PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (369467)

Clipboard (0)
None

Related Articles

1.  Impact of Recently Emerged Sterol 14α-Demethylase (CYP51) Variants of Mycosphaerella graminicola on Azole Fungicide Sensitivity▿ 
Applied and Environmental Microbiology  2011;77(11):3830-3837.
The progressive decline in the effectiveness of some azole fungicides in controlling Mycosphaerella graminicola, causal agent of the damaging Septoria leaf blotch disease of wheat, has been correlated with the selection and spread in the pathogen population of specific mutations in the M. graminicola CYP51 (MgCYP51) gene encoding the azole target sterol 14α-demethylase. Recent studies have suggested that the emergence of novel MgCYP51 variants, often harboring substitution S524T, has contributed to a decrease in the efficacy of prothioconazole and epoxiconazole, the two currently most effective azole fungicides against M. graminicola. In this study, we establish which amino acid alterations in novel MgCYP51 variants have the greatest impact on azole sensitivity and protein function. We introduced individual and combinations of identified alterations by site-directed mutagenesis and functionally determined their impact on azole sensitivity by expression in a Saccharomyces cerevisiae mutant YUG37::erg11 carrying a regulatable promoter controlling native CYP51 expression. We demonstrate that substitution S524T confers decreased sensitivity to all azoles when introduced alone or in combination with Y461S. In addition, S524T restores the function in S. cerevisiae of MgCYP51 variants carrying the otherwise lethal alterations Y137F and V136A. Sensitivity tests of S. cerevisiae transformants expressing recently emerged MgCYP51 variants carrying combinations of alterations D134G, V136A, Y461S, and S524T reveal a substantial impact on sensitivity to the currently most widely used azoles, including epoxiconazole and prothioconazole. Finally, we exploit a recently developed model of the MgCYP51 protein to predict that the substantial structural changes caused by these novel combinations reduce azole interactions with critical residues in the binding cavity, thereby causing resistance.
doi:10.1128/AEM.00027-11
PMCID: PMC3127603  PMID: 21478305
2.  Prothioconazole and Prothioconazole-Desthio Activities against Candida albicans Sterol 14-α-Demethylase 
Prothioconazole is a new triazolinthione fungicide used in agriculture. We have used Candida albicans CYP51 (CaCYP51) to investigate the in vitro activity of prothioconazole and to consider the use of such compounds in the medical arena. Treatment of C. albicans cells with prothioconazole, prothioconazole-desthio, and voriconazole resulted in CYP51 inhibition, as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol. We then compared the inhibitor binding properties of prothioconazole, prothioconazole-desthio, and voriconazole with CaCYP51. We observed that prothioconazole-desthio and voriconazole bind noncompetitively to CaCYP51 in the expected manner of azole antifungals (with type II inhibitors binding to heme as the sixth ligand), while prothioconazole binds competitively and does not exhibit classic inhibitor binding spectra. Inhibition of CaCYP51 activity in a cell-free assay demonstrated that prothioconazole-desthio is active, whereas prothioconazole does not inhibit CYP51 activity. Extracts from C. albicans grown in the presence of prothioconazole were found to contain prothioconazole-desthio. We conclude that the antifungal action of prothioconazole can be attributed to prothioconazole-desthio.
doi:10.1128/AEM.03246-12
PMCID: PMC3591943  PMID: 23275516
3.  Azole Affinity of Sterol 14α-Demethylase (CYP51) Enzymes from Candida albicans and Homo sapiens 
Candida albicans CYP51 (CaCYP51) (Erg11), full-length Homo sapiens CYP51 (HsCYP51), and truncated Δ60HsCYP51 were expressed in Escherichia coli and purified to homogeneity. CaCYP51 and both HsCYP51 enzymes bound lanosterol (Ks, 14 to 18 μM) and catalyzed the 14α-demethylation of lanosterol using Homo sapiens cytochrome P450 reductase and NADPH as redox partners. Both HsCYP51 enzymes bound clotrimazole, itraconazole, and ketoconazole tightly (dissociation constants [Kds], 42 to 131 nM) but bound fluconazole (Kd, ∼30,500 nM) and voriconazole (Kd, ∼2,300 nM) weakly, whereas CaCYP51 bound all five medical azole drugs tightly (Kds, 10 to 56 nM). Selectivity for CaCYP51 over HsCYP51 ranged from 2-fold (clotrimazole) to 540-fold (fluconazole) among the medical azoles. In contrast, selectivity for CaCYP51 over Δ60HsCYP51 with agricultural azoles ranged from 3-fold (tebuconazole) to 9-fold (propiconazole). Prothioconazole bound extremely weakly to CaCYP51 and Δ60HsCYP51, producing atypical type I UV-visible difference spectra (Kds, 6,100 and 910 nM, respectively), indicating that binding was not accomplished through direct coordination with the heme ferric ion. Prothioconazole-desthio (the intracellular derivative of prothioconazole) bound tightly to both CaCYP51 and Δ60HsCYP51 (Kd, ∼40 nM). These differences in binding affinities were reflected in the observed 50% inhibitory concentration (IC50) values, which were 9- to 2,000-fold higher for Δ60HsCYP51 than for CaCYP51, with the exception of tebuconazole, which strongly inhibited both CYP51 enzymes. In contrast, prothioconazole weakly inhibited CaCYP51 (IC50, ∼150 μM) and did not significantly inhibit Δ60HsCYP51.
