PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1287197)

Clipboard (0)
None

Related Articles

1.  Serovar Diversity of Pathogenic Leptospira Circulating in the French West Indies 
Background
Leptospirosis is one of the most important neglected tropical bacterial diseases in Latin America and the Caribbean. However, very little is known about the circulating etiological agents of leptospirosis in this region. In this study, we describe the serological and molecular features of leptospires isolated from 104 leptospirosis patients in Guadeloupe (n = 85) and Martinique (n = 19) and six rats captured in Guadeloupe, between 2004 and 2012.
Methods and Findings
Strains were studied by serogrouping, PFGE, MLVA, and sequencing 16SrRNA and secY. DNA extracts from blood samples collected from 36 patients in Martinique were also used for molecular typing of leptospires via PCR. Phylogenetic analyses revealed thirteen different genotypes clustered into five main clades that corresponded to the species: L. interrogans, L. kirschneri, L. borgpetersenii, L. noguchi, and L. santarosai. We also identified L. kmetyi in at least two patients with acute leptospirosis. This is the first time, to our knowledge, that this species has been identified in humans. The most prevalent genotypes were associated with L. interrogans serovars Icterohaemorrhagiae and Copenhageni, L. kirschneri serovar Bogvere, and L. borgpetersenii serovar Arborea. We were unable to identify nine strains at the serovar level and comparison of genotyping results to the MLST database revealed new secY alleles.
Conclusions
The overall serovar distribution in the French West Indies was unique compared to the neighboring islands. Typing of leptospiral isolates also suggested the existence of previously undescribed serovars.
Author Summary
Leptospirosis is an emerging zoonotic disease caused by infection with pathogenic strains of Leptospira. Isolation of Leptospira strains is rare, making it difficult to assess their distribution worldwide. In this study, we characterized cultures of Leptospira obtained from more than one hundred leptospirosis patients from the French West Indies by serology and various molecular typing methods to identify the strains circulating in this endemic region. Typing of leptospiral isolates showed that causative agents of leptospirosis in the French West Indies are mainly from the serogroups Icterohaemorrhagiae and Ballum, but we also identified new genotypes. We also found that the distribution of the predominant pathogenic leptospiral serovars differed between the Caribbean islands. A better understanding of the epidemiology of leptospirosis will improve our knowledge in the distribution of this emerging neglected tropical disease worldwide. The identification of the circulating etiological agents of leptospirosis in the French West Indies will also help establish appropriate control and prevention measures in this area where the disease is endemic.
doi:10.1371/journal.pntd.0002114
PMCID: PMC3597474  PMID: 23516654
2.  Highly Virulent Leptospira borgpetersenii Strain Characterized in the Hamster Model 
A recent study by our group reported the isolation and partial serological and molecular characterization of four Leptospira borgpetersenii serogroup Ballum strains. Here, we reproduced experimental leptospirosis in golden Syrian hamsters (Mesocricetus auratus) and carried out standardization of lethal dose 50% (LD50) of one of these strains (4E). Clinical disease features and histopathologic analyses of tissue lesions were also observed. As results, strain 4E induced lethality in the hamster model with inocula lower than 10 leptospires, and histopathological examination of animals showed typical lesions found in severe leptospirosis. Gross pathological findings were peculiar; animals that died early had more chance of presenting severe jaundice and less chance of presenting pulmonary hemorrhages (P < 0.01). L. borgpetersenii serogroup Ballum has had a considerable growth in human leptospirosis cases in recent years. This strain has now been thoroughly characterized and can be used in more studies, especially evaluations of vaccine candidates.
doi:10.4269/ajtmh.2011.11-0013
PMCID: PMC3144824  PMID: 21813846
3.  Isolation and Characterization of New Leptospira Genotypes from Patients in Mayotte (Indian Ocean) 
Background
Leptospirosis has been implicated as a severe and fatal form of disease in Mayotte, a French-administrated territory located in the Comoros archipelago (southwestern Indian Ocean). To date, Leptospira isolates have never been isolated in this endemic region.
Methods and Findings
Leptospires were isolated from blood samples from 22 patients with febrile illness during a 17-month period after a PCR-based screening test was positive. Strains were typed using hyper-immune antisera raised against the major Leptospira serogroups: 20 of 22 clinical isolates were assigned to serogroup Mini; the other two strains belonged to serogroups Grippotyphosa and Pyrogenes, respectively. These isolates were further characterized using partial sequencing of 16S rRNA and ligB gene, Multi Locus VNTR Analysis (MLVA), and pulsed field gel electrophoresis (PFGE). Of the 22 isolates, 14 were L. borgpetersenii strains, 7 L. kirschneri strains, and 1, belonging to serogoup Pyrogenes, was L. interrogans. Results of the genotyping methods were consistent. MLVA defined five genotypes, whereas PFGE allowed the recognition of additional subgroups within the genotypes. PFGE fingerprint patterns of clinical strains did not match any of the patterns in the reference strains belonging to the same serogroup, suggesting that the strains were novel serovars.
Conclusions
Preliminary PCR screening of blood specimen allowed a high isolation frequency of leptospires among patients with febrile illness. Typing of leptospiral isolates showed that causative agents of leptospirosis in Mayotte have unique molecular features.
Author Summary
Leptospirosis has been recognized as an increasing public health problem affecting poor people from developing countries and tropical regions. However, the epidemiology of leptospirosis remains poorly understood in remote parts of the world. In this study of patients from the island of Mayotte, we isolated 22 strains from the blood of patients during the acute phase of illness. The pathogenic Leptospira strains were characterized by serology and various molecular typing methods. Based on serological data, serogroup Mini appears to be the dominant cause of leptospirosis in Mayotte. Further molecular characterization of these isolates allowed the identification of 10 pathogenic Leptospira genotypes that could correspond to previously unknown serovars. Further progress in our understanding of the epidemiology of Leptospira circulating genotypes in highly endemic regions should contribute to the development of novel strategies for the diagnosis and prevention of this neglected emerging disease.
doi:10.1371/journal.pntd.0000724
PMCID: PMC2889827  PMID: 20582311
4.  Determining Risk for Severe Leptospirosis by Molecular Analysis of Environmental Surface Waters for Pathogenic Leptospira 
PLoS Medicine  2006;3(8):e308.
