Search tips
Search criteria

Results 1-25 (823774)

Clipboard (0)

Related Articles

1.  KRAS Testing for Anti-EGFR Therapy in Advanced Colorectal Cancer 
Executive Summary
In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.
Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenomics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.
The following reports can be publicly accessed at the MAS website at: or at
Gene Expression Profiling for Guiding Adjuvant Chemotherapy Decisions in Women with Early Breast Cancer: An Evidence-Based and Economic Analysis
Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based and Economic Analysis
K-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based and Economic Analysis.
The objective of this systematic review is to determine the predictive value of KRAS testing in the treatment of metastatic colorectal cancer (mCRC) with two anti-EGFR agents, cetuximab and panitumumab. Economic analyses are also being conducted to evaluate the cost-effectiveness of KRAS testing.
Clinical Need: Condition and Target Population
Metastatic colorectal cancer (mCRC) is usually defined as stage IV disease according to the American Joint Committee on Cancer tumour node metastasis (TNM) system or stage D in the Duke’s classification system. Patients with advanced colorectal cancer (mCRC) either present with metastatic disease or develop it through disease progression.
KRAS (Kristen-RAS, a member of the rat sarcoma virus (ras) gene family of oncogenes) is frequently mutated in epithelial cancers such as colorectal cancer, with mutations occurring in mutational hotspots (codons 12 and 13) of the KRAS protein. Involved in EGFR-mediated signalling of cellular processes such as cell proliferation, resistance to apoptosis, enhanced cell motility and neoangiogenesis, a mutation in the KRAS gene is believed to be involved in cancer pathogenesis. Such a mutation is also hypothesized to be involved in resistance to targeted anti-EGFR (epidermal growth factor receptor with tyrosine kinase activity) treatments such as cetuximab and panitumumab, hence, the important in evaluating the evidence on the predictive value of KRAS testing in this context.
KRAS Mutation Testing in Advanced Colorectal Cancer
Both cetuximab and panitumumab are indicated by Health Canada in the treatment of patients with metastatic colorectal cancer whose tumours are WT for the KRAS gene. Cetuximab may be offered as monotherapy in patients intolerant to irinotecan-based chemotherapy or in patients who have failed both irinotecan and oxaliplatin-based regimens and who received a fluoropyrimidine. It can also be administered in combination with irinotecan in patients refractory to other irinotecan-based chemotherapy regimens. Panitumumab is only indicated as a single agent after failure of fluoropyrimidine-, oxaliplatin-, and irinotecan-containing chemotherapy regimens.
In Ontario, patients with advanced colorectal cancer who are refractory to chemotherapy may be offered the targeted anti-EGFR treatments cetuximab or panitumumab. Eligibility for these treatments is based on the KRAS status of their tumour, derived from tissue collected from surgical or biopsy specimens. It is believed that KRAS status is not affected by treatments, therefore, for patients for whom surgical tissue is available for KRAS testing, additional biopsies prior to treatment with these targeted agents is not necessary. For patients that have not undergone surgery or for whom surgical tissue is not available, a biopsy of either the primary or metastatic site is required to determine their KRAS status. This is possible as status at the metastatic and primary tumour sites is considered to be similar.
Research Question
To determine if there is predictive value of KRAS testing in guiding treatment decisions with anti-EGFR targeted therapies in advanced colorectal cancer patients refractory to chemotherapy.
Research Methods
Literature Search
The Medical Advisory Secretariat followed its standard procedures and on May 18, 2010, searched the following electronic databases: Ovid MEDLINE, EMBASE, Ovid MEDLINE In-Process & Other Non-Indexed Citations, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews and The International Network of Agencies for Health Technology Assessment database.
The subject headings and keywords searched included colorectal cancer, cetuximab, panitumumab, and KRAS testing. The search was further restricted to English-language articles published between January 1, 2009 and May 18, 2010 resulting in 1335 articles for review. Excluded were case reports, comments, editorials, nonsystematic reviews, and letters. Studies published from January 1, 2005 to December 31, 2008 were identified in a health technology assessment conducted by the Agency for Healthcare Research and Quality (AHRQ), published in 2010. In total, 14 observational studies were identified for inclusion in this EBA: 4 for cetuximab monotherapy, 7 for the cetuximab-irinotecan combination therapy, and 3 to be included in the review for panitumumab monotherapy
Inclusion Criteria
English-language articles, and English or French-language HTAs published from January 2005 to May 2010, inclusive.
Randomized controlled trials (RCTs) or observational studies, including single arm treatment studies that include KRAS testing.
Studies with data on main outcomes of interest, overall and progression-free survival.
Studies of third line treatment with cetuximab or panitumumab in patients with advanced colorectal cancer refractory to chemotherapy.
For the cetuximab-irinotecan evaluation, studies in which at least 70% of patients in the study received this combination therapy.
Exclusion Criteria
Studies whose entire sample was included in subsequent publications which have been included in this EBA.
Studies in pediatric populations.
Case reports, comments, editorials, or letters.
Outcomes of Interest
Overall survival (OS), median
Progression-free-survival (PFS), median.
Response rates.
Adverse event rates.
Quality of life (QOL).
Summary of Findings of Systematic Review
Cetuximab or Panitumumab Monotherapy
Based on moderate GRADE observational evidence, there is improvement in PFS and OS favouring patients without the KRAS mutation (KRAS wildtype, or KRAS WT) compared to those with the mutation.
Cetuximab-Irinotecan Combination Therapy
There is low GRADE evidence that testing for KRAS may optimize survival benefits in patients without the KRAS mutation (KRAS wildtype, or KRAS WT) compared to those with the mutation.
However, cetuximab-irinotecan combination treatments based on KRAS status discount any effect of cetuximab in possibly reversing resistance to irinotecan in patients with the mutation, as observed effects were lower than for patients without the mutation. Clinical experts have raised concerns about the biological plausibility of this observation and this conclusion would, therefore, be regarded as hypothesis generating.
Economic Analysis
Cost-effectiveness and budget impact analyses were conducted incorporating estimates of effectiveness from this systematic review. Evaluation of relative cost-effectiveness, based on a decision-analytic cost-utility analysis, assessed testing for KRAS genetic mutations versus no testing in the context of treatment with cetuximab monotherapy, panitumumab monotherapy, cetuximab in combination with irinotecan, and best supportive care.
