Search tips
Search criteria

Results 1-25 (1014226)

Clipboard (0)

Related Articles

1.  Archaeal Signal Transduction: Impact of Protein Phosphatase Deletions on Cell Size, Motility, and Energy Metabolism in Sulfolobus acidocaldarius* 
Molecular & Cellular Proteomics : MCP  2013;12(12):3908-3923.
In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.
PMCID: PMC3861733  PMID: 24078887
2.  Rates of spontaneous mutation in an archaeon from geothermal environments. 
Journal of Bacteriology  1997;179(10):3298-3303.
To estimate the efficacy of mechanisms which may prevent or repair thermal damage to DNA in thermophilic archaea, a quantitative assay of forward mutation at extremely high temperature was developed for Sulfolobus acidocaldarius, based on the selection of pyrimidine-requiring mutants resistant to 5-fluoro-orotic acid. Maximum-likelihood analysis of spontaneous mutant distributions in wild-type cultures yielded maximal estimates of (2.8 +/- 0.7) x 10(-7) and (1.5 +/- 0.6) x 10(-7) mutational events per cell per division cycle for the pyrE and pyrF loci, respectively. To our knowledge, these results provide the first accurate measurement of the genetic fidelity maintained by archaea that populate geothermal environments. The measured rates of forward mutation at the pyrE and pyrF loci in S. acidocaldarius are close to corresponding rates reported for protein-encoding genes of Escherichia coli. The normal rate of spontaneous mutation in E. coli at 37 degrees C is known to require the functioning of several enzyme systems that repair spontaneous damage in DNA. Our results provide indirect evidence that S. acidocaldarius has cellular mechanisms, as yet unidentified, which effectively compensate for the higher chemical instability of DNA at the temperatures and pHs that prevail within growing Sulfolobus cells.
PMCID: PMC179110  PMID: 9150227
3.  Genes of De Novo Pyrimidine Biosynthesis from the Hyperthermoacidophilic Crenarchaeote Sulfolobus acidocaldarius: Novel Organization in a Bipolar Operon 
Journal of Bacteriology  2002;184(16):4430-4441.
Sequencing a 8,519-bp segment of the Sulfolobus acidocaldarius genome revealed the existence of a tightly packed bipolar pyrimidine gene cluster encoding the enzymes of de novo UMP synthesis. The G+C content of 35.3% is comparable to that of the entire genome, but intergenic regions exhibit a considerably lower percentage of strong base pairs. Coding regions harbor the classical excess of purines on the coding strand, whereas intergenic regions do not show this bias. Reverse transcription-PCR and primer extension experiments demonstrated the existence of two polycistronic messengers, pyrEF-orf8 and pyrBI-orf1-pyrCD-orf2-orf3-orf4, initiated from a pair of divergent and partially overlapping promoters. The gene order and the grouping in two wings of a bipolar operon constitute a novel organization of pyr genes that also occurs in the recently determined genome sequences of Sulfolobus solfataricus P2 and Sulfolobus tokodaii strain 7; the configuration appears therefore characteristic of Sulfolobus. The quasi-leaderless pyrE and pyrB genes do not bear a Shine-Dalgarno sequence, whereas the initiation codon of promoter-distal genes is preceded at an appropriate distance by a sequence complementary to the 3′ end of 16S rRNA. The polycistronic nature of the pyr messengers and the existence of numerous overlaps between contiguous open reading frames suggests the existence of translational coupling. pyrB transcription was shown to be approximately twofold repressed in the presence of uracil. The mechanism underlying this modulation is as yet unknown, but it appears to be of a type different from the various attenuation-like mechanisms that regulate pyrB transcription in bacteria. In contrast, the pyrE-pyrB promoter/control region harbors direct repeats and imperfect palindromes reminiscent of target sites for the binding of a hypothetical regulatory protein(s).
PMCID: PMC135248  PMID: 12142413
4.  Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system. 
Journal of Bacteriology  1990;172(2):1043-1050.