Background
Although previous data indicate that the overall incidence of human leptospirosis in the Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only in the urban context. As a potential explanation for this epidemiological observation, we tested the hypothesis that concentrations of more virulent Leptospira would be higher in urban than in rural environmental surface waters.
Methods and Findings
A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used to identify Leptospira to the species level. Pathogenic Leptospira species were found only in urban slum water sources (Fisher's exact test; p = 0.013). The concentration of pathogen-related Leptospira was higher in urban than rural water sources (~103 leptospires/ml versus 0.5 × 102 leptospires/ml; F = 8.406, p < 0.05). Identical 16S rRNA gene sequences from Leptospira interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water and in human isolates, suggesting a specific mode of transmission from rats to humans. In a prospective, population-based study of patients presenting with acute febrile illness, isolation of L. interrogans-related leptospires from humans was significantly associated with urban acquisition (75% of urban isolates); human isolates of other leptospiral species were associated with rural acquisition (78% of rural isolates) (chi-square analysis; p < 0.01). This distribution of human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene sequences in urban and rural water sources.
Conclusions
Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more pathogenic leptospires at sites of exposure and transmission. This combined quantitative and molecular taxonomical risk assessment of environmental surface waters is globally applicable for assessing risk for leptospiral infection and severe disease in leptospirosis-endemic regions.
Vinetz and colleagues used a quantitative real time PCR assay combined with molecular taxonomic analysis to quantify Leptospira in environmental surface waters in the Peruvian Amazon region of Iquitos.
Editors' Summary
Background.
Humans catch many diseases from animals—so-called zoonotic infections. Often, these occur in limited regions of the world. However, one—leptospirosis—occurs in temperate and tropical climates, and in urban and rural settings, making it the most widespread zoonotic disease. Leptospirosis is caused by Leptospira, a large group of closely related spiral-shaped bacteria that live in both domestic animals (for example, cattle) and wild animals (particularly rats). Millions of humans become infected each year with leptospires through close contact with water, food, or soil contaminated with the urine of infected animals—swimming or wading in contaminated water is particularly hazardous. Some infected people have no symptoms; others develop a flu-like disease that clears up within a few days. However, in 5%–10% of infected people, the disease progresses to a second, sometimes fatal phase. This is usually characterized by jaundice, kidney problems, and an enlarged spleen (it's then called Weil disease) but can also involve the lungs (pulmonary leptospirosis). Leptospirosis can be successfully treated with antibiotics if treatment is started soon after infection.
Why Was This Study Done?
In a recent study in the Peruvian Amazon, half of the people visiting urban hospitals and rural health posts with acute fever had antibodies in their blood to Leptospira, suggesting that they had acute leptospirosis. However, only patients living in urban areas developed pulmonary leptospirosis. In this study, the researchers tested the hypothesis that this pattern arose because more virulent types of Leptospira were present at higher levels in urban environmental surface water than in rural water sources.
What Did the Researchers Do and Find?
Between June 2003 and March 2004, the researchers isolated strains of Leptospira from patients with acute fever who visited a hospital in the town of Iquitos or clinics in nearby villages. Early in 2004, they also collected a large number of different water samples from an urban slum in Iquitos and from a nearby rural community. They measured the concentrations of Leptospira in these samples by using a molecular technique called real-time PCR (polymerase chain reaction) to detect and quantify a type of RNA found only in disease-causing Leptospira. They also identified which specific Leptospira were present in the water samples and the patient samples by sequencing this RNA. The researchers found that leptospires were present in both urban and rural water samples (particularly in samples from gutters and puddles in the urban slum's market area) but that their concentration in the positive water samples from the urban sites was 20 times that in the positive samples from the rural sites. Furthermore, the distribution of different Leptospira types isolated from the patients mirrored that of the bacteria in the local environment. So, one particular type of Leptospira interrogans known as icterohaemorrhagiae—the leptospire most commonly associated with severe leptospirosis in the patients—was found more often in the urban water samples than in the rural ones. Finally, the researchers discovered a new group of Leptospira in the rural environment. This group may contain one or several new species of Leptospira but whether any of them causes human disease is unknown.
What Do These Findings Mean?
These results support the researchers' hypothesis that pulmonary leptospirosis in urban areas of the Peruvian Amazon is associated with high environmental levels of specific disease-causing leptospires. The researchers were able to discover this link only by using molecular techniques—this sort of study is impossible with traditional bacteriological techniques because Leptospira are hard to grow in the laboratory and cannot be isolated efficiently from environmental water sources. Different types can't be identified using a microscope. The researchers' findings need to be validated in other settings, but they suggest that environmental interventions such as reducing sources of standing water and clearing away garbage in urban areas might reduce the number of cases of severe leptospirosis. The distribution of different Leptospira types also suggests that whereas rats may be the main disease reservoir in towns, cattle, pigs, and bats may be more important in rural settings in Peru and presumably elsewhere. Overall, this new information, together with the availability of molecular methods for rapid clinical diagnosis and environmental risk assessment, should aid attempts to control leptospirosis around the world.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030308.
US Centers for Disease Control and Prevention, information for patients and professionals on leptospirosis
The Leptospirosis Information Center, information and advice on human leptospirosis for the public and medical professionals
MedlinePlus encyclopedia entry on leptospirosis
NHS Direct Online, patient information on leptospirosis from the UK National Health Service online encyclopedia
Wikipedia pages on leptospirosis (note: Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030308
PMCID: PMC1551915  PMID: 16933963
5.  Epidemiology of Leptospira Transmitted by Rodents in Southeast Asia 
Background
Leptospirosis is the most common bacterial zoonoses and has been identified as an important emerging global public health problem in Southeast Asia. Rodents are important reservoirs for human leptospirosis, but epidemiological data is lacking.