Of importance to note is that the cost-effectiveness analysis focused on the impact of testing for KRAS mutations compared to no testing in the context of different treatment options, and does not assess the cost-effectiveness of the drug treatments alone.
KRAS status is predictive of outcomes in cetuximab and panitumumab monotherapy, and in cetuximab-irinotecan combination therapy.
While KRAS testing is cost-effective for all strategies considered, it is not equally cost-effective for all treatment options.
PMCID: PMC3377508  PMID: 23074403
2.  KRAS G13D Mutation and Sensitivity to Cetuximab or Panitumumab in a Colorectal Cancer Cell Line Model 
The treatment of metastatic colorectal cancer (mCRC) includes drugs targeting the epidermal growth factor receptor (EGFR). Mutation in codon 12 or 13 in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene, downstream of the EGFR, evokes constitutive activation of the RAS/RAF/MAPK signaling pathway and correlates with resistance to anti-EGFR monoclonal antibody (mAb) therapies. However, a retrospective study reported that a proportion of patients with the KRAS G13D mutation may respond to cetuximab. A similar analysis for panitumumab was not as conclusive. We sought to determine the sensitivity of CRC cell lines to cetuximab or panitumumab treatment and to investigate the correlation of the KRAS mutational status of the CRC cell lines to the responsiveness to cetuximab or panitumumab.
To determine the responsiveness of CRC cell lines to cetuximab or panitumumab, cell lines were treated with an optimized concentration of each mAb, and proliferation assays were conducted.
After treatment with cetuximab or panitumumab, at the optimum concentration of 8 μg/well, the KRAS G13D mutant cell lines HCT-116, LoVo, and T84 showed intermediate sensitivity to both treatments, between the resistant KRAS G12V mutant cell line SW480 and the sensitive KRAS wild-type cell line LIM1215. One of the G13D cell lines was significantly more sensitive to panitumumab than to cetuximab (P = .02).
The specific KRAS mutation determines the responsiveness to anti-EGFR monoclonal antibody treatment, corresponding to reported clinical observations.
PMCID: PMC3930148  PMID: 24558511
3.  Nuclear EGFR Contributes to Acquired Resistance to Cetuximab 
Oncogene  2009;28(43):3801-3813.
Epidermal growth factor receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase involved in the etiology of several human cancers. Cetuximab is an EGFR blocking-antibody that has been approved for the treatment of patients with cancers of the head and neck (HNSCC) and metastatic colorectal cancer (mCRC). Previous reports have shown that EGFR translocation to the nucleus is associated with cell proliferation. Here we investigated mechanisms of acquired resistance to cetuximab using a model derived from the non-small cell lung cancer line H226. We demonstrated that cetuximab-resistant cells overexpress HER family ligands including epidermal growth factor (EGF), amphiregulin (AR), heparin-binding EGF (HB-EGF) and β-cellulin. Overexpression of these ligands is associated with the nuclear translocation of the EGFR and this process was mediated by the Src family kinases (SFK). Treatment of cetuximab-resistant cells with the SFK inhibitor, dasatinib, resulted in loss of nuclear EGFR, increased membrane expression of the EGFR and re-sensitization to cetuximab. In addition, expression of a nuclear localization sequence tagged EGFR in cetuximab-sensitive cells increased resistance to cetuximab both in vitro and in mouse xenografts. Collectively, these data suggest that nuclear expression of EGFR may be an important molecular determinant of resistance to cetuximab therapy and provides a rationale for investigating nuclear EGFR as a biomarker for cetuximab response. Further, these data suggest a rationale for the design of clinical trials that examine the value of treating patients with cetuximab-resistant tumors with inhibitors of SFKs in combination with cetuximab.
PMCID: PMC2900381  PMID: 19684613
EGFR; nuclear; cetuximab; resistance; Src-family kinases; dasatinib
4.  Emergence of KRAS mutations and acquired resistance to anti EGFR therapy in colorectal cancer 
Nature  2012;486(7404):532-536.
A main limitation of therapies that selectively target kinase signaling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of EGFR, is effective in a subset of KRAS wild type metastatic colorectal cancers1. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug2. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood3-8. Here, we show for the first time that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance but resistant cells remained sensitive to combinatorial inhibition of EGFR and MEK. Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6/10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab treated patients as early as 10 months prior to radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months prior to radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.
PMCID: PMC3927413  PMID: 22722830
KRAS; colorectal cancer; targeted therapy; acquired resistance
5.  Analysis of the anti-tumor effect of cetuximab using protein kinetics and mouse xenograft models 
BMC Research Notes  2011;4:140.
The binding of EGFR and its ligands leads to autophosphorylation of receptor tyrosine kinase as well as subsequent activation of signal transduction pathways that are involved in regulating cellular proliferation, differentiation, and survival. An EGFR inhibitor, cetuximab binds to EGFR and consequently blocks a variety of cellular processes. KRAS/BRAF mutations are known to be associated with a low response rate to cetuximab. In the present study, to clarify the anti-tumor mechanisms of cetuximab, we evaluated the KRAS/BRAF status, phosphorylation level of the EGFR pathway, and the tumor suppression effect in vivo, using a human colon cancer cell line HT29, which exhibited the highest EGFR expression in response to the cetuximab therapy among the 6 colorectal cancer cell lines tested.
The conventional growth suppression assay did not work efficiently with cetuximab. EGF, TGF-α, and IGF activated the EGFR/MAPK cell signaling pathway by initiating the phosphorylation of EGFR. Cetuximab partially inhibited the EGFR/MAPK pathway induced by EGF, TGF-α, and IGF. However, cetuximab exposure induced the EGFR, MEK, and ERK1/2 phosphorylation by itself. Mouse xenograft tumor growth was significantly inhibited by cetuximab and both cetuximab-treated and -untreated xenograft specimens exhibited phosphorylations of the EGFR pathway proteins.