doi:10.1128/AAC.02067-12
PMCID: PMC3591892  PMID: 23274672
4.  Heterologous Expression of Mutated Eburicol 14α-Demethylase (CYP51) Proteins of Mycosphaerella graminicola To Assess Effects on Azole Fungicide Sensitivity and Intrinsic Protein Function▿  
The recent decrease in the sensitivity of the Western European population of the wheat pathogen Mycosphaerella graminicola to azole fungicides has been associated with the emergence and subsequent spread of mutations in the CYP51 gene, encoding the azole target sterol 14α-demethylase. In this study, we have expressed wild-type and mutated M. graminicola CYP51 (MgCYP51) variants in a Saccharomyces cerevisiae mutant carrying a doxycycline-regulatable tetO7-CYC promoter controlling native CYP51 expression. We have shown that the wild-type MgCYP51 protein complements the function of the orthologous protein in S. cerevisiae. Mutant MgCYP51 proteins containing amino acid alterations L50S, Y459D, and Y461H and the two-amino-acid deletion ΔY459/G460, commonly identified in modern M. graminicola populations, have no effect on the capacity of the M. graminicola protein to function in S. cerevisiae. We have also shown that the azole fungicide sensitivities of transformants expressing MgCYP51 variants with these alterations are substantially reduced. Furthermore, we have demonstrated that the I381V substitution, correlated with the recent decline in the effectiveness of azoles, destroys the capacity of MgCYP51 to complement the S. cerevisiae mutant when introduced alone. However, when I381V is combined with changes between residues Y459 and Y461, the function of the M. graminicola protein is partially restored. These findings demonstrate, for the first time for a plant pathogenic fungus, the impacts that naturally occurring CYP51 alterations have on both azole sensitivity and intrinsic protein function. In addition, we also provide functional evidence underlying the order in which CYP51 alterations in the Western European M. graminicola population emerged.
doi:10.1128/AEM.02158-09
PMCID: PMC2863451  PMID: 20305029
5.  Molecular Modelling of the Emergence of Azole Resistance in Mycosphaerella graminicola 
PLoS ONE  2011;6(6):e20973.
A structural rationale for recent emergence of azole (imidazole and triazole) resistance associated with CYP51 mutations in the wheat pathogen Mycosphaerella graminicola is presented, attained by homology modelling of the wild type protein and 13 variant proteins. The novel molecular models of M. graminicola CYP51 are based on multiple homologues, individually identified for each variant, rather than using a single structural scaffold, providing a robust structure-function rationale for the binding of azoles, including important fungal specific regions for which no structural information is available. The wild type binding pocket reveals specific residues in close proximity to the bound azole molecules that are subject to alteration in the variants. This implicates azole ligands as important agents exerting selection on specific regions bordering the pocket, that become the focus of genetic mutation events, leading to reduced sensitivity to that group of related compounds. Collectively, the models account for several observed functional effects of specific alterations, including loss of triadimenol sensitivity in the Y137F variant, lower sensitivity to tebuconazole of I381V variants and increased resistance to prochloraz of V136A variants. Deletion of Y459 and G460, which brings about removal of that entire section of beta turn from the vicinity of the binding pocket, confers resistance to tebuconazole and epoxiconazole, but sensitivity to prochloraz in variants carrying a combination of A379G I381V ΔY459/G460. Measurements of binding pocket volume proved useful in assessment of scope for general resistance to azoles by virtue of their accommodation without bonding interaction, particularly when combined with analysis of change in positions of key amino acids. It is possible to predict the likely binding orientation of an azole molecule in any of the variant CYPs, providing potential for an in silico screening system and reliable predictive approach to assess the probability of particular variants exhibiting resistance to particular azole fungicides.
doi:10.1371/journal.pone.0020973
PMCID: PMC3124474  PMID: 21738598
6.  Azole Binding Properties of Candida albicans Sterol 14-α Demethylase (CaCYP51)▿  
Antimicrobial Agents and Chemotherapy  2010;54(10):4235-4245.
Purified Candida albicans sterol 14-α demethylase (CaCYP51) bound the CYP51 substrates lanosterol and eburicol, producing type I binding spectra with Ks values of 11 and 25 μM, respectively, and a Km value of 6 μM for lanosterol. Azole binding to CaCYP51 was “tight” with both the type II spectral intensity (ΔAmax) and the azole concentration required to obtain a half-ΔAmax being proportional to the CaCYP51 concentration. Tight binding of fluconazole and itraconazole was confirmed by 50% inhibitory concentration determinations from CYP51 reconstitution assays. CaCYP51 had similar affinities for clotrimazole, econazole, itraconazole, ketoconazole, miconazole, and voriconazole, with Kd values of 10 to 26 μM under oxidative conditions, compared with 47 μM for fluconazole. The affinities of CaCYP51 for fluconazole and itraconazole appeared to be 4- and 2-fold lower based on CO displacement studies than those when using direct ligand binding under oxidative conditions. Econazole and miconazole were most readily displaced by carbon monoxide, followed by clotrimazole, ketoconazole, and fluconazole, and then voriconazole (7.8 pmol min−1), but itraconzole could not be displaced by carbon monoxide. This work reports in depth the characterization of the azole binding properties of wild-type C. albicans CYP51, including that of voriconazole, and will contribute to effective screening of new therapeutic azole antifungal agents. Preliminary comparative studies with the I471T CaCYP51 protein suggested that fluconazole resistance conferred by this mutation was through a combination of increased turnover, increased affinity for substrate, and a reduced affinity for fluconazole in the presence of substrate, allowing the enzyme to remain functionally active, albeit at reduced velocity, at higher fluconazole concentrations.
doi:10.1128/AAC.00587-10
PMCID: PMC2944560  PMID: 20625155
7.  Triazole Fungicides Can Induce Cross-Resistance to Medical Triazoles in Aspergillus fumigatus 
PLoS ONE  2012;7(3):e31801.
Background
Azoles play an important role in the management of Aspergillus diseases. Azole resistance is an emerging global problem in Aspergillus fumigatus, and may develop through patient therapy. In addition, an environmental route of resistance development has been suggested through exposure to 14α-demethylase inhibitors (DMIs). The main resistance mechanism associated with this putative fungicide-driven route is a combination of alterations in the Cyp51A-gene (TR34/L98H). We investigated if TR34/L98H could have developed through exposure to DMIs.