Methodology/Principal Findings
We sampled rodents living in different habitats from seven localities distributed across Southeast Asia (Thailand, Lao PDR and Cambodia), between 2009 to 2010. Human isolates were also obtained from localities close to where rodents were sampled. The prevalence of Leptospira infection was assessed by real-time PCR using DNA extracted from rodent kidneys, targeting the lipL32 gene. Sequencing rrs and secY genes, and Multi Locus Variable-number Tandem Repeat (VNTR) analyses were performed on DNA extracted from rat kidneys for Leptospira isolates molecular typing. Four species were detected in rodents, L. borgpetersenii (56% of positive samples), L. interrogans (36%), L. kirschneri (3%) and L. weilli (2%), which were identical to human isolates. Mean prevalence in rodents was approximately 7%, and largely varied across localities and habitats, but not between rodent species. The two most abundant Leptospira species displayed different habitat requirements: L. interrogans was linked to humid habitats (rice fields and forests) while L. borgpetersenii was abundant in both humid and dry habitats (non-floodable lands).
Conclusion/Significance
L. interrogans and L. borgpetersenii species are widely distributed amongst rodent populations, and strain typing confirmed rodents as reservoirs for human leptospirosis. Differences in habitat requirements for L. interrogans and L. borgpetersenii supported differential transmission modes. In Southeast Asia, human infection risk is not only restricted to activities taking place in wetlands and rice fields as is commonly accepted, but should also include tasks such as forestry work, as well as the hunting and preparation of rodents for consumption, which deserve more attention in future epidemiological studies.
Author Summary
Leptospirosis is the most prevalent bacterial zoonosis worldwide. Rodents are believed to be the main reservoirs of Leptospira, yet little epidemiological research has been conducted on rodents from Southeast Asia. Previous studies suggest that activities which place humans in microenvironments shared by rodents increase the probability of contracting leptospirosis. We therefore investigated the circulation of leptospiral species and strains in rodent communities and human populations in seven localities scattered throughout Southeast Asia; in Thailand, Lao PDR and Cambodia. Molecular typing assays were used to characterize leptospiral species and strains in both rodents and humans, which demonstrated common strains between humans and rodents. Additionally, we observed that the two most abundant leptospiral species; L. borgpetersenii and L. interrogans, have different habitat requirements, which supposes different modes of transmission. Lastly, in Southeast Asia, the risk of leptospiral transmission to humans is not solely limited to wetlands and rice paddy fields, but is also linked to forested areas, and activities such as the hunting and/or preparation of rodents for consumption.
doi:10.1371/journal.pntd.0002902
PMCID: PMC4046967  PMID: 24901706
6.  Pulsed-field gel electrophoresis of NotI digests of leptospiral DNA: a new rapid method of serovar identification. 
Journal of Clinical Microbiology  1992;30(7):1696-1702.
Fingerprints for 72 reference serovar strains of pathogenic Leptospira spp. were obtained by pulsed-field gel electrophoresis (PFGE) following NotI restriction digests of the chromosome. These strains included the serovar reference strains of serogroups Australis, Ballum, Bataviae, Grippotyphosa, Panama, Pomona, and Pyrogenes. Sixty-four serovars could be identified by a unique NotI restriction profile. The remaining serovars were differentiated by chromosomal digestion with SgrAI. These included four serovars from serogroup Australis, two serovars from serogroup Ballum, and two serovars from serogroup Bataviae. Thirteen of 18 recent clinical isolates identified by microagglutination test and cross-adsorption procedure were correctly typed by PFGE. The results indicate that PFGE, which is considerably more rapid than serology, should be useful for identification and epidemiological studies.
Images
PMCID: PMC265366  PMID: 1629323
7.  Application of Multilocus Variable-Number Tandem-Repeat Analysis for Molecular Typing of the Agent of Leptospirosis 
Journal of Clinical Microbiology  2006;44(11):3954-3962.
Leptospirosis is a worldwide-distributed zoonosis, endemic in tropical areas. Epidemiologic investigations of leptospirosis still rely on tedious serological identification tests. Recently, molecular typing systems based on variable-number tandem-repeat (VNTR) analysis have been described and have been used to identify Leptospira interrogans strains. Although L. interrogans is the most common Leptospira species encountered in human infections around the world, other pathogenic species, such as Leptospira kirschneri and Leptospira borgpetersenii, are also frequently associated with human leptospirosis. In this study, we aimed to extend multilocus VNTR analysis (MLVA) identification of strains to species other than L. interrogans. We designed primers for VNTR loci found in L. interrogans, L. kirschneri, and L. borgpetersenii. The discriminatory power of the redefined primers was evaluated on collection strains and then on clinical strains. We also carried out a retrospective study on 156 strains isolated from patients and animals from New Caledonia, an area of high endemicity in the South Pacific. Our results show that this simple PCR-based MLVA typing technique is a powerful methodology for the epidemiology of leptospirosis.