We have confirmed that cetuximab inhibited the EGFR/MAPK pathway and reduced tumor growth in the xenografts while the remaining tumor showed EGFR pathway activation. These results suggest that: ( i ) The effect of cetuximab in growth signaling is not sufficient to induce complete growth suppression in vitro; ( ii ) time-course monitoring may be necessary to evaluate the effect of cetuximab because EGFR signaling is transmitted in a minute order; and ( iii ) cetuximab treatment may have cells acquired resistant selectively survived in the heterogeneous cancer population.
PMCID: PMC3118158  PMID: 21554739
6.  Overcoming acquired resistance to cetuximab by dual targeting HER family receptors with antibody-based therapy 
Molecular Cancer  2014;13(1):242.
Cetuximab, an anti-EGFR monoclonal antibody, is used to treat several cancers. However, many patients who initially respond to cetuximab acquire resistance. To examine mechanisms of acquired resistance, we developed a series of cetuximab-resistant (CtxR) clones derived from the cetuximab sensitive (CtxS) non-small cell lung cancer (NSCLC) cell line H226. Previous studies characterizing this model revealed that: 1) EGFR was robustly overexpressed in CtxR clones due to decreased EGFR ubiquitination and degradation and 2) CtxR clones expressed increased HER2 and HER3 activation resulting in constitutive activation of the PI3K/AKT signaling axis. These findings suggest that dual targeting HER family receptors would be highly beneficial in the CtxR setting.
Since HER3 has been implicated in resistance to EGFR inhibitors, the efficacy of dually targeting both EGFR and HER3 in CtxR models was evaluated. First, EGFR and HER3 expression were knocked down with siRNAs. Compared to the CtxS parental cell line (HP), all CtxR clones exhibited robust decreases in cell proliferation upon dual knockdown. Analysis of CtxR clones indicated that neuregulin-1 was highly overexpressed compared to HP cells. Incubation of HP cells with neuregulin-1 rendered them resistant to cetuximab. Next, dual treatment of CtxR clones with cetuximab and the HER3 neutralizing monoclonal antibody (mAb) U3-1287 led to potent anti-proliferative effects. Blockade of EGFR with cetuximab resulted in inactivation of MAPK, while blockade of HER3 with U3-1287 resulted in the inactivation of AKT. Treatment with both mAbs resulted in knockdown of both signaling pathways simultaneously. HER2 was also strongly inactivated upon dual mAb therapy, suggesting that this treatment regimen can diminish signaling from three HER family receptors. De novo CtxR H226 mouse xenografts were established to determine if dual therapy could overcome acquired resistance to cetuximab in vivo. Tumors that had acquired resistance to cetuximab were significantly growth delayed upon dual treatment of U3-1287 and cetuximab compared to those continued on cetuximab only. Combinatorial-treated xenograft tumors expressed decreased Ki67 and increased cleaved caspase-3 levels compared to tumors treated with either monotherapy.
These studies demonstrate that dually targeting HER family receptors with antibody-based therapies can overcome acquired resistance to cetuximab.
PMCID: PMC4283113  PMID: 25344208
EGFR; HER3; U3-1287; Cetuximab; Acquired cetuximab-resistance; Non-small cell lung cancer; MAPK; AKT
7.  Biomarkers of benefit from cetuximab-based therapy in metastatic colorectal cancer: interaction of EGFR ligand expression with RAS/RAF, PIK3CA genotypes 
BMC Cancer  2013;13:49.
More than half of patients with KRAS-wild type advanced colorectal cancer (CRC) fail anti-EGFR monoclonal antibodies. We studied EGFR-axis messenger RNA (mRNA) expression and RAS, RAF, PIK3CA mutations in order to identify additional biomarkers of cetuximab efficacy.
Previously genotyped (KRAS, NRAS, BRAF, PIK3CA mutations) formalin-fixed paraffin-embedded tumour biopsies of 226 cetuximab-treated CRC patients (1st to 3rd line therapy) were assessed for mRNA expression of epidermal growth factor receptor (EGFR) and its ligands EGF, Transofrming Growth Factor-a (TGFA), Amphiregulin (AREG) and Epiregulin (EREG) with real time quantitative PCR. Mutations were detected in 72 (31.9%) tumours for KRAS, in 6 (2.65%) for BRAF, in 7 (3.1%) for NRAS and in 37 (16.4%) for PIK3CA.
Only PIK3CA mutations occasionally coexisted with other gene mutations. In univariate analysis, prognostic significance for survival ( from metastases until death) was seen for BRAF mutations (Hazard Ratio HR 8.1, 95% CI 3.4-19), codon 12-only KRAS mutations (HR 1.62, 95% CI 1.1-2.4), high AREG mRNA expression only in KRAS wild type CRC (HR 0.47, 95% CI 0.3-0.7) and high EREG mRNA expression irrespective of KRAS mutation status (HR 0.45, 95% CI 0.28-0.7). EREG tumoural mRNA expression was significantly associated with a 2.26-fold increased likelihood of objective response to cetuximab therapy (RECIST 1.1). In multivariate analysis, favourable predictive factors were high AREG mRNA in KRAS wild type tumours, high EREG mRNA, low Ephrin A2 receptor mRNA. Cetuximab-treated patients with AREG-low KRAS wild type CRC fared very poorly, their survival being similar to KRAS mutant CRC. Patients with KRAS codon 13 or other non-codon 12 mutations had a median survival (30 months, 95% CI 20–35) similar to that of patients with KRAS wild-type (median survival 29 months, 95% CI 25–35), in contrast to patients with KRAS codon 12 mutations who fared worse (median survival 19 months, 95% CI 15–26).
BRAF and codon 12 KRAS mutations predict for adverse outcome of CRC patients receiving cetuximab. AREG mRNA reflects EGFR signalling in KRAS wild type tumours, predicting for cetuximab efficacy when high and failure when low. EREG may have a prognostic role independent of KRAS mutation.
PMCID: PMC3599697  PMID: 23374602
Cetuximab; Epidermal growth factor receptor; EGFR ligands; KRAS; BRAF; PI3K gene mutations; Biomarkers
8.  KRAS mutant colorectal tumors 
Small GTPases  2012;3(1):34-39.