The target of the induction by sucrose of the levansucrase gene is a transcription terminator (sacRt) located upstream from the coding sequence, sacB. The two-gene locus sacX-sacY (formerly sacS) and the ptsI gene were previously shown to be involved in this induction. ptsI encodes enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system. SacX is strongly homologous to sucrose-specific phosphotransferase system-dependent permeases. SacY is a positive regulator of sacB. Here we show that SacY is probably an antiterminator interacting directly with sacRt, since in Escherichia coli the presence of the sacY gene stimulates the expression of a reporter gene fused downstream from sacRt. Missense mutations affecting sacY were sequenced, and the sacB regulation was studied in isogenic strains carrying these mutations or in vitro-generated mutations affecting sacX, sacY, or ptsI. The phenotype of double mutants suggests a model in which SacX might be a sucrose sensor that would be phosphorylated by the phosphotransferase system and, in this state, could inhibit the SacY antiterminator. Exogenous sucrose, or a mutation inactivating the phosphotransferase system, would dephosphorylate SacX and allow antitermination at sacRt.
PMCID: PMC208535  PMID: 2105292
5.  Alterations of the Transcriptome of Sulfolobus acidocaldarius by Exoribonuclease aCPSF2 
PLoS ONE  2013;8(10):e76569.
Recent studies identified a 5´ to 3´ exoribonuclease termed Sso-RNase J in the crenarchaeon Sulfolobus solfataricus (Sso), which has been reclassified to the aCPSF2 (archaeal cleavage and polyadenylation specificity factor 2) group of β-CASP proteins. In this study, the Sso-aCPSF2 orthologue of Sulfolobus acidocaldarius (Saci-aCPSF2) was functionally characterized. Like Sso-aCPSF2, Saci-aCPSF2 degrades RNA with 5´ to 3´ directionality in vitro. To address the biological significance of Saci-aCPSF2, a deletion mutant was constructed, and the influence of Saci-aCPSF2 on the transcriptome profile was assessed employing high throughput RNA sequencing. This analysis revealed 560 genes with differential transcript abundance, suggesting a considerable role of this enzyme in RNA metabolism. In addition, bioinformatic analyses revealed several transcripts that are preferentially degraded at the 5´ end. This was exemplarily verified for two transcripts by Northern-blot analyses, showing for the first time that aCPSF2 proteins play a role in 5' to 3' directional mRNA decay in the crenarchaeal clade of Archaea.
PMCID: PMC3792030  PMID: 24116119
6.  Investigation of the malE Promoter and MalR, a Positive Regulator of the Maltose Regulon, for an Improved Expression System in Sulfolobus acidocaldarius 
In this study, the regulator MalR (Saci_1161) of the TrmB family from Sulfolobus acidocaldarius was identified and was shown to be involved in transcriptional control of the maltose regulon (Saci_1660 to Saci_1666), including the ABC transporter (malEFGK), α-amylase (amyA), and α-glycosidase (malA). The ΔmalR deletion mutant exhibited a significantly decreased growth rate on maltose and dextrin but not on sucrose. The expression of the genes organized in the maltose regulon was induced only in the presence of MalR and maltose in the growth medium, indicating that MalR, in contrast to its TrmB and TrmB-like homologues, is an activator of the maltose gene cluster. Electrophoretic mobility shift assays revealed that the binding of MalR to malE was independent of sugars. Here we report the identification of the archaeal maltose regulator protein MalR, which acts as an activator and controls the expression of genes involved in maltose transport and metabolic conversion in S. acidocaldarius, and its use for improvement of the S. acidocaldarius expression system under the control of an optimized maltose binding protein (malE) promoter by promoter mutagenesis.
PMCID: PMC3911195  PMID: 24271181
7.  The Genome of Sulfolobus acidocaldarius, a Model Organism of the Crenarchaeota†  
Journal of Bacteriology  2005;187(14):4992-4999.