doi:10.1128/JCM.00336-06
PMCID: PMC1698352  PMID: 17088367
8.  Human Leptospirosis Caused by a New, Antigenically Unique Leptospira Associated with a Rattus Species Reservoir in the Peruvian Amazon 
As part of a prospective study of leptospirosis and biodiversity of Leptospira in the Peruvian Amazon, a new Leptospira species was isolated from humans with acute febrile illness. Field trapping identified this leptospire in peridomestic rats (Rattus norvegicus, six isolates; R. rattus, two isolates) obtained in urban, peri-urban, and rural areas of the Iquitos region. Novelty of this species was proven by serological typing, 16S ribosomal RNA gene sequencing, pulsed-field gel electrophoresis, and DNA-DNA hybridization analysis. We have named this species “Leptospira licerasiae” serovar Varillal, and have determined that it is phylogenetically related to, but genetically distinct from, other intermediate Leptospira such as L. fainei and L. inadai. The type strain is serovar Varillal strain VAR 010T, which has been deposited into internationally accessible culture collections. By microscopic agglutination test, “Leptospira licerasiae” serovar Varillal was antigenically distinct from all known serogroups of Leptospira except for low level cross-reaction with rabbit anti–L. fainei serovar Hurstbridge at a titer of 1∶100. LipL32, although not detectable by PCR, was detectable in “Leptospira licerasiae” serovar Varillal by both Southern blot hybridization and Western immunoblot, although on immunoblot, the predicted protein was significantly smaller (27 kDa) than that of L. interrogans and L. kirschneri (32 kDa). Isolation was rare from humans (2/45 Leptospira isolates from 881 febrile patients sampled), but high titers of MAT antibodies against “Leptospira licerasiae” serovar Varillal were common (30%) among patients fulfilling serological criteria for acute leptospirosis in the Iquitos region, and uncommon (7%) elsewhere in Peru. This new leptospiral species reflects Amazonian biodiversity and has evolved to become an important cause of leptospirosis in the Peruvian Amazon.
Author Summary
Leptospirosis has emerged as a globally important infectious disease. Its impact on public health is often difficult to determine, sometimes because of low clinical suspicion, or, as is more common, difficulty in laboratory diagnosis. Gold-standard serology-based diagnosis has a number of important limitations, including the need to use live leptospires that have a sufficient diversity of antigens to be able to detect specific anti-leptospiral antibodies; such antigens vary greatly from region to region. In this paper, we report the discovery of a new species of Leptospira in the highly biodiverse region of the Peruvian Amazon, and demonstrate that the animal source of infection for humans is the domestic rat. Detailed biological characterization of this new species shows that it is antigenically unique and represents a new serogroup and serovar, proposed as Leptospira licerasiae serogroup Iquitos serovar Varillal. Incorporation of this new isolate into serological testing of patients presenting with acute febrile illness in Iquitos, Peru, showed a far higher incidence of leptospirosis than previously suspected, showing the important of using region-specific Leptospira in diagnosis. The field-to-laboratory approach presented here has general application to the discovery of other emerging pathogens and their impact on human health.
doi:10.1371/journal.pntd.0000213
PMCID: PMC2271056  PMID: 18382606
9.  Human Leptospira Isolates Circulating in Mayotte (Indian Ocean) Have Unique Serological and Molecular Features 
Journal of Clinical Microbiology  2012;50(2):307-311.
Leptospirosis is one of the most widespread zoonoses in the world. However, there is a lack of information on circulating Leptospira strains in remote parts of the world. We describe the serological and molecular features of leptospires isolated from 94 leptospirosis patients in Mayotte, a French department located in the Comoros archipelago, between 2007 and 2010. Multilocus sequence typing identified these isolates as Leptospira interrogans, L. kirschneri, L. borgpetersenii, and members of a previously undefined phylogenetic group. This group, consisting of 15 strains, could represent a novel species. Serological typing revealed that 70% of the isolates belonged to the serogroup complex Mini/Sejroe/Hebdomadis, followed by the serogroups Pyrogenes, Grippotyphosa, and Pomona. However, unambiguous typing at the serovar level was not possible for most of the strains because the isolate could belong to more than one serovar or because serovar and species did not match the original classification. Our results indicate that the serovar and genotype distribution in Mayotte differs from what is observed in other regions, thus suggesting a high degree of diversity of circulating isolates worldwide. These results are essential for the improvement of current diagnostic tools and provide a starting point for a better understanding of the epidemiology of leptospirosis in this area of endemicity.
doi:10.1128/JCM.05931-11
PMCID: PMC3264139  PMID: 22162544
10.  Leptospira species and serovars identified by MALDI-TOF mass spectrometry after database implementation 
BMC Research Notes  2014;7:330.
Background
Leptospirosis, a spirochaetal zoonotic disease of worldwide distribution, endemic in Europe, has been recognized as an important emerging infectious disease, though yet it is mostly a neglected disease which imparts its greatest burden on impoverished populations from developing countries. Leptospirosis is caused by the infection with any of the more than 230 serovars of pathogenic Leptospira sp. In this study we aimed to implement the MALDI-TOF mass spectrometry (MS) database currently available in our laboratory with Leptospira reference pathogenic (L. interrogans, L. borgpetersenii, L. kirschneri, L. noguchii), intermediate (L. fainei) and saprophytic (L. biflexa) strains of our collection in order to evaluate its possible application to the diagnosis of leptospirosis and to the typing of strains. This was done with the goal of understanding whether this methodology could be used as a tool for the identification of Leptospira strains, not only at species level for diagnostic purposes, but also at serovar level for epidemiological purposes, overcoming the limits of serological and molecular conventional methods. Twenty Leptospira reference strains were analysed by MALDI-TOF MS. Statistical analysis of the protein spectra was performed by ClinProTools software.
Results
The spectra obtained by the analysis of the reference strains tested were grouped into 6 main classes corresponding to the species analysed, highlighting species-specific protein profiles. Moreover, the statistical analysis of the spectra identified discriminatory peaks to recognize Leptospira strains also at serovar level extending previously published data.