The treatment of metastatic colorectal cancer (mCRC) remains one of the largest hurdles in cancer therapeutics to date. The most advanced treatment option for mCRC patients are anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (mAbs) that bind to and inhibit the activity of EGFR. While the use of anti-EGFR mABs has had great impact in the treatment of mCRC, it has now been widely accepted that mCRC tumors with a mutation in the small GTPase KRAS do not respond to these therapies. KRAS mutations allow for EGFR independent activation of various oncogenic signaling cascades. In attempts to inhibit KRAS mutant tumor growth, BRAF, MEK and farsenyltransferase inhibitors have been used, however, their clinical efficacy is still accruing in the setting of CRC. Recent data suggests that various other inhibitors, including inhibitors of Src family kinases (SFK) and hepatocyte growth factor receptor (MET), may have potential preclinical and clinical success in KRAS mutant tumors. Additionally, it is becoming increasingly clear that different KRAS missense mutations may have varied biological responses to cetuximab, suggesting that cetuximab may still be a potential therapeutic option in some KRAS mutant tumors. In this review, we highlight the importance for both improved multimodality approaches for treating KRAS mutant mCRC tumors and stratification of KRAS mutations in response to different treatment regimes in order to optimize the best possible care for mCRC patients.
PMCID: PMC3398915  PMID: 22714415
EGFR; GTPase; KRAS; cetuximab; metastatic colorectal cancer; resistance
9.  Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab 
Cancer biology & therapy  2009;8(8):696-703.
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a major role in oncogenesis. Cetuximab is an EGFR-blocking antibody that is FDA approved for use in patients with metastatic colorectal cancer (mCRC) and head and neck squamous cell carcinoma (HNSCC). Although cetuximab has shown strong clinical benefit for a subset of cancer patients, most become refractory to cetuximab therapy. We reported that cetuximab-resistant NSCLC line NCI-H226 cells have increased steady-state expression and activity of EGFR secondary to altered trafficking/degradation and this increase in EGFR expression and activity lead to hyper-activation of HER3 and down stream signals to survival. We now present data that Src family kinases (SFKs) are highly activated in cetuximab-resistant cells and enhance EGFR activation of HER3 and PI(3)K/Akt. Studies using the Src kinase inhibitor dasatinib decreased HER3 and PI(3)K/Akt activity. In addition, cetuximab-resistant cells were resensitized to cetuximab when treated with dasatinib. These results indicate that SFKs and EGFR cooperate in acquired resistance to cetuximab and suggest a rationale for clinical strategies that investigate combinatorial therapy directed at both the EGFR and SFKs in patients with acquired resistance to cetuximab.
PMCID: PMC2895567  PMID: 19276677
EGFR; cetuximab; resistance; Src-family kinases; dasatinib
10.  Targeting CD137 enhances the efficacy of cetuximab 
The Journal of Clinical Investigation  2014;124(6):2668-2682.
Treatment with cetuximab, an EGFR-targeting IgG1 mAb, results in beneficial, yet limited, clinical improvement for patients with head and neck (HN) cancer as well as colorectal cancer (CRC) patients with WT KRAS tumors. Antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells contributes to the efficacy of cetuximab. The costimulatory molecule CD137 (4-1BB) is expressed following NK and memory T cell activation. We found that isolated human NK cells substantially increased expression of CD137 when exposed to cetuximab-coated, EGFR-expressing HN and CRC cell lines. Furthermore, activation of CD137 with an agonistic mAb enhanced NK cell degranulation and cytotoxicity. In multiple murine xenograft models, including EGFR-expressing cancer cells, HN cells, and KRAS-WT and KRAS-mutant CRC, combined cetuximab and anti-CD137 mAb administration was synergistic and led to complete tumor resolution and prolonged survival, which was dependent on the presence of NK cells. In patients receiving cetuximab, the level of CD137 on circulating and intratumoral NK cells was dependent on postcetuximab time and host FcyRIIIa polymorphism. Interestingly, the increase in CD137-expressing NK cells directly correlated to an increase in EGFR-specific CD8+ T cells. These results support development of a sequential antibody approach against EGFR-expressing malignancies that first targets the tumor and then the host immune system.
PMCID: PMC4089447  PMID: 24837434
11.  Detection of activated KRAS from cancer patient peripheral blood using a weighted enzymatic chip array 
The KRAS oncogene was one of the earliest discoveries of genetic alterations in colorectal and lung cancers. Moreover, KRAS somatic mutations might be used for predicting the efficiency of anti-EGFR therapeutic drugs. The purpose of this research was to improve Activating KRAS Detection Chip by using a weighted enzymatic chip array (WEnCA) platform to detect activated KRAS mutations status in the peripheral blood of non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC) patients in Taiwan.
Our laboratory developed an Activating KRAS Detection Chip and a WEnCA technique that can detect activated KRAS mutation status by screening circulating cancer cells in the surrounding bloodstream. We collected 390 peripheral blood samples of NSCLC patients (n = 210) and CRC patients (n = 180) to evaluate clinical KRAS activation using this gene array diagnosis apparatus, an Activating KRAS Detection Chip and a WEnCA technique. Subsequently, we prospectively enrolled 88 stage III CRC patients who received adjuvant FOLFOX-4 chemotherapy with or without cetuximab. We compared the chip results of preoperative blood specimens and their relationship with disease control status in these patients.
After statistical analysis, the sensitivity of WEnCA was found to be 93%, and the specificity was found to be 94%. Relapse status and chip results among the stage III CRC patients receiving FOLFOX-4 plus cetuximab (n = 59) and those receiving FOLFOX-4 alone (n = 29) were compared. Among the 51 stage III CRC patients with chip negative results who were treated with FOLFOX-4 plus cetuximab chemotherapy, the relapse rate was 33.3%; otherwise, the relapse rate was 48.5% among the 23 out of 88 patients with chip negative results who received FOLFOX-4 alone. Negative chip results were significantly associated to better treatment outcomes in the FOLFOX-4 plus cetuximab group (P = 0.047).
The results demonstrated that the WEnCA technique is a sensitive and convenient technique that produces easy-to-interpret results for detecting activated KRAS from the peripheral blood of cancer patients. We suggest that the WEnCA technique is also a potential tool for predicting responses in CRC patients following FOLFOX-4 plus cetuximab chemotherapy.