Methods and Findings
Thirty-one compounds that have been authorized for use as fungicides, herbicides, herbicide safeners and plant growth regulators in the Netherlands between 1970 and 2005, were investigated for cross-resistance to medical triazoles. Furthermore, CYP51-protein homology modeling and molecule alignment studies were performed to identify similarity in molecule structure and docking modes. Five triazole DMIs, propiconazole, bromuconazole, tebuconazole, epoxiconazole and difenoconazole, showed very similar molecule structures to the medical triazoles and adopted similar poses while docking the protein. These DMIs also showed the greatest cross-resistance and, importantly, were authorized for use between 1990 and 1996, directly preceding the recovery of the first clinical TR34/L98H isolate in 1998. Through microsatellite genotyping of TR34/L98H isolates we were able to calculate that the first isolate would have arisen in 1997, confirming the results of the abovementioned experiments. Finally, we performed induction experiments to investigate if TR34/L98H could be induced under laboratory conditions. One isolate evolved from two copies of the tandem repeat to three, indicating that fungicide pressure can indeed result in these genomic changes.
Conclusions
Our findings support a fungicide-driven route of TR34/L98H development in A. fumigatus. Similar molecule structure characteristics of five triazole DMIs and the three medical triazoles appear the underlying mechanism of cross resistance development. Our findings have major implications for the assessment of health risks associated with the use of triazole DMIs.
doi:10.1371/journal.pone.0031801
PMCID: PMC3291550  PMID: 22396740
8.  ABC Transporters and Azole Susceptibility in Laboratory Strains of the Wheat Pathogen Mycosphaerella graminicola 
Antimicrobial Agents and Chemotherapy  2002;46(12):3900-3906.
Laboratory strains of Mycosphaerella graminicola with decreased susceptibilities to the azole antifungal agent cyproconazole showed a multidrug resistance phenotype by exhibiting cross-resistance to an unrelated chemical, cycloheximide or rhodamine 6G, or both. Decreased azole susceptibility was found to be associated with either decreased or increased levels of accumulation of cyproconazole. No specific relationship could be observed between azole susceptibility and the expression of ATP-binding cassette (ABC) transporter genes MgAtr1 to MgAtr5 and the sterol P450 14α-demethylase gene, CYP51. ABC transporter MgAtr1 was identified as a determinant in azole susceptibility since heterologous expression of the protein reduced the azole susceptibility of Saccharomyces cerevisiae and disruption of MgAtr1 in one specific M. graminicola laboratory strain with constitutive MgAtr1 overexpression restored the level of susceptibility to cyproconazole to wild-type levels. However, the level of accumulation in the mutant with an MgAtr1 disruption did not revert to the wild-type level. We propose that variations in azole susceptibility in laboratory strains of M. graminicola are mediated by multiple mechanisms.
doi:10.1128/AAC.46.12.3900-3906.2002
PMCID: PMC132773  PMID: 12435694
9.  Structural Characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei Bound to the Antifungal Drugs Posaconazole and Fluconazole 
Background
Chagas Disease is the leading cause of heart failure in Latin America. Current drug therapy is limited by issues of both efficacy and severe side effects. Trypansoma cruzi, the protozoan agent of Chagas Disease, is closely related to two other major global pathogens, Leishmania spp., responsible for leishmaniasis, and Trypansoma brucei, the causative agent of African Sleeping Sickness. Both T. cruzi and Leishmania parasites have an essential requirement for ergosterol, and are thus vulnerable to inhibitors of sterol 14α-demethylase (CYP51), which catalyzes the conversion of lanosterol to ergosterol. Clinically employed anti-fungal azoles inhibit ergosterol biosynthesis in fungi, and specific azoles are also effective against both Trypanosoma and Leishmania parasites. However, modification of azoles to enhance efficacy and circumvent potential drug resistance has been problematic for both parasitic and fungal infections due to the lack of structural insights into drug binding.
Methodology/Principal Findings
We have determined the crystal structures for CYP51 from T. cruzi (resolutions of 2.35 Å and 2.27 Å), and from the related pathogen T. brucei (resolutions of 2.7 Å and 2.6 Å), co-crystallized with the antifungal drugs fluconazole and posaconazole. Remarkably, both drugs adopt multiple conformations when binding the target. The fluconazole 2,4-difluorophenyl ring flips 180° depending on the H-bonding interactions with the BC-loop. The terminus of the long functional tail group of posaconazole is bound loosely in the mouth of the hydrophobic substrate binding tunnel, suggesting that the major contribution of the tail to drug efficacy is for pharmacokinetics rather than in interactions with the target.
Conclusions/Significance
The structures provide new insights into binding of azoles to CYP51 and mechanisms of potential drug resistance. Our studies define in structural detail the CYP51 therapeutic target in T. cruzi, and offer a starting point for rationally designed anti-Chagasic drugs with improved efficacy and reduced toxicity.