Conclusions
In conclusion, we confirmed that MALDI-TOF MS could be a powerful tool for research and diagnostic in the field of leptospirosis with broad applications ranging from the detection and identification of pathogenic leptospires for diagnostic purposes to the typing of pathogenic and non-pathogenic leptospires for epidemiological purposes in order to enrich our knowledge about the epidemiology of the infection in different areas and generate control strategies.
doi:10.1186/1756-0500-7-330
PMCID: PMC4048046  PMID: 24890024
Leptospira sp.; MALDI-TOF MS; Identification; Database implementation
11.  Though not Reservoirs, Dogs might Transmit Leptospira in New Caledonia 
Leptospira has been a major public health concern in New Caledonia for decades. However, few multidisciplinary studies addressing the zoonotic pattern of this disease were conducted so far. Here, pig, deer and dog samples were collected. Analyses were performed using molecular detection and genotyping. Serological analyses were also performed for dogs. Our results suggest that deer are a reservoir of L. borgpetersenii Hardjobovis and pigs a reservoir of L. interrogans Pomona. Interestingly, 4.4% of dogs were renal carriers of Leptospira. In dog populations, MAT results confirmed the circulation of the same Leptospira serogroups involved in human cases. Even if not reservoirs, dogs might be of significance in human contamination by making an epidemiological link between wild or feral reservoirs and humans. Dogs could bring pathogens back home, shedding Leptospira via their urine and in turn increasing the risk of human contamination. We propose to consider dog as a vector, particularly in rural areas where seroprevalence is significantly higher than urban areas. Our results highlight the importance of animal health in improving leptospirosis prevention in a One Health approach.
doi:10.3390/ijerph110404316
PMCID: PMC4025015  PMID: 24747539
Leptospira; epidemiology; mammal; dog; reservoir; vector
12.  First Isolation and Direct Evidence for the Existence of Large Small-Mammal Reservoirs of Leptospira sp. in Madagascar 
PLoS ONE  2010;5(11):e14111.
Background
Leptospirosis has long been a major public health concern in the southwestern Indian Ocean. However, in Madagascar, only a few, old studies have provided indirect serological evidence of the disease in humans or animals.
Methodology/Principal Findings
We conducted a large animal study focusing on small-mammal populations. Five field trapping surveys were carried out at five sites, from April 2008 to August 2009. Captures consisted of Rattus norvegicus (35.8%), R. rattus (35.1%), Mus musculus (20.5%) and Suncus murinus (8.6%). We used microbiological culture, serodiagnosis tests (MAT) and real-time PCR to assess Leptospira infection. Leptospira carriage was detected by PCR in 91 (33.9%) of the 268 small mammals, by MAT in 17 of the 151 (11.3%) animals for which serum samples were available and by culture in 9 of the 268 animals (3.3%). Rates of infection based on positive PCR results were significantly higher in Moramanga (54%), Toliara (48%) and Mahajanga (47.4%) than in Antsiranana (8.5%) and Toamasina (14%) (p = 0.001). The prevalence of Leptospira carriage was significantly higher in R. norvegicus (48.9%), S. murinus (43.5%) and R. rattus (30.8%) than in M. musculus (9.1%) (p<0.001). The MAT detected antibodies against the serogroups Canicola and Icterohaemorrhagiae. Isolates were characterized by serology, secY sequence-based phylogeny, partial sequencing of rrs, multi-locus VNTR analysis and pulsed field gel electrophoresis. The 10 isolates obtained from nine rats were all identified as species L. interrogans serogroup Canicola serovar Kuwait and all had identical partial rrs and secY sequences.
Conclusions/Significance
We present here the first direct evidence of widespread leptospiral carriage in small mammals in Madagascar. Our results strongly suggest a high level of environmental contamination, consistent with probable transmission of the infection to humans. This first isolation of pathogenic Leptospira strains in this country may significantly improve the detection of specific antibodies in human cases.
doi:10.1371/journal.pone.0014111
PMCID: PMC2991340  PMID: 21124843
13.  Ecological aspects of the epidemiology of infection with leptospires of the Ballum serogroup in the black rat (Rattus rattus) and the brown rat (Rattus norvegicus) in New Zealand. 
The Journal of Hygiene  1981;87(3):427-436.
Epidemiological aspects of infection with leptospires of the Ballum serogroup in black rats (Rattus rattus) and brown rats (Rattus norvegicus) are described. Rats inhabiting a variety of habitats were investigated and isolates identifed as belonging to the Ballum serogroup were obtained from 21 of 61 black rats (34%) and 63 of 243 brown rats (26%). The high level of endemic ballum serogroup infection in these species reported here has not been described in other countries. A statistical relationship was shown between the prevalence of infection in brown rat populations and population density but this was not evident for black rats. Epidemiological data indicates that the black rat is a maintenance host for leptospires of the Ballum serogroup in New Zealand. The brown rat does not appear to be an efficient maintenance host for these leptospires, however endemic infection can be maintained in high-density populations inhabiting synanthropic foci. An hypothesis of 'competitive exclusion' (preferential maintenance of a particular serovar by a host species) is introduced with regard to leptospiral infection in brown rats. It is concluded that the establishment and maintenance of an endemic focus of leptospirosis is dependant on: introduction of a particular serovar; a suitable host; and a suitable host habitat. Within a maintenance population direct transmission appears to be more important than indirect transmission via the environment.
PMCID: PMC2134120  PMID: 7310125
14.  Characterization of a virulent Leptospira interrogans strain isolated from an abandoned swimming pool 
Brazilian Journal of Microbiology  2013;44(1):165-170.
Pathogenic Leptospira spp. are the etiological agents of leptospirosis, an important disease of both humans and animals. In urban settings, L. interrogans serovars are the predominant cause of disease in humans. The purpose of this study was to characterize a novel Leptospira isolate recovered from an abandoned swimming pool. Molecular characterization through sequencing of the rpoB gene revealed 100% identity with L. interrogans and variable-number tandem-repeat (VNTR) analysis resulted in a banding pattern identical to L. interrogans serogroup Icterohaemorrhagiae, serovar Copenhageni or Icterohaemorrhagiae. The virulence of the strain was determined in a hamster model of lethal leptospirosis. The lethal dose 50% (LD50) was calculated to be two leptospires in female hamsters and a histopathological examination of infected animals found typical lesions associated with severe leptospirosis, including renal epithelium degeneration, hepatic karyomegaly, liver-plate disarray and lymphocyte infiltration. This highly virulent strain is now available for use in further studies, especially evaluation of vaccine candidates.
doi:10.1590/S1517-83822013005000029
PMCID: PMC3804194  PMID: 24159300
Leptospira; Leptospirosis; Virulent; VNTR; rpoB
15.  Leptospiral Pathogenomics 
Pathogens  2014;3(2):280-308.