PMCID: PMC4055935  PMID: 24884535
Colorectal cancer; Lung cancer; Peripheral blood; Weighted enzymatic chip array (WEnCA); Activating KRAS Detection Chip
12.  Expression of Epidermal Growth Factor Receptor Detected by Cetuximab Indicates Its Efficacy to Inhibit In Vitro and In Vivo Proliferation of Colorectal Cancer Cells 
PLoS ONE  2013;8(6):e66302.
Cetuximab is a chimeric mouse–human monoclonal antibody that targets the human epidermal growth factor receptor (EGFR). However, EGFR expression determined by immunohistochemistry does not predict clinical outcomes of colorectal cancer (CRC) patients treated with cetuximab. Therefore, we evaluated the correlation between EGFR levels detected by cetuximab and drug sensitivities of CRC cell lines (Caco-2, WiDR, SW480, and HCT116) and the A431 epidermoid carcinoma cell line. We used flow cytometry (FCM) to detect EGFR-binding of biotinylated cetuximab on the cell surface. Subcloned cell lines showing the highest and lowest EGFR expression levels were chosen for further study. Cytotoxic assays were used to determine differential responses to cetuximab. Xenograft models treated with cetuximab intraperitoneally to assess sensitivity to cetuximab. Strong responses to cetuximab were specifically exhibited by subcloned cells with high EGFR expression levels. Furthermore, cetuximab inhibited the growth of tumors in xenograft models with high or low EGFR expression levels by 35% and 10%–20%, respectively. We conclude that detection of EGFR expression by cetuximab promises to provide a novel, sensitive, and specific method for predicting the sensitivity of CRC to cetuximab.
PMCID: PMC3688890  PMID: 23824671
13.  Dasatinib blocks cetuximab- and radiation-induced nuclear translocation of the epidermal growth factor receptor in head and neck squamous cell carcinoma 
Background and Purpose
The aberrant expression of epidermal growth factor receptor (EGFR) has been linked to the etiology of head and neck squamous cell carcinoma (HNSCC). The first major phase III trial combining cetuximab with radiation confirmed a strong survival advantage. However, both cetuximab and radiation can promote EGFR translocation to the nucleus where it enhances resistance to both of these modalities. In this report we sought to determine how to block cetuximab and radiation–induced translocation of EGFR to the nucleus in HNSCC cell lines.
Material and Methods
We utilized three established HNSCC cell lines, SCC1, SCC6 and SCC1483 and measured nuclear translocation of EGFR after treatment with cetuximab or radiation. We then utilized dasatinib (BMS-354825), a potent, orally bioavailable inhibitor of several tyrosine kinases, including the Src Family Kinases, to determine if SFKs blockade could abrogate cetuximab and radiation-induced nuclear EGFR translocation.
Cetuximab and radiation treatment of all three HNSCC lines lead to translocation of the EGFR to the nucleus. Blockade of SFKs abrogated cetuximab and radiation-induced EGFR translocation to the nucleus.
The data presented in this report suggests that both cetuximab and radiation can promote EGFR translocation to the nucleus and dasatinib can inhibit this process. Collectively these findings may suggest that dasatinib can limit EGFR translocation to the nucleus and may enhance radiotherapy plus cetuximab in HNSCC.
PMCID: PMC2974772  PMID: 20667610
EGFR; cetuximab; radiation; Src family kinases; dasatinib; head and neck cancer
14.  Modeling RAS phenotype in colorectal cancer uncovers novel molecular traits of RAS dependency and improves prediction of response to targeted agents in patients 
KRAS wild-type status is an imperfect predictor of sensitivity to anti-EGFR monoclonal antibodies in colorectal cancer (CRC), motivating efforts to identify novel molecular aberrations driving RAS. This study aimed to build a quantitative readout of RAS pathway activity to: (1) uncover molecular surrogates of RAS activity specific to CRC; (2) improve the prediction of cetuximab response in patients; (3) suggest new treatment strategies.
A model of RAS pathway activity was trained in a large CRC dataset and validated in three independent CRC patient datasets. Novel molecular traits were inferred from the TCGA CRC data. The ability of the RAS model to predict resistance to cetuximab was tested in mouse xenografts and three independent patient cohorts. Drug sensitivity correlations between our model and large cell line compendiums were performed.
The performance of the RAS model was remarkably robust across 3 validation datasets. (1) Our model confirmed the heterogeneity of the RAS phenotype in KRAS wild-type patients, and suggests novel molecular traits driving its phenotype (e.g. MED12 loss, GBXW7 mutation, MAP2K4 mutation). (2) It improved the prediction of response and progression free survival (HR=2.0; p<.01) to cetuximab compared to KRAS mutation (xenograft and patient cohorts). (3) Our model consistently predicted sensitivity to MEK inhibitors (p<.01) in 2 cell panel screens.
Modeling the RAS phenotype in CRC allows for the robust interrogation of RAS pathway activity across cell lines, xenografts, and patient cohorts. It demonstrates clinical utility in predicting response to anti-EGFR agents and MEK inhibitors.
PMCID: PMC4141655  PMID: 24170544
15.  Phase II Study of Dasatinib in Patients With Advanced Non–Small-Cell Lung Cancer 
Journal of Clinical Oncology  2010;28(30):4609-4615.
Src family kinases (SFKs) promote cancer progression and are commonly expressed in non–small-cell lung cancer (NSCLC), but the clinical effects of SFK inhibition in NSCLC are unknown. We conducted a phase II trial of the SFK inhibitor dasatinib for advanced NSCLC. We tested the hypotheses that the activation of epidermal growth factor receptor (EGFR) or SFK or modulation of serum cytokines may predict a response to dasatinib.
Patients and Methods
Patients received dasatinib as first-line therapy. Response was measured by tumor size on computed tomography scans and by metabolic activity on positron emission tomography scans. Tissue samples taken before patients received dasatinib were tested for EGFR and Kras mutation and phosphorylated SFK expression.
Thirty-four patients were enrolled. The overall disease control rate (partial responses plus stable disease) for dasatinib was 43%. One patient had a partial response to therapy. Eleven patients (32%) had a metabolic response to dasatinib. SFK activation and EGFR and Kras mutations in tumor tissue did not predict response to dasatinib. Significant toxicities included fatigue and dyspnea. The presence of a pleural effusion before dasatanib therapy predicted the development of a clinically significant effusion during therapy.