Author Summary
Chagas Disease is caused by kinetoplastid protozoa Trypanosoma cruzi, whose sterols resemble those of fungi, in both composition and biosynthetic pathway. Azole inhibitors of sterol 14α-demethylase (CYP51), such as fluconazole, itraconazole, voriconazole, and posaconazole, successfully treat fungal infections in humans. Efforts have been made to translate anti-fungal azoles into a second-use application for Chagas Disease. Ravuconazole and posaconazole have been recently proposed as candidates for clinical trials with Chagas Disease patients. However, the widespread use of posaconazole for long-term treatment of chronic infections may be limited by hepatic and renal toxicity, a requirement for simultaneous intake of a fatty meal or nutritional supplement to enhance absorption, and cost. To aid our search for structurally and synthetically simple CYP51 inhibitors, we have determined the crystal structures of the CYP51 targets in T. cruzi and T. brucei, both bound to the anti-fungal drugs fluconazole or posaconazole. The structures provide a basis for a design of new drugs targeting Chagas Disease, and also make it possible to model the active site characteristics of the highly homologous Leishmania CYP51. This work provides a foundation for rational synthesis of new therapeutic agents targeting the three kinetoplastid parasites.
doi:10.1371/journal.pntd.0000651
PMCID: PMC2850312  PMID: 20386598
10.  Combination Effects of (Tri)Azole Fungicides on Hormone Production and Xenobiotic Metabolism in a Human Placental Cell Line 
Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (tri)azole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl) were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol) and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP) enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence of this effect.
doi:10.3390/ijerph110909660
PMCID: PMC4199042  PMID: 25233012
mixture toxicity; endocrine disruption; placenta; triazoles
11.  Expression, Purification, and Characterization of Aspergillus fumigatus Sterol 14-α Demethylase (CYP51) Isoenzymes A and B▿  
Antimicrobial Agents and Chemotherapy  2010;54(10):4225-4234.
Aspergillus fumigatus sterol 14-α demethylase (CYP51) isoenzymes A (AF51A) and B (AF51B) were expressed in Escherichia coli and purified. The dithionite-reduced CO-P450 complex for AF51A was unstable, rapidly denaturing to inactive P420, in marked contrast to AF51B, where the CO-P450 complex was stable. Type I substrate binding spectra were obtained with purified AF51B using lanosterol (Ks, 8.6 μM) and eburicol (Ks, 22.6 μM). Membrane suspensions of AF51A bound to both lanosterol (Ks, 3.1 μM) and eburicol (Ks, 4.1 μM). The binding of azoles, with the exception of fluconazole, to AF51B was tight, with the Kd (dissociation constant) values for clotrimazole, itraconazole, posaconazole, and voriconazole being 0.21, 0.06, 0.12, and 0.42 μM, respectively, in comparison with a Kd value of 4 μM for fluconazole. Characteristic type II azole binding spectra were obtained with AF51B, whereas an additional trough and a blue-shifted spectral peak were present in AF51A binding spectra for all azoles except clotrimazole. This suggests two distinct azole binding conformations within the heme prosthetic group of AF51A. All five azoles bound relatively weakly to AF51A, with Kd values ranging from 1 μM for itraconazole to 11.9 μM for fluconazole. The azole binding properties of purified AF51A and AF51B suggest an explanation for the intrinsic azole (fluconazole) resistance observed in Aspergillus fumigatus.
doi:10.1128/AAC.00316-10
PMCID: PMC2944604  PMID: 20660663
12.  Heterologous Expression and Characterization of the Sterol 14α-Demethylase CYP51F1 from Candida albicans 
Lanosterol 14α-demethylase (CYP51F1) from Candida albicans is known to be an essential enzyme in fungal sterol biosynthesis. Wild-type CYP51F1 and several of its mutants were heterologously expressed in Escherichia coli, purified, and characterized. It exhibited a typical reduced CO-difference spectrum with a maximum at 446 nm. Reconstitution of CYP51F1 with NADPH-P450 reductase gave a system that successfully converted lanosterol to its demethylated product. Titration of the purified enzyme with lanosterol produced a typical type I spectral change with Kd = 6.7 μM. The azole antifungal agents econazole, fluconazole, ketoconazole, and itraconazole bound tightly to CYP51F1 with Kd values between 0.06 – 0.42 μM. The CYP51F1 mutations F105L, D116E, Y132H, and R467K frequently identified in clinical isolates were examined to determine their effect on azole drug binding affinity. The azole Kd values of the purified F105L, D116E, and R467K mutants were little altered. A homology model of C. albicans CYP51F1 suggested that Tyr132 in the BC loop is located close to the heme in the active site, providing a rationale for the modified heme environment caused by the Y132H substitution. Taken together, functional expression and characterization of CYP51F1 provide a starting basis for design of agents effective against C. albicans infections.
doi:10.1016/j.abb.2011.02.002
PMCID: PMC3079055  PMID: 21315684
P450; CYP51; lanosterol; azole; Candida albicans
13.  S279 Point Mutations in Candida albicans Sterol 14-α Demethylase (CYP51) Reduce In Vitro Inhibition by Fluconazole 
The effects of S279F and S279Y point mutations in Candida albicans CYP51 (CaCYP51) on protein activity and on substrate (lanosterol) and azole antifungal binding were investigated. Both S279F and S279Y mutants bound lanosterol with 2-fold increased affinities (Ks, 7.1 and 8.0 μM, respectively) compared to the wild-type CaCYP51 protein (Ks, 13.5 μM). The S279F and S279Y mutants and the wild-type CaCYP51 protein bound fluconazole, voriconazole, and itraconazole tightly, producing typical type II binding spectra. However, the S279F and S279Y mutants had 4- to 5-fold lower affinities for fluconazole, 3.5-fold lower affinities for voriconazole, and 3.5- to 4-fold lower affinities for itraconazole than the wild-type CaCYP51 protein. The S279F and S279Y mutants gave 2.3- and 2.8-fold higher 50% inhibitory concentrations (IC50s) for fluconazole in a CYP51 reconstitution assay than the wild-type protein did. The increased fluconazole resistance conferred by the S279F and S279Y point mutations appeared to be mediated through a combination of a higher affinity for substrate and a lower affinity for fluconazole. In addition, lanosterol displaced fluconazole from the S279F and S279Y mutants but not from the wild-type protein. Molecular modeling of the wild-type protein indicated that the oxygen atom of S507 interacts with the second triazole ring of fluconazole, assisting in orientating fluconazole so that a more favorable binding conformation to heme is achieved. In contrast, in the two S279 mutant proteins, this S507-fluconazole interaction is absent, providing an explanation for the higher Kd values observed.
doi:10.1128/AAC.05389-11
PMCID: PMC3318376  PMID: 22252802
14.  CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds 
Graphical abstract
Highlights
► CYP51s (sterol 14alpha-demethylases) are efficient drug target enzymes. ► CYP51s have a highly rigid substrate binding cavity. ► CYP51 structure-based development of a new inhibitory scaffold is described.