Leptospirosis, caused by pathogenic spirochetes belonging to the genus Leptospira, is a zoonosis with important impacts on human and animal health worldwide. Research on the mechanisms of Leptospira pathogenesis has been hindered due to slow growth of infectious strains, poor transformability, and a paucity of genetic tools. As a result of second generation sequencing technologies, there has been an acceleration of leptospiral genome sequencing efforts in the past decade, which has enabled a concomitant increase in functional genomics analyses of Leptospira pathogenesis. A pathogenomics approach, by coupling of pan-genomic analysis of multiple isolates with sequencing of experimentally attenuated highly pathogenic Leptospira, has resulted in the functional inference of virulence factors. The global Leptospira Genome Project supported by the U.S. National Institute of Allergy and Infectious Diseases to which key scientific contributions have been made from the international leptospirosis research community has provided a new roadmap for comprehensive studies of Leptospira and leptospirosis well into the future. This review describes functional genomics approaches to apply the data generated by the Leptospira Genome Project towards deepening our knowledge of virulence factors of Leptospira using the emerging discipline of pathogenomics.
doi:10.3390/pathogens3020280
PMCID: PMC4243447  PMID: 25437801
Leptospira; pathogenomics; virulence; genomics; evolution; taxonomy; molecular epidemiology; systems biology
16.  A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species 
Background
The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species.
Methodology and Findings
We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated.
Conclusion
The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis.
Author Summary
Leptospirosis is a common zoonotic disease worldwide. Genotyping of the causative organisms provides important insights into disease transmission and informs preventive strategies and vaccine development. Multilocus sequence typing (MLST) is the most widespread genotyping methodology for bacterial pathogens, but the Leptospira scheme supported by a public MLST database is currently only applicable to L. interrogans and L. kirschneri. The purpose of this study was to extend the scheme to a total of seven pathogenic Leptospira species. This was achieved through the development of a modified scheme in which one of the seven MLST loci was replaced, together with newly designed primers for the remaining 6 loci. Comparison of the original and modified scheme demonstrated that they were very similar, hence sequence type (ST) assignments were largely carried over to the modified scheme. Phylogenetic trees reconstructed from concatenated sequences of the seven loci of the modified scheme demonstrated perfect classification of isolates into seven pathogenic species, which resided in clearly distinct phylogenetic clusters. Congruence was low between STs and serovars. The MLST scheme was used to gain new insights into the population genetic structure of Leptospira species associated with clinical disease and maintenance hosts in Asia.
doi:10.1371/journal.pntd.0001954
PMCID: PMC3554523  PMID: 23359622
17.  Similarities in Leptospira Serogroup and Species Distribution in Animals and Humans in the Indian Ocean Island of Mayotte 
Our objective was to identify local animal reservoirs of leptospirosis to explain the unusual features of Leptospira strains recently described among patients on the island of Mayotte. By means of a microscopic agglutination test using local clinical isolates, we found that 11.2% of black rats were seropositive to Leptospira, whereas 10.2% of flying foxes, 2% of lemurs, 93.1% of domestic dogs, and 87.5% of stray dogs were seropositive. As observed in humans, Mini was the main serogroup circulating in animals, whereas serogroup Icterohaemorrhagiae was absent. Using quantitative polymerase chain reaction, we also showed that 29.8% of rats carried leptospires in their kidneys. The sequencing of 16S rRNA gene sequences of Leptospira found in black rat kidneys identified four genomospecies (Leptospira borgpetersenii, Leptospira interrogans, Leptospira kirschneri, and L. borgpetersenii group B), which established black rats as the major source of leptospirosis transmission to humans. The origins of such a genetic diversity in Leptospira strains are discussed.
doi:10.4269/ajtmh.2012.12-0012
PMCID: PMC3391038  PMID: 22764304
18.  Rapid identification of pathogenic Leptospira species (Leptospira interrogans, L. borgpetersenii, and L. kirschneri) with species-specific DNA probes produced by arbitrarily primed PCR. 
Journal of Clinical Microbiology  1997;35(1):248-253.
Arbitrarily primed PCR (AP-PCR) assays can be used to discriminate between species of Leptospira. Comparative analysis of the fingerprints obtained from representative sets of serovar reference strains of Leptospira interrogans sensu stricto, L. borgpetersenii, and L. kirschneri and the reference strains of the other Leptospira spp. revealed species-specific DNA fragments. These species-specific sequences were reamplified in order to produce digoxigenin-11-dUTP-labeled genomic DNA probes that could be used to identify Leptospira species. Three probes (specific for L. interrogans sensu stricto, L. borgpetersenii, and L. kirschneri) were selected and tested with 72 representative serovar reference strains, all of which had previously been studied by DNA-DNA hybridization. The two techniques were in general agreement, and hybridization with AP-PCR-derived probes was shown to be a useful approach for rapid species determination of leptospires, without the prior need for DNA sequence information. These nonradioactive probes can be used to identify Leptospira species in nonspecialized laboratories, and this should contribute to a better knowledge of the molecular epidemiology of leptospirosis.