Dasatinib as a single agent had modest clinical activity that was lower than that generally observed in patients with NSCLC who receive chemotherapy. Pleural effusion was an expected and problematic toxicity that was successfully treated with steroids, diuretics, and dose interruptions. Marked activity in one patient and prolonged stable disease in four others suggested a potential subpopulation of patients with dasatinib-sensitive NSCLC.
PMCID: PMC2974341  PMID: 20855820
16.  A gene expression predictor of response to EGFR-targeted therapy stratifies progression-free survival to cetuximab in KRAS wild-type metastatic colorectal cancer 
BMC Cancer  2009;9:145.
The anti-EGFR monoclonal antibody cetuximab is used in metastatic colorectal cancer (CRC), and predicting responsive patients garners great interest, due to the high cost of therapy. Mutations in the KRAS gene occur in ~40% of CRC and are a negative predictor of response to cetuximab. However, many KRAS-wildtype patients do not benefit from cetuximab. We previously published a gene expression predictor of sensitivity to erlotinib, an EGFR inhibitor. The purpose of this study was to determine if this predictor could identify KRAS-wildtype CRC patients who will benefit from cetuximab therapy.
Microarray data from 80 metastatic CRC patients subsequently treated with cetuximab were extracted from the study by Khambata-Ford et al. The study included KRAS status, response, and PFS for each patient. The gene expression data were scaled and analyzed using our predictive model. An improved predictive model of response was identified by removing features in the 180-gene predictor that introduced noise.
Forty-three of eighty patients were identified as harboring wildtype-KRAS. When the model was applied to these patients, the predicted-sensitive group had significantly longer PFS than the predicted-resistant group (median 88 days vs. 56 days; mean 117 days vs. 63 days, respectively, p = 0.008). Kaplan-Meier curves were also significantly improved in the predicted-sensitive group (p = 0.0059, HR = 0.4109. The model was simplified to 26 of the original 180 genes and this further improved stratification of PFS (median 147 days vs. 56.5 days in the predicted sensitive and resistant groups, respectively, p < 0.0001). However, the simplified model will require further external validation, as features were selected based on their correlation to PFS in this dataset.
Our model of sensitivity to EGFR inhibition stratified PFS following cetuximab in KRAS-wildtype CRC patients. This study represents the first true external validation of a molecular predictor of response to cetuximab in KRAS-WT metastatic CRC. Our model may hold clinical utility for identifying patients responsive to cetuximab and may therefore minimize toxicity and cost while maximizing benefit.
PMCID: PMC2687459  PMID: 19439077
17.  Phase I and pharmacokinetic study of dasatinib and cetuximab in patients with advanced solid malignancies 
Investigational New Drugs  2011;30(4):1575-1584.
Combined inhibition of epidermal growth factor receptor (EGFR) and Src family kinases (SFK) may lead to improved therapeutic effects. We evaluated the combination of dasatinib, an inhibitor of SFK and other kinases, and cetuximab, an anti-EGFR monoclonal antibody.
Patients and Methods
Patients with advanced solid malignancies received cetuximab intravenously on a standard weekly schedule and dasatinib orally, once daily at 3 dose levels: (1) 100 mg, (2) 150 mg, (3) 200 mg. Pharmacokinetic and pharmacodynamic studies of dasatinib were performed prior to starting cetuximab and following 14 days of treatment.
Twenty-five patients (3 dose level 1; 19 dose level 2; 3 dose level 3) were initially treated. Three patients developed dose-limiting toxicities: 1 at dose level 2 (headache) and 2 at dose level 3 (headache, nausea). Grade 3–4 toxicities in more than 2 patients included: dyspnea (4), vomiting (4), nausea (3), hypersensitivity reactions (3), headache (3) and anemia (3). Twenty-one patients developed headache (8 grade 1; 10 grade 2), which occurred after the loading of cetuximab and lasted 1–3 days. Six additional patients were treated with dasatinib starting 3 days after the loading dose of cetuximab; none developed headache after dasatinib. Dasatinib pharmacokinetics and a transient decrease in SFK PY416 levels in peripheral blood mononuclear cells were not altered by cetuximab. Patients with higher plasma TGF-alpha levels had worse progression-free survival.
Dasatinib 150 mg once daily plus weekly cetuximab is recommended for phase II studies. Early-onset headache was ameliorated by starting dasatinib after cetuximab.
PMCID: PMC3402509  PMID: 21881918
dasatinib; cetuximab; Src; epidermal growth factor receptor; phase I; pharmacokinetic; pharmacodynamic
18.  Colon cancer-derived oncogenic EGFR G724S mutant identified by whole genome sequence analysis is dependent on asymmetric dimerization and sensitive to cetuximab 
Molecular Cancer  2014;13:141.
Inhibition of the activated epidermal growth factor receptor (EGFR) with either enzymatic kinase inhibitors or anti-EGFR antibodies such as cetuximab, is an effective modality of treatment for multiple human cancers. Enzymatic EGFR inhibitors are effective for lung adenocarcinomas with somatic kinase domain EGFR mutations while, paradoxically, anti-EGFR antibodies are more effective in colon and head and neck cancers where EGFR mutations occur less frequently. In colorectal cancer, anti-EGFR antibodies are routinely used as second-line therapy of KRAS wild-type tumors. However, detailed mechanisms and genomic predictors for pharmacological response to these antibodies in colon cancer remain unclear.
We describe a case of colorectal adenocarcinoma, which was found to harbor a kinase domain mutation, G724S, in EGFR through whole genome sequencing. We show that G724S mutant EGFR is oncogenic and that it differs from classic lung cancer derived EGFR mutants in that it is cetuximab responsive in vitro, yet relatively insensitive to small molecule kinase inhibitors. Through biochemical and cellular pharmacologic studies, we have determined that cells harboring the colon cancer-derived G719S and G724S mutants are responsive to cetuximab therapy in vitro and found that the requirement for asymmetric dimerization of these mutant EGFR to promote cellular transformation may explain their greater inhibition by cetuximab than small-molecule kinase inhibitors.