CYP51 (sterol 14α-demethylase) is a cytochrome P450 enzyme essential for sterol biosynthesis and the primary target for clinical and agricultural antifungal azoles. The azoles that are currently in clinical use for systemic fungal infections represent modifications of two basic scaffolds, ketoconazole and fluconazole, all of them being selected based on their antiparasitic activity in cellular experiments. By studying direct inhibition of CYP51 activity across phylogeny including human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum, we identified three novel protozoa-specific inhibitory scaffolds, their inhibitory potency correlating well with antiprotozoan activity. VNI scaffold (carboxamide containing β-phenyl-imidazoles) is the most promising among them: killing T. cruzi amastigotes at low nanomolar concentration, it is also easy to synthesize and nontoxic. Oral administration of VNI (up to 400 mg/kg) neither leads to mortality nor reveals significant side effects up to 48 h post treatment using an experimental mouse model of acute toxicity. Trypanosomatidae CYP51 crystal structures determined in the ligand-free state and complexed with several azole inhibitors as well as a substrate analog revealed high rigidity of the CYP51 substrate binding cavity, which must be essential for the enzyme strict substrate specificity and functional conservation. Explaining profound potency of the VNI inhibitory scaffold, the structures also outline guidelines for its further development. First steps of the VNI scaffold optimization have been undertaken; the results presented here support the notion that CYP51 structure-based rational design of more efficient, pathogen-specific inhibitors represents a highly promising direction.
doi:10.1016/j.ijpddr.2012.06.001
PMCID: PMC3596085  PMID: 23504044
Sterol 14α-demethylase; CYP51; Inhibition; Crystal structure
15.  A highly conserved mycobacterial cholesterol catabolic pathway 
Environmental microbiology  2013;15(8):2342-2359.
Summary
Degradation of the cholesterol side-chain in M. tuberculosis is initiated by two cytochromes P450, CYP125A1 and CYP142A1, that sequentially oxidize C26 to the alcohol, aldehyde and acid metabolites. Here we report characterization of the homologous enzymes CYP125A3 and CYP142A2 from M. smegmatis mc2 155. Heterologously expressed, purified CYP125A3 and CYP142A2 bound cholesterol, 4-cholesten-3-one, and antifungal azole drugs. CYP125A3 or CYP142A2 reconstituted with spinach ferredoxin and ferredoxin reductase efficiently hydroxylated 4-cholesten-3-one to the C-26 alcohol and subsequently to the acid. The X-ray structures of both substrate-free CYP125A3 and CYP142A2 and of cholest-4-en-3-one-bound CYP142A2 reveal significant differences in the substrate binding sites compared with the homologous M. tuberculosis proteins. Deletion of cyp125A3 or cyp142A2 does not impair growth of M. smegmatis mc2 155 on cholesterol. However, deletion only of cyp125A3 causes a reduction of both the alcohol and acid metabolites and a strong induction of cyp142 at the mRNA and protein levels, indicating that CYP142A2 serves as a functionally redundant back up enzyme for CYP125A3. In contrast to M. tuberculosis, the M. smegmatis Δcyp125Δcyp142 double mutant retains its ability to grow on cholesterol albeit with a diminished capacity, indicating an additional level of redundancy within its genome.
doi:10.1111/1462-2920.12108
PMCID: PMC3706556  PMID: 23489718
16.  Genetic Basis for Differential Activities of Fluconazole and Voriconazole against Candida krusei 
Invasive infections caused by Candida krusei are a significant concern because this organism is intrinsically resistant to fluconazole. Voriconazole is more active than fluconazole against C. krusei in vitro. One mechanism of fluconazole resistance in C. krusei is diminished sensitivity of the target enzyme, cytochrome P450 sterol 14α-demethylase (CYP51), to inhibition by this drug. We investigated the interactions of fluconazole and voriconazole with the CYP51s of C. krusei (ckCYP51) and fluconazole-susceptible Candida albicans (caCYP51). We found that voriconazole was a more potent inhibitor of both ckCYP51 and caCYP51 in cell extracts than was fluconazole. Also, the ckCYP51 was less sensitive to inhibition by both drugs than was caCYP51. These results were confirmed by expressing the CYP51 genes from C. krusei and C. albicans in Saccharomyces cerevisiae and determining the susceptibility of the transformants to voriconazole and fluconazole. We constructed homology models of the CYP51s of C. albicans and C. krusei based on the crystal structure of CYP51 from Mycobacterium tuberculosis. These models predicted that voriconazole is a more potent inhibitor of both caCYP51 and ckCYP51 than is fluconazole, because the extra methyl group of voriconazole results in a stronger hydrophobic interaction with the aromatic amino acids in the substrate binding site and more extensive filling of this site. Although there are multiple differences in the predicted amino acid sequence of caCYP51 and ckCYP51, the models of the two enzymes were quite similar and the mechanism for the relative resistance of ckCYP51 to the azoles was not apparent.