PMCID: PMC229548  PMID: 8968917
19.  The OmpL37 Surface-Exposed Protein Is Expressed by Pathogenic Leptospira during Infection and Binds Skin and Vascular Elastin 
Pathogenic Leptospira spp. shed in the urine of reservoir hosts into freshwater can be transmitted to a susceptible host through skin abrasions or mucous membranes causing leptospirosis. The infection process involves the ability of leptospires to adhere to cell surface and extracellular matrix components, a crucial step for dissemination and colonization of host tissues. Therefore, the elucidation of novel mediators of host-pathogen interaction is important in the discovery of virulence factors involved in the pathogenesis of leptospirosis. In this study, we assess the functional roles of transmembrane outer membrane proteins OmpL36 (LIC13166), OmpL37 (LIC12263), and OmpL47 (LIC13050), which we recently identified on the leptospiral surface. We determine the capacity of these proteins to bind to host tissue components by enzyme-linked immunosorbent assay. OmpL37 binds elastin preferentially, exhibiting dose-dependent, saturating binding to human skin (Kd, 104±19 nM) and aortic elastin (Kd, 152±27 nM). It also binds fibrinogen (Kd, 244±15 nM), fibrinogen fragment D (Kd, 132±30 nM), plasma fibronectin (Kd, 359±68 nM), and murine laminin (Kd, 410±81 nM). The binding to human skin elastin by both recombinant OmpL37 and live Leptospira interrogans is specifically enhanced by rabbit antiserum for OmpL37, suggesting the involvement of OmpL37 in leptospiral binding to elastin and also the possibility that host-generated antibodies may promote rather than inhibit the adherence of leptospires to elastin-rich tissues. Further, we demonstrate that OmpL37 is recognized by acute and convalescent leptospirosis patient sera and also by Leptospira-infected hamster sera. Finally, OmpL37 protein is detected in pathogenic Leptospira serovars and not in saprophytic Leptospira. Thus, OmpL37 is a novel elastin-binding protein of pathogenic Leptospira that may be promoting attachment of Leptospira to host tissues.
Author Summary
Leptospirosis is a potentially fatal disease in humans and livestock caused by Leptospira bacteria. Effective antibiotic treatment depends on timely, accurate diagnosis. However, current diagnostic and vaccine options are limited by their specificity for the lipid-sugar coat of leptospires, which varies among 200 serum-reactive groups. We aim to understand how leptospires infect a host, and in turn, to develop broadly effective diagnostic and immunization products. We recently described OmpL37, a new protein on the surface of leptospires. Here, we show it is made by pathogenic strains, suggesting it can be a target for detecting and protecting against a wide range of Leptospira. Moreover, leptospirosis patients and hamsters infected with leptospires make antibodies against OmpL37. Purified OmpL37 binds host proteins, including human elastin, fibrinogen, fibronectin, and mouse laminin. Although other leptospiral proteins bind multiple host proteins, OmpL37 has novel preferential affinity for skin and aorta elastin, suggesting a role in a common route of transmission through abraded skin and exposed blood vessels. Indeed, OmpL37 binding and leptospiral attachment to elastin are both enhanced by OmpL37 antiserum, further implicating a possible role for OmpL37 during infection. Thus, OmpL37 may mediate host attachment and has potential clinical application with a broad range of Leptospira.
doi:10.1371/journal.pntd.0000815
PMCID: PMC2935396  PMID: 20844573
20.  Rapid Leptospira identification by direct sequencing of the diagnostic PCR products in New Caledonia 
BMC Microbiology  2010;10:325.
Background
Most of the current knowledge of leptospirosis epidemiology originates from serological results obtained with the reference Microscopic Agglutination Test (MAT). However, inconsistencies and weaknesses of this diagnostic technique are evident. A growing use of PCR has improved the early diagnosis of leptospirosis but a drawback is that it cannot provide information on the infecting Leptospira strain which provides important epidemiologic data. Our work is aimed at evaluating if the sequence polymorphism of diagnostic PCR products could be used to identify the infecting Leptospira strains in the New Caledonian environment.
Results
Both the lfb1 and secY diagnostic PCR products displayed a sequence polymorphism that could prove useful in presumptively identifying the infecting leptospire. Using both this polymorphism and MLST results with New Caledonian isolates and clinical samples, we confirmed the epidemiological relevance of the sequence-based identification of Leptospira strains. Additionally, we identified one cluster of L. interrogans that contained no reference strain and one cluster of L. borgpetersenii found only in the introduced Rusa deer Cervus timorensis russa that is its probable reservoir.
Conclusions
The sequence polymorphism of diagnostic PCR products proved useful in presumptively identifying the infecting Leptospira strains. This could contribute to a better understanding of leptospirosis epidemiology by providing epidemiological information that cannot be directly attained from the use of PCR as an early diagnostic test for leptospirosis.
doi:10.1186/1471-2180-10-325
PMCID: PMC3022709  PMID: 21176235
21.  Characterization of leptospira isolates from animals and humans: phylogenetic analysis identifies the prevalence of intermediate species in India 
SpringerPlus  2013;2:362.
In this study, 191 culture isolates were recovered from suspected samples of animals and humans in Ellinghausen McCullough Johnson and Harris (EMJH) medium and assessed for its morphological features by dark field microscopy. Extracted DNA from individual culture was subjected to different PCR assays for identification and characterization of leptospira. Out of 99 positive leptospira cultures, 52 pathogenic leptospira isolates were characterized at species level by using partial RNA polymerase β-subunit (rpoB) gene sequences. Phylogenetic analysis of the nucleotide sequences revealed that 30, 8, and 14 isolates belong to L. borgpetersenii / L. interrogans, L. kirschneri, and Leptospira intermediate species, respectively. Based on analysis of 99 leptospira isolates, the prevalent Leptospira species were L. borgpetersenii or L. interrogans (30.30%), L. kirschneri (8%) and Leptospira intermediate species (14.14%) in animals and humans. To the best of authors knowledge, this is the first study to use rpoB gene nucleotide sequence based phylogenetic analysis to identify/detect Leptospira intermediate species (L. wolffii) in animals and humans in India. Hence, the prevalence of this species will surely emphasize the importance of consideration of Leptospira intermediate species and formulate a way for further studies especially in understanding the newly emerging Leptospira in animals and humans and to combat the problem associated with the disease conditions.
doi:10.1186/2193-1801-2-362
PMCID: PMC3736078  PMID: 23961424
Leptospira; Animals; Human; Characterization; Prevalence; Intermediate species
22.  Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach 
PLoS ONE  2014;9(11):e112312.
Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis.
doi:10.1371/journal.pone.0112312
PMCID: PMC4232388  PMID: 25398140
23.  Pathogenomic Inference of Virulence-Associated Genes in Leptospira interrogans 
Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.
Author Summary
Leptospirosis is one of the most common diseases transmitted by animals worldwide. It is important because it causes an often lethal febrile illnesses in tropical and subtropical areas associated with poor sanitation and agriculture. Leptospirosis may be epidemic, associated with natural disasters and flooding, or endemic in tropical regions. It is unknown how Leptospira cause disease and why different strains cause different severity of illness. In this study we attenuated (weakened) a highly virulent strain of L. interrogans by culturing it in vitro over several months. Comparison of the whole genome sequence before and after the attenuation process revealed a small set of genes that were mutated, and therefore associated with virulence. We discovered a putative soluble adenylate cyclase with host cell cAMP elevating activity, with implications for immune evasion and a new gene family that is upregulated in vivo during acute hamster infection. Interestingly, both Bartonella bacilliformis and Bartonella australis also have this unique gene family we describe in pathogenic Leptospira. This information aids in our understanding of Leptospira evolution and pathogenesis.
doi:10.1371/journal.pntd.0002468
PMCID: PMC3789758  PMID: 24098822
24.  Molecular detection and speciation of pathogenic Leptospira spp. in blood from patients with culture-negative leptospirosis 
BMC Infectious Diseases  2011;11:338.
Background
Pathogenic Leptospira spp. present in the blood of patients with leptospirosis during the first week of symptoms can be detected using culture or PCR. A proportion of patients who are positive by PCR are negative by culture. Leptospira spp. are fastidious bacteria, and we hypothesized that a false-negative culture result may represent infection with a distinct bacterial subset that fail to grow in standard culture medium.
Methods
We evaluated our hypothesis during a prospective study of 418 consecutive patients presenting to a hospital in northeast Thailand with an acute febrile illness. Admission blood samples were taken for Leptospira culture and PCR. A single tube nested PCR that amplified a region of the rrs gene was developed and applied, amplicons sequenced and a phylogenetic tree reconstructed.
Results
39/418 (9%) patients were culture-positive for Leptospira spp., and 81/418 (19%) patients were culture-negative but rrs PCR-positive. The species associated with culture-positive leptospirosis (37 L. interrogans and 2 L. borgpetersenii) were comparable to those associated with culture-negative, PCR-positive leptospirosis (76 L. interrogans, 4 L. borgpetersenii, 1 unidentified, possibly new species).
Conclusion
Molecular speciation failed to identify a unique bacterial subset in patients with culture-negative, PCR-positive leptospirosis. The rate of false-negative culture was high, and we speculate that antibiotic pre-treatment is the most likely explanation for this.
doi:10.1186/1471-2334-11-338
PMCID: PMC3297668  PMID: 22151687
25.  Household Transmission of Leptospira Infection in Urban Slum Communities 
Background
Leptospirosis, a spirochaetal zoonotic disease, is the cause of epidemics associated with high mortality in urban slum communities. Infection with pathogenic Leptospira occurs during environmental exposures and is traditionally associated with occupational risk activities. However, slum inhabitants reside in close proximity to environmental sources of contamination, suggesting that transmission during urban epidemics occurs in the household environment.
Methods and Findings
A survey was performed to determine whether Leptospira infection clustered within households located in slum communities in the city of Salvador, Brazil. Hospital-based surveillance identified 89 confirmed cases of leptospirosis during an outbreak. Serum samples were obtained from members of 22 households with index cases of leptospirosis and 52 control households located in the same slum communities. The presence of anti-Leptospira agglutinating antibodies was used as a marker for previous infection. In households with index cases, 22 (30%) of 74 members had anti-Leptospira antibodies, whereas 16 (8%) of 195 members from control households had anti-Leptospira antibodies. Highest titres were directed against L. interrogans serovars of the Icterohaemorrhagiae serogroup in 95% and 100% of the subjects with agglutinating antibodies from case and control households, respectively. Residence in a household with an index case of leptospirosis was associated with increased risk (OR 5.29, 95% CI 2.13–13.12) of having had a Leptospira infection. Increased infection risk was found for all age groups who resided in a household with an index case, including children <15 years of age (P = 0.008).
Conclusions
This study identified significant household clustering of Leptospira infection in slum communities where recurrent epidemics of leptospirosis occur. The findings support the hypothesis that the household environment is an important transmission determinant in the urban slum setting. Prevention therefore needs to target sources of contamination and risk activities which occur in the places where slum inhabitants reside.
Author Summary
Leptospirosis has emerged to become an urban slum health problem. Epidemics of severe leptospirosis, characterized by jaundice, acute renal failure and haemorrhage, are now reported in cities throughout the developing world due to rapid expansion of slum settlements, which in turn has produced the ecological conditions for rodent-borne transmission of the spirochete pathogen. A survey was performed in the city of Salvador, Brazil, to determine whether the risk of Leptospira infection clustered in households within slum communities in which a member had developed severe leptospirosis. We found that members of households with an index case of leptospirosis had more than five times the risk of having serologic evidence for a prior infection than members of neighbourhood households in the same communities. Increased risk of infection was found among all age groups who resided in these households. The finding that Leptospira infection clusters in specific slum households indicates that the factors associated with this environment are important determinants for transmission. Further research is needed to identify the sources of contamination and risk exposures which occur in the places where slum inhabitants reside such that effective community-based prevention of urban leptospirosis can be implemented.
doi:10.1371/journal.pntd.0000154
PMCID: PMC2270796  PMID: 18357340

Results 1-25 (1287197)