The colon-cancer derived G719S and G724S mutants are oncogenic and sensitive in vitro to cetuximab. These data suggest that patients with these mutations may benefit from the use of anti-EGFR antibodies as part of the first-line therapy.
PMCID: PMC4072491  PMID: 24894453
19.  Germline polymorphisms in genes involved in the IGF1-pathway predict efficacy of cetuximab in wild-type KRAS mCRC patients 
The insulin-like growth factor 1 (IGF1) signalling pathway is an important growth-regulatory pathway, which plays a crucial role in colorectal cancer (CRC) proliferation, differentiation, migration, angiogenesis, and apoptosis. Previous studies showed that hyperactivation of the IGF1-Receptor (IGF1R) may result in resistance to anti-EGFR targeted treatment. We tested whether germline variations within the IGF1-pathway are associated with clinical outcome in wild-type KRAS (wt KRAS) drug-refractory metastatic CRC (mCRC) patients who were treated with cetuximab monotherapy (IMC-0144).
Experimental Design
Formalin-fixed paraffin-embedded (FFPE) tissue samples of 130 drug-refractory mCRC patients enrolled in IMC-0144, a phase II clinical trial of cetuximab monotherapy, were analyzed. gDNA was extracted from dissected FFPE tumor tissue and KRAS mutation status and six potentially functional IGF1 and IGF1R polymorphisms were analyzed using direct DNA-sequencing or PCR-RFLP. Tumor response analysis was based on recursive partitioning and survival analyses were based on univariate and multivariate hazard regression models.
In univariate and multivariate analyses five IGF-pathway SNPs were significantly associated with progression-free-survival (PFS) and/or overall survival (OS). In multivariate combined risk allele analysis the additive model for PFS and OS was significantly associated with the number of risk alleles in wt KRAS patients (p=0.001 and p=0.02, respectively). In addition, wt KRAS patients harbouring IGF1 rs2946834 A/A genotype had a 50 % ORR compared to 0% for A/G genotype.
These results indicate that IGF1-pathway polymorphisms are potential predictive/prognostic molecular markers for cetuximab efficacy in wt KRAS mCRC patients. Prospective biomarker embedded clinical trials are warranted to validate our findings.
PMCID: PMC2982939  PMID: 20935157
KRAS; IGF1; IGF1R; Metastatic colon cancer; cetuximab
20.  PIK3CA mutation / PTEN expression status predicts response of colon cancer cells to the EGFR inhibitor cetuximab 
Cancer research  2008;68(6):1953-1961.
Cetuximab is a monoclonal antibody that targets the human epidermal growth factor receptor (EGFR). Although approved for use in EGFR over-expressing advanced colorectal cancer, recent studies have demonstrated a lack of association between EGFR over-expression and cetuximab response, requiring the identification of novel biomarkers predictive of response to this agent. To do so, 22 colon cancer cell lines were screened for cetuximab response in-vitro and sensitive and resistant lines identified. In sensitive cell lines cetuximab induced a G0/G1 arrest without inducing apoptosis. Notably, cetuximab sensitive but not resistant cell lines were preferentially responsive to EGF-stimulated growth. While neither EGFR protein/mRNA expression nor gene copy number correlated with cetuximab response, examination of the mutation status of signaling components downstream of EGFR demonstrated that cells lines with activating PIK3CA mutations or loss of PTEN expression (PTEN null) were more resistant to cetuximab than PIK3CA wild type/PTEN expressing cell lines (14±5.0% versus 38.5±6.4% growth inhibition, mean ± SEM, p=0.008). Consistently, PIK3CA mutant isogenic HCT116 cells showed increased resistance to cetuximab compared to PIK3CA wild type controls. Furthermore, cell lines that were PIK3CA mutant/PTEN null and Ras/BRAF mutant were highly resistant to cetuximab compared to those without dual mutations / PTEN loss (10.8±4.3% versus 38.8±5.9% growth inhibition, respectively, p=0.002), indicating constitutive and simultaneous activation of the Ras and PIK3CA pathways confers maximal resistance to this agent. A priori screening of colon tumors for PTEN expression status and PIK3CA and Ras/BRAF mutation status could help stratify patients likely to benefit from this therapy.
PMCID: PMC3972216  PMID: 18339877
cetuximab; colon cancer cell lines; EGFR expression; EGFR copy number; PIK3CA; PTEN; Ras; BRAF
21.  Alternate Dosing of Cetuximab for Patients With Metastatic Colorectal Cancer 
Many chemotherapeutic regimens used to treat colorectal cancer (CRC), including 5-fluorouracil plus leucovorin in combination with irinotecan (FOLFIRI) or oxaliplatin (FOLFOX), are administered on an every-other-week (q2w) dosing schedule. Chemotherapy in combination with a monoclonal antibody (mAb) directed toward the epidermal growth factor receptor (EGFR) has emerged as an effective treatment option. There are currently 2 anti-EGFR mAbs approved by the United States Food and Drug Administration: cetuximab and panitumumab. Mutations of KRAS, a downstream protein in the EGFR pathway, predict resistance to EGFR mAbs. Thus, cetuximab and panitumumab are indicated for patients without a KRAS mutation (KRAS wild-type). Whereas panitumumab is approved on a q2w dosing schedule, cetuximab is approved as a weekly dose. However, only cetuximab is approved with FOLFIRI for frontline metastatic CRC, whereas panitumumab is approved for third-line. Because concomitant therapies are often administered q2w, the weekly dosing of cetuximab results in additional medical office visits.
Several studies have assessed the safety and efficacy of cetuximab q2w. For this review, a comprehensive literature search of studies evaluating cetuximab q2w dosing was conducted. Safety and efficacy results of these trials and retrospective analyses were summarized and reviewed.
In general, results with cetuximab q2w were comparable to those obtained with the weekly regimen.
These data suggest that for patients for whom weekly treatment with cetuximab presents a substantial burden to their quality of life, q2w dosing of cetuximab is a viable treatment option with a benefit:risk profile similar to that of the weekly regimen.
PMCID: PMC3674463  PMID: 23745159
22.  Tumour gene expression predicts response to cetuximab in patients with KRAS wild-type metastatic colorectal cancer 
British Journal of Cancer  2011;104(3):488-495.