Sulfolobus acidocaldarius is an aerobic thermoacidophilic crenarchaeon which grows optimally at 80°C and pH 2 in terrestrial solfataric springs. Here, we describe the genome sequence of strain DSM639, which has been used for many seminal studies on archaeal and crenarchaeal biology. The circular genome carries 2,225,959 bp (37% G+C) with 2,292 predicted protein-encoding genes. Many of the smaller genes were identified for the first time on the basis of comparison of three Sulfolobus genome sequences. Of the protein-coding genes, 305 are exclusive to S. acidocaldarius and 866 are specific to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus tokodaii. The S. acidocaldarius genome contains an integrated, and probably encaptured, pARN-type conjugative plasmid which may facilitate intercellular chromosomal gene exchange in S. acidocaldarius. Moreover, it contains genes for a characteristic restriction modification system, a UV damage excision repair system, thermopsin, and an aromatic ring dioxygenase, all of which are absent from genomes of other Sulfolobus species. However, it lacks genes for some of their sugar transporters, consistent with it growing on a more limited range of carbon sources. These results, together with the many newly identified protein-coding genes for Sulfolobus, are incorporated into a public Sulfolobus database which can be accessed at
PMCID: PMC1169522  PMID: 15995215
8.  The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius 
The ubiquitous Rad50 and Mre11 proteins play a key role in many processes involved in the maintenance of genome integrity in Bacteria and Eucarya, but their function in the Archaea is presently unknown. We showed previously that in most hyperthermophilic archaea, rad50-mre11 genes are linked to nurA encoding both a single-strand endonuclease and a 5' to 3' exonuclease, and herA, encoding a bipolar DNA helicase which suggests the involvement of the four proteins in common molecular pathway(s). Since genetic tools for hyperthermophilic archaea are just emerging, we utilized immuno-detection approaches to get the first in vivo data on the role(s) of these proteins in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius.
We first showed that S. acidocaldarius can repair DNA damage induced by high doses of gamma rays, and we performed a time course analysis of the total levels and sub-cellular partitioning of Rad50, Mre11, HerA and NurA along with the RadA recombinase in both control and irradiated cells. We found that during the exponential phase, all proteins are synthesized and display constant levels, but that all of them exhibit a different sub-cellular partitioning. Following gamma irradiation, both Mre11 and RadA are immediately recruited to DNA and remain DNA-bound in the course of DNA repair. Furthermore, we show by immuno-precipitation assays that Rad50, Mre11 and the HerA helicase interact altogether.
Our analyses strongly support that in Sulfolobus acidocaldarius, the Mre11 protein and the RadA recombinase might play an active role in the repair of DNA damage introduced by gamma rays and/or may act as DNA damage sensors. Moreover, our results demonstrate the functional interaction between Mre11, Rad50 and the HerA helicase and suggest that each protein play different roles when acting on its own or in association with its partners. This report provides the first in vivo evidence supporting the implication of the Mre11 protein in DNA repair processes in the Archaea and showing its interaction with both Rad50 and the HerA bipolar helicase. Further studies on the functional interactions between these proteins, the NurA nuclease and the RadA recombinase, will allow us to define their roles and mechanism of action.
PMCID: PMC2288612  PMID: 18294364
9.  Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea 
The ISME Journal  2013;7(10):1886-1898.
Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although Δsaci1223 and Δsaci1242 deletion mutants were impaired in biofilm formation, the Δsaci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the Δsaci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using Δsaci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators.
PMCID: PMC3965304  PMID: 23657363
archaea; biofilm formation; cell motility; EPS; transcriptional regulation
10.  Construction of a Shuttle Vector for, and Spheroplast Transformation of, the Hyperthermophilic Archaeon Pyrococcus abyssi 
Applied and Environmental Microbiology  2002;68(11):5528-5536.