doi:10.1128/AAC.47.4.1213-1219.2003
PMCID: PMC152512  PMID: 12654649
17.  The Novel Azole R126638 Is a Selective Inhibitor of Ergosterol Synthesis in Candida albicans, Trichophyton spp., and Microsporum canis 
R126638 is a novel triazole with in vitro activity similar to that of itraconazole against dermatophytes, Candida spp., and Malassezia spp. In animal models of dermatophyte infections, R126638 showed superior antifungal activity. R126638 inhibits ergosterol synthesis in Candida albicans, Trichophyton mentagrophytes, Trichophyton rubrum, and Microsporum canis at nanomolar concentrations, with 50% inhibitory concentrations (IC50s) similar to those of itraconazole. The decreased synthesis of ergosterol and the concomitant accumulation of 14α-methylsterols provide indirect evidence that R126638 inhibits the activity of CYP51 that catalyzes the oxidative removal of the 14α-methyl group of lanosterol or eburicol. The IC50s for cholesterol synthesis from acetate in human hepatoma cells were 1.4 μM for itraconazole and 3.1 μM for R126638. Compared to itraconazole (IC50 = 3.5 μM), R126638 is a poor inhibitor of the 1α-hydroxylation of 25-hydroxyvitamin D3 (IC50 > 10 μM). Micromolar concentrations of R126638 and itraconazole inhibited the 24-hydroxylation of 25-hydroxyvitamin D3 and the conversion of 1,25-dihydroxyvitamin D3 into polar metabolites. At concentrations up to 10 μM, R126638 had almost no effect on cholesterol side chain cleavage (CYP11A1), 11β-hydroxylase (CYP11B1), 17-hydroxylase and 17,20-lyase (CYP17), aromatase (CYP19), or 4-hydroxylation of all-trans retinoic acid (CYP26). At 10 μM, R126638 did not show clear inhibition of CYP1A2, CYP2A6, CYP2D6, CYP2C8, CYP2C9, CYP2C10, CYP2C19, or CYP2E1. Compared to itraconazole, R126638 had a lower interaction potential with testosterone 6β hydroxylation and cyclosporine hydroxylation, both of which are catalyzed by CYP3A4, whereas both antifungals inhibited the CYP3A4-catalyzed hydroxylation of midazolam similarly. The results suggest that R126638 has promising properties and merits further in vivo investigations for the treatment of dermatophyte and yeast infections.
doi:10.1128/AAC.48.9.3272-3278.2004
PMCID: PMC514767  PMID: 15328084
18.  CYP51 structures and structure-based development of novel, pathogen-specific inhibitory scaffolds 
CYP51 (sterol 14α-demethylase) is a cytochrome P450 enzyme essential for sterol biosynthesis and the primary target for clinical and agricultural antifungal azoles. The azoles that are currently in clinical use for systemic fungal infections represent modifications of two basic scaffolds, ketoconazole and fluconazole, all of them being selected based on their antiparasitic activity in cellular experiments. By studying direct inhibition of CYP51 activity across phylogeny including human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum, we identified three novel protozoa-specific inhibitory scaffolds, their inhibitory potency correlating well with antiprotozoan activity. VNI scaffold (carboxamide containing β-phenyl-imidazoles) is the most promising among them: killing T. cruzi amastigotes at low nanomolar concentration, it is also easy to synthesize and nontoxic. Oral administration of VNI (up to 400 mg/kg) neither leads to mortality nor reveals significant side effects up to 48 h post treatment using an experimental mouse model of acute toxicity. Trypanosomatidae CYP51 crystal structures determined in the ligand-free state and complexed with several azole inhibitors as well as a substrate analog revealed high rigidity of the CYP51 substrate binding cavity, which must be essential for the enzyme strict substrate specificity and functional conservation. Explaining profound potency of the VNI inhibitory scaffold, the structures also outline guidelines for its further development. First steps of the VNI scaffold optimization have been undertaken; the results presented here support the notion that CYP51 structure-based rational design of more efficient, pathogen-specific inhibitors represents a highly promising direction.
PMCID: PMC3596085  PMID: 23504044
Sterol 14α-demethylase; CYP51; Inhibition; Crystal structure
19.  Amino Acid Substitutions in the Cytochrome P-450 Lanosterol 14α-Demethylase (CYP51A1) from Azole-Resistant Candida albicans Clinical Isolates Contribute to Resistance to Azole Antifungal Agents 
The cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) of yeasts is involved in an important step in the biosynthesis of ergosterol. Since CYP51A1 is the target of azole antifungal agents, this enzyme is potentially prone to alterations leading to resistance to these agents. Among them, a decrease in the affinity of CYP51A1 for these agents is possible. We showed in a group of Candida albicans isolates from AIDS patients that multidrug efflux transporters were playing an important role in the resistance of C. albicans to azole antifungal agents, but without excluding the involvement of other factors (D. Sanglard, K. Kuchler, F. Ischer, J.-L. Pagani, M. Monod, and J. Bille, Antimicrob. Agents Chemother. 39:2378–2386, 1995). We therefore analyzed in closer detail changes in the affinity of CYP51A1 for azole antifungal agents. A strategy consisting of functional expression in Saccharomyces cerevisiae of the C. albicans CYP51A1 genes of sequential clinical isolates from patients was designed. This selection, which was coupled with a test of susceptibility to the azole derivatives fluconazole, ketoconazole, and itraconazole, enabled the detection of mutations in different cloned CYP51A1 genes, whose products are potentially affected in their affinity for azole derivatives. This selection enabled the detection of five different mutations in the cloned CYP51A1 genes which correlated with the occurrence of azole resistance in clinical C. albicans isolates. These mutations were as follows: replacement of the glycine at position 129 with alanine (G129A), Y132H, S405F, G464S, and R467K. While the S405F mutation was found as a single amino acid substitution in a CYP51A1 gene from an azole-resistant yeast, other mutations were found simultaneously in individual CYP51A1 genes, i.e., R467K with G464S, S405F with Y132H, G129A with G464S, and R467K with G464S and Y132H. Site-directed mutagenesis of a wild-type CYP51A1 gene was performed to estimate the effect of each of these mutations on resistance to azole derivatives. Each single mutation, with the exception of G129A, had a measurable effect on the affinity of the target enzyme for specific azole derivatives. We speculate that these specific mutations could combine with the effect of multidrug efflux transporters in the clinical isolates and contribute to different patterns and stepwise increases in resistance to azole derivatives.