Although it is accepted that metastatic colorectal cancers (mCRCs) that carry activating mutations in KRAS are unresponsive to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, a significant fraction of KRAS wild-type (wt) mCRCs are also unresponsive to anti-EGFR therapy. Genes encoding EGFR ligands amphiregulin (AREG) and epiregulin (EREG) are promising gene expression-based markers but have not been incorporated into a test to dichotomise KRAS wt mCRC patients with respect to sensitivity to anti-EGFR treatment.
We used RT–PCR to test 110 candidate gene expression markers in primary tumours from 144 KRAS wt mCRC patients who received monotherapy with the anti-EGFR antibody cetuximab. Results were correlated with multiple clinical endpoints: disease control, objective response, and progression-free survival (PFS).
Expression of many of the tested candidate genes, including EREG and AREG, strongly associate with all clinical endpoints. Using multivariate analysis with two-layer five-fold cross-validation, we constructed a four-gene predictive classifier. Strikingly, patients below the classifier cutpoint had PFS and disease control rates similar to those of patients with KRAS mutant mCRC.
Gene expression appears to identify KRAS wt mCRC patients who receive little benefit from cetuximab. It will be important to test this model in an independent validation study.
PMCID: PMC3049558  PMID: 21206494
EGFR; colorectal cancer; cetuximab
23.  Erlotinib is a viable treatment for tumors with acquired resistance to cetuximab 
Cancer Biology & Therapy  2011;12(5):436-446.
The epidermal growth factor receptor (EGFR) is an ubiquitously expressed receptor tyrosine kinase (RTK) and is recognized as a key mediator of tumorigenesis in many human tumors. Currently there are five EGFR inhibitors used in oncology, two monoclonal antibodies (panitumumab and cetuximab) and three tyrosine kinase inhibitors (erlotinib, gefitinib and lapatinib). Both strategies of EGFR inhibition have demonstrated clinical success; however, many tumors remain non-responsive or acquire resistance during therapy. To explore potential molecular mechanisms of acquired resistance to cetuximab we previously established a series of cetuximab-resistant clones by chronically exposing the NCI-H226 NSCLC cell line to escalating doses of cetuximab. Cetuximab-resistant clones exhibited a dramatic increase in the activation of EGFR, HER2 and HER3 receptors as well as increased signaling through the MAP K and AKT pathways. RNAi studies demonstrated dependence of cetuximab-resistant clones on the EGFR signaling network. These findings prompted investigation on whether or not cells with acquired resistance to cetuximab would be sensitive to the EGFR targeted TKI erlotinib. In vitro, erlotinib was able to decrease signaling through the EGFR axis, decrease cellular proliferation and induce apoptosis. To determine if erlotinib could have therapeutic benefit in vivo, we established cetuximab-resistant NCI-H226 mouse xenografts, and subsequently treated them with erlotinib. Mice harboring cetuximab-resistant tumors treated with erlotinib exhibited either a tumor regression or growth delay as compared with vehicle controls. Analysis of the erlotinib treated tumors demonstrated a decrease in cell proliferation and increased rates of apoptosis. The work presented herein suggests that (1) cells with acquired resistance to cetuximab maintain their dependence on EGFR and (2) tumors developing resistance to cetuximab can benefit from subsequent treatment with erlotinib, providing rationale for its use in the setting of cetuximab resistance.
PMCID: PMC3219082  PMID: 21725209
EGFR; mABs; cetuximab resistance; TKI; erlotinib
24.  Utilization of Quantitative In Vivo Pharmacology Approaches to Assess Combination Effects of Everolimus and Irinotecan in Mouse Xenograft Models of Colorectal Cancer 
PLoS ONE  2013;8(3):e58089.
The PI3K/AKT/mTOR pathway is frequently dysregulated in cancers and inhibition of mTOR has demonstrated the ability to modulate pro-survival pathways. As such, we sought to determine the ability of the mTOR inhibitor everolimus to potentiate the antitumor effects of irinotecan in colorectal cancer (CRC).
Experimental Design
The combinatorial effects of everolimus and irinotecan were evaluated in vitro and in vivo in CRC cell lines harboring commonly found mutations in PIK3CA, KRAS and/or BRAF. Pharmacokinetically-directed dosing protocols of everolimus and irinotecan were established and used to assess the in vivo antitumor effects of the agents. At the end of treatment, 3–6 tumors per treatment arm were harvested for biomarker analysis by NMR metabolomics.
Everolimus and irinotecan/SN38 demonstrated synergistic anti-proliferative effects in multiple CRC cell lines in vitro. Combination effects of everolimus and irinotecan were determined in CRC xenograft models using clinically-relevant dosing protocols. Everolimus demonstrated significant tumor growth inhibition alone and when combined with irinotecan in HT29 and HCT116 tumor xenografts. Metabolomic analysis showed that HT29 tumors were more metabolically responsive than HCT116 tumors. Everolimus caused a decrease in glycolysis in both tumor types whilst irinotecan treatment resulted in a profound accumulation of lipids in HT29 tumors indicating a cytotoxic effect.
Quantitative analysis of tumor growth and metabolomic data showed that the combination of everolimus and irinotecan was more beneficial in the BRAF/PIK3CA mutant HT29 tumor xenografts, which had an additive effect, than the KRAS/PIK3CA mutant HCT116 tumor xenografts, which had a less than additive effect.
PMCID: PMC3592886  PMID: 23520486
25.  Multi-Determinants Analysis of Molecular Alterations for Predicting Clinical Benefit to EGFR-Targeted Monoclonal Antibodies in Colorectal Cancer 
PLoS ONE  2009;4(10):e7287.
KRAS mutations occur in 35–45% of metastatic colorectal cancers (mCRC) and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance.
Methodology/Principal Findings
We retrospectively analyzed objective tumor response, progression-free (PFS) and overall survival (OS) together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70%) had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43) among patients with no alterations, 4% (2/47) among patients with 1 alteration, and 0% (0/24) for patients with ≥2 alterations (p<0.0001). Accordingly, PFS and OS were increasingly worse for patients with tumors harboring none, 1, or ≥2 molecular alteration(s) (p<0.001).
When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as ‘quadruple negative’, the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.
PMCID: PMC2750753  PMID: 19806185

Results 1-25 (823774)