesis. MGO increased endothelial LC3B and Beclin-1, markers of autophagy, which were accompanied by an increase of both autophagic flux (LC3 punctae) and co-immunoprecipitation of VEGFR2 with LC3. Pharmacological or genetic suppression of peroxynitrite (ONOO−) generation not only blocked the autophagy but also reversed the reduction of VEGFR2 and angiogenesis. Like MGO-treated aortas from normglycemic C57BL/6J mice, aortas from diabetic db/db and Akita mice presented reductions of angiogenesis or VEGFR2. Administration of either autophagy inhibitor ex vivo or superoxide scavenger in vivo abolished the reductions. Taken together, MGO reduces endothelial angiogenesis through RAGE-mediated, ONOO–dependent and autophagy-induced VEGFR2 degradation, which may represent a new mechanism for diabetic angiogenesis impairment.
doi:10.1371/journal.pone.0046720
PMCID: PMC3463541  PMID: 23056421

Results 1-25 (1200766)