Our understanding of the genetics of species of the best-studied hyperthermophilic archaea, Pyrococcus spp., is presently limited by the lack of suitable genetic tools, such as a stable cloning vector and the ability to select individual transformants on plates. Here we describe the development of a reliable host-vector system for the hyperthermophilic archaeon Pyrococcus abyssi. Shuttle vectors were constructed based on the endogenous plasmid pGT5 from P. abyssi strain GE5 and the bacterial vector pLitmus38. As no antibiotic resistance marker is currently available for Pyrococcus spp., we generated a selectable auxotrophic marker. Uracil auxotrophs resistant to 5-fluoorotic acid were isolated from P. abyssi strain GE9 (devoid of pGT5). Genetic analysis of these mutants revealed mutations in the pyrE and/or pyrF genes, encoding key enzymes of the pyrimidine biosynthetic pathway. Two pyrE mutants exhibiting low reversion rates were retained for complementation experiments. For that purpose, the pyrE gene, encoding orotate phosphoribosyltransferase (OPRTase) of the thermoacidophilic crenarchaeote Sulfolobus acidocaldarius, was introduced into the pGT5-based vector, giving rise to pYS2. With a polyethylene glycol-spheroplast method, we could reproducibly transform P. abyssi GE9 pyrE mutants to prototrophy, though with low frequency (102 to 103 transformants per μg of pYS2 plasmid DNA). Transformants did grow as well as the wild type on minimal medium without uracil and showed comparable OPRTase activity. Vector pYS2 proved to be very stable and was maintained at high copy number under selective conditions in both Escherichia coli and P. abyssi.
PMCID: PMC129897  PMID: 12406746
11.  Characterization of the alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe. 
Nucleic Acids Research  1997;25(8):1553-1558.
Schizosaccharomyces pombe cells deficient in nucleotide excision repair (NER) are still able to remove photoproducts from cellular DNA, showing that there is a second pathway for repair of UV damage in this organism. We have characterized this repair pathway by cloning and disruption of the genomic gene encoding UV damage endonuclease (UVDE). Although uvde gene disruptant cells are only mildly UV sensitive, a double disruptant of uvde and rad13 (a S. pombe mutant defective in NER) was synergistically more sensitive than either single disruptant and was unable to remove any photoproducts from cellular DNA. Analysis of the kinetics of photoproduct removal in different mutants showed that the UVDE-mediated pathway operates much more rapidly than NER. In contrast to a previous report, our genetic analysis showed that rad12 and uvde are not the same gene. Disruption of the rad2 gene encoding a structure- specific flap endonuclease makes cells UV sensitive, but much of this sensitivity is not observed if the uvde gene is also disrupted. Further genetic and immunochemical analyses suggest that DNA incised by UVDE is processed by two separate mechanisms, one dependent and one independent of flap endonuclease.
PMCID: PMC146609  PMID: 9092661
12.  A gene required for the novel activation of a class II DNA photolyase in Chlamydomonas 
Nucleic Acids Research  2001;29(21):4472-4481.
DNA photolyases catalyze the blue light-dependent repair of UV light-induced damage in DNA. DNA photolyases are specific for either cyclobutane-type pyrimidine dimers or (6–4) photoproducts. PHR2 is a gene that in Chlamydomonas reinhardtii encodes a class II DNA photolyase which catalyzes the photorepair of cyclobutane-type pyrimidine dimers. Based on amino acid sequence analysis of PHR2, which indicates the presence of a chloroplast targeting sequence, PHR2 was predicted to encode the chloroplast photolyase of Chlamydomonas. Using a sensitive gene-specific in vivo repair assay, we found that overexpression of PHR2 in Chlamydomonas results in targeting of the protein to not only the chloroplast, but also to the nucleus. Overexpression of PHR2 photolyase in a photoreactivation-deficient mutant, phr1, results in a largely inactive product. The phr1 mutant was found to be deficient in both photorepair of a chloroplast gene, rbcL, and a nuclear gene, rDNA. These results suggest that PHR2 is the structural gene for the photolyase targeted to both the chloroplast and the nucleus, and that the PHR1 gene product is necessary for full activity of PHR2 protein. To our knowledge, the requirement for a second gene for full activity of a DNA photolyase is novel.