PMCID: PMC105395  PMID: 9527767
20.  Trypanosoma cruzi CYP51 Inhibitor Derived from a Mycobacterium tuberculosis Screen Hit 
Background
The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas' disease chemotherapy is sterol 14α-demethylase (CYP51), a cytochrome P450 enzyme involved in biosynthesis of membrane sterols.
Methodology/Principal Finding
In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51Mt), we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51Mt. Subsequent assays against the CYP51 orthologue in T. cruzi, CYP51Tc, demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti–T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine) of a single residue at a critical position in the active site.
Conclusions/Significance
CYP51Mt-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51Tc.
Author Summary
Enzyme sterol 14α-demethylase (CYP51) is a well-established target for anti-fungal therapy and is a prospective target for Chagas' disease therapy. We previously identified a chemical scaffold capable of delivering a variety of chemical structures into the CYP51 active site. In this work the binding modes of several second generation compounds carrying this scaffold were determined in high-resolution co-crystal structures with CYP51 of Mycobacterium tuberculosis. Subsequent assays against CYP51 in Trypanosoma cruzi, the agent of Chagas' disease, demonstrated that two of the compounds bound tightly to the enzyme. Both were tested for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei. One of the compounds had potent, selective anti–T. cruzi activity in infected mouse macrophages. This compound is currently being evaluated in animal models of Chagas' disease. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability of a single amino acid residue at a critical position in the active site. Our work is aimed at rational design of potent and highly selective CYP51 inhibitors with potential to become therapeutic drugs. Drug selectivity to prevent host–pathogen cross-reactivity is pharmacologically important, because CYP51 is present in human host.
doi:10.1371/journal.pntd.0000372
PMCID: PMC2629123  PMID: 19190730
21.  The Cytochrome P450 Lanosterol 14α-Demethylase Gene Is a Demethylation Inhibitor Fungicide Resistance Determinant in Monilinia fructicola Field Isolates from Georgia▿ † 
Resistance in Monilinia fructicola to demethylation inhibitor (DMI) fungicides is beginning to emerge in North America, but its molecular basis is unknown. Two potential genetic determinants of DMI fungicide resistance including the 14α-demethylase gene (MfCYP51) and the ATP-binding cassette transporter gene MfABC1, were investigated in six resistant (DMI-R) and six sensitive (DMI-S) field isolates. No point mutations leading to an amino acid change were found in the MfCYP51 gene. The constitutive expression of the MfCYP51 gene in DMI-R isolates was significantly higher compared to DMI-S isolates. Gene expression was not induced in mycelium of DMI-R or DMI-S isolates treated with 0.3 μg of propiconazole/ml. A slightly higher average MfCYP51 copy number value was detected in DMI-R isolates (1.35) compared to DMI-S isolates (1.13); however, this difference could not be verified in Southern hybridization experiments or explain the up to 11-fold-increased MfCYP51 mRNA levels in DMI-R isolates. Analysis of the upstream nucleotide sequence of the MfCYP51 gene revealed a unique 65-bp repetitive element at base pair position −117 from the translational start site in DMI-R isolates but not in DMI-S isolates. This repetitive element contained a putative promoter and was named Mona. The link between Mona and the DMI resistance phenotype became even more apparent after studying the genetic diversity between the isolates. In contrast to DMI-S isolates, DMI-R isolates contained an MfCYP51 gene of identical nucleotide sequence associated with Mona. Still, DMI-R isolates were not genetically identical as revealed by Microsatellite-PCR analysis. Also, real-time PCR analysis of genomic DNA indicated that the relative copy number of Mona among DMI-S and DMI-R isolates varied, suggesting its potential for mobility. Interestingly, constitutive expression of the MfABC1 gene in DMI-R isolates was slightly lower than that of DMI-S isolates, but expression of the MfABC1 gene in DMI-R isolates was induced in mycelium after propiconazole treatment. Therefore, the MfABC1 gene may play a minor role in DMI fungicide resistance in M. fructicola. Our results strongly suggest that overexpression of the MfCYP51 gene is an important mechanism in conferring DMI fungicide resistance in M. fructicola field isolates from Georgia and that this overexpression is correlated with Mona located upstream of the MfCYP51 gene.
doi:10.1128/AEM.02159-07
PMCID: PMC2223246  PMID: 18024679
22.  Structure of Pyrazole Derivatives Impact their Affinity, Stoichiometry, and Cooperative Interactions for CYP2E1 Complexes 
CYP2E1 plays a critical role in detoxication and carcinogenic activation of drugs, pollutants, and dietary compounds; however, these metabolic processes can involve poorly characterized cooperative interactions that compromise the ability to understand and predict CYP2E1 metabolism. Herein, we employed an array of ten azoles with an emphasis on pyrazoles to establish the selectivity of catalytic and cooperative CYP2E1 sites through binding and catalytic studies. Spectral binding studies for monocyclic azoles suggested two binding events, while bicyclic azoles suggested one. Pyrazole had moderate affinity toward the CYP2E1 catalytic site that improved when a methyl group was introduced at either position 3 or 4. The presence of methyl groups simultaneously at positions 3 and 5 blocked binding, and a phenyl group at position 3 did not improve binding affinity. In contrast, pyrazole fusion to a benzene or cyclohexane ring greatly increased affinity. The consequences of these binding events on CYP2E1 catalysis were studied through inhibition studies with 4-nitrophenol, a substrate known to bind both sites. Most pyrazoles shared a common mixed cooperative inhibition mechanism in which pyrazole binding rescued CYP2E1 from substrate inhibition. Overall, inhibitor affinities toward the CYP2E1 catalytic site were similar to those reported in binding studies, and the same trend was observed for binding at the cooperative site. Taken together, these studies identified key structural determinants in the affinity and stoichiometry of azole interactions with CYP2E1 and consequences on catalysis that further advance an understanding of the relationship between structure and function for this enzyme.
doi:10.1016/j.abb.2013.06.011
PMCID: PMC3781954  PMID: 23811196
Cytochrome P450; CYP2E1; allostery; cooperativity; azole; structure-function
23.  Small-Molecule Scaffolds for CYP51 Inhibitors Identified by High-Throughput Screening and Defined by X-Ray Crystallography▿  
Antimicrobial Agents and Chemotherapy  2007;51(11):3915-3923.