PMCID: PMC60191  PMID: 11691935
13.  Loss of genetic accuracy in mutants of the thermoacidophile Sulfolobus acidocaldarius  
Archaea  2001;1(1):45-52.
To investigate how hyperthermophilic archaea can propagate their genomes accurately, we isolated Sulfolobus acidocaldarius mutants exhibiting abnormally high rates of spontaneous mutation. Our isolation strategy involved enrichment for mutator lineages via alternating selections, followed by screening for the production of spontaneous, 5-fluoro-orotate-resistant mutants in micro-colonies. Several candidates were evaluated and found to have high frequencies of pyrE and pyrF mutation and reversion. Neither an increased efficiency of plating of mutants on selective medium, nor the creation of a genetically unstable pyrE allele, could be implicated as the cause of these high frequencies. The strains had elevated frequencies of other mutations, and exhibited certain phenotypic differences among themselves. A large increase in sensitivity to DNA-damaging agents was not observed, however. These properties generally resemble those of bacterial mutator mutants and suggest loss of functions specific to genetic accuracy.
PMCID: PMC2685545  PMID: 15803658
5-fluoro-orotic acid; hyperthermophilic archaea; mismatch repair; mutator mutants; spontaneous mutation
14.  Flavin adenine dinucleotide as a chromophore of the Xenopus (6-4)photolyase. 
Nucleic Acids Research  1997;25(4):764-768.
Two types of enzyme utilizing light from the blue and near-UV spectral range (320-520 nm) are known to have related primary structures: DNA photolyase, which repairs UV-induced DNA damage in a light-dependent manner, and the blue light photoreceptor of plants, which mediates light-dependent regulation of seedling development. Cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)photoproducts] are the two major photoproducts produced in DNA by UV irradiation. Two types of photolyases have been identified, one specific for CPDs (CPD photolyase) and another specific for (6-4)photoproducts [(6-4)photolyase]. (6-4)Photolyase activity was first found in Drosophila melanogaster and to date this gene has been cloned only from this organism. The deduced amino acid sequence of the cloned gene shows that (6-4)photolyase is a member of the CPD photolyase/blue light photoreceptor family. Both CPD photolyase and blue light photoreceptor are flavoproteins and bound flavin adenine dinucleotides (FADs) are essential for their catalytic activity. Here we report isolation of a Xenopus laevis(6-4)photolyase gene and show that the (6-4)photolyase binds non- covalently to stoichiometric amounts of FAD. This is the first indication of FAD as the chromophore of (6-4)photolyase.
PMCID: PMC146514  PMID: 9016626
15.  The pyrE Gene as a Bidirectional Selection Marker in Bifidobacterium Longum 105-A 
We constructed a deletion mutant of the pyrE gene in Bifidobacterium longum 105-A. A pyrE knockout cassette was cloned into pKKT427, a Bifidobacterium-Escherichia coli shuttle vector, and then introduced into B. longum 105-A by electroporation. The transformants were propagated and spread onto MRS plates containing 5-fluoroorotic acid (5-FOA) and uracil. 5-FOA-resistant mutants were obtained at a frequency of 4.7 × 10−5 integrations per cell. To perform pyrE gene complementation, the pyrE gene was amplified by PCR and used to construct a complementation plasmid (pKKT427-pyrE+). B. longum 105-A ∆pyrE harboring this plasmid could not grow on MRS plates containing 5-FOA, uracil and spectinomycin. We also developed a chemically defined medium (bifidobacterial minimal medium; BMM) containing inorganic salts, glucose, vitamins, isoleucine and tyrosine for positive selection of pyrE transformants. B. longum 105-A ∆pyrE could not grow on BMM agar, but the same strain harboring pKKT427-pyrE+ could. Thus, pyrE can be used as a counterselection marker in B. longum 105-A and potentially other Bifidobacterium species as well. We demonstrated the effectiveness of this system by constructing a knockout mutant of the xynF gene in B. longum 105-A by using the pyrE gene as a counterselection