Sterol 14α-demethylase (CYP51), a major checkpoint in membrane sterol biosynthesis, is a key target for fungal antibiotic therapy. We sought small organic molecules for lead candidate CYP51 inhibitors. The changes in CYP51 spectral properties following ligand binding make CYP51 a convenient target for high-throughput screening technologies. These changes are characteristic of either substrate binding (type I) or inhibitor binding (type II) in the active site. We screened a library of 20,000 organic molecules against Mycobacterium tuberculosis CYP51 (CYP51Mt), examined the top type I and type II binding hits for their inhibitory effects on M. tuberculosis in broth culture, and analyzed them spectrally for their ability to discriminate between CYP51Mt and two reference M. tuberculosis CYP proteins, CYP130 and CYP125. We determined the binding mode for one of the top type II hits, α-ethyl-N-4-pyridinyl-benzeneacetamide (EPBA), by solving the X-ray structure of the CYP51Mt-EPBA complex to a resolution of 1.53 Å. EPBA binds coordinately to the heme iron in the CYP51Mt active site through a lone pair of nitrogen electrons and also through hydrogen bonds with residues H259 and Y76, which are invariable in the CYP51 family, and hydrophobic interactions in a phylum- and/or substrate-specific cavity of CYP51. We also identified a second compound with structural and binding properties similar to those of EPBA, 2-(benzo[d]-2,1,3-thiadiazole-4-sulfonyl)-2-amino-2-phenyl-N-(pyridinyl-4)-acetamide (BSPPA). The congruence between the geometries of EPBA and BSPPA and the CYP51 binding site singles out EPBA and BSPPA as lead candidate CYP51 inhibitors with optimization potential for efficient discrimination between host and pathogen enzymes.
doi:10.1128/AAC.00311-07
PMCID: PMC2151439  PMID: 17846131
24.  Diverse Inhibitor Chemotypes Targeting Trypanosoma cruzi CYP51 
Background
Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority.
Methodology/Principal Findings
The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar KD values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC50 <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC50 of 17 nM and was trypanocidal at 40 nM.
Conclusions/Significance
The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi.
Author Summary
Chagas Disease is the leading cause of heart disease in Latin America and an emerging infection in Europe and North America. The clinical presentation of Chagas Disease arises from infection by the protozoan parasite Trypanosoma cruzi, which leads to progressive cardiomyopathy. No vaccine is available and chemotherapeutic options are limited to the drugs benznidazole and nifurtimox, which are used during the acute phase but may cause severe gastrointestinal and neurological side effects and are not commonly used in the chronic phase. Neither drug is approved by the FDA for use in the United States. The need for effective new therapy is urgent. A validated therapeutic target in T. cruzi is CYP51, an essential enzyme in the sterol biosynthesis pathway. We report results of high-throughput screening of small molecules directly against CYP51, confirmed by in vitro medium-throughput screening of the hits against T. cruzi-infected mammalian cells. We have identified a potent T. cruzi inhibitor as well as a diverse collection of low molecular weight hits with high affinity to CYP51. We have applied computational chemistry to relate CYP51 to other pharmacologic targets. This analysis allowed us to identify molecules already produced by pharmaceutical companies for future experimental testing against T. cruzi.
doi:10.1371/journal.pntd.0001736
PMCID: PMC3409115  PMID: 22860142
25.  MYCOBACTERIUM TUBERCULOSIS CYP130: CRYSTAL STRUCTURE, BIOPHYSICAL CHARACTERIZATION, AND INTERACTIONS WITH ANTIFUNGAL AZOLE DRUGS* 
The Journal of biological chemistry  2007;283(8):5069-5080.
CYP130 is one of the 20 Mycobacterium tuberculosis cytochrome P450 enzymes, only two of which, CYP51 and CYP121, have so far been studied as individually expressed proteins. Herein we characterize a third heterologously expressed Mycobacterium tuberculosis cytochrome P450, CYP130, by UV-visible spectroscopy, isothermal titration calorimetry, and x-ray crystallography, including determination of the crystal structures of ligand-free and econazole-bound CYP130 at a resolution of 1.46 Å and 3.0 Å, respectively. Ligand-free CYP130 crystallizes in an ‘open’ conformation as a monomer, whereas the econazole-bound form crystallizes in a ‘closed’ conformation as a dimer. Conformational changes enabling the ‘open-closed’ transition involve repositioning of the BC loop and the F and G helices that envelop the inhibitor in the binding site and reshape the protein surface. Crystal structure analysis shows that the portion of the BC-loop relocates as much as 18 Å between the open and closed conformations. Binding of econazole to CYP130 involves a conformational change and is mediated by both a set of hydrophobic interactions with amino acid residues in the active site and coordination of the heme iron. CYP130 also binds miconazole with virtually the same binding affinity as econazole and clotrimazole and ketoconazole with somewhat lower affinities, which makes it a plausible target for this class of therapeutic drugs. Overall, binding of the azole inhibitors is a sequential two-step entropy-driven endothermic process. Binding of econazole and clotrimazole exhibits positive cooperativity that may reflect a propensity of CYP130 to associate into a dimeric structure.
doi:10.1074/jbc.M708734200
PMCID: PMC2958778  PMID: 18089574

Results 1-25 (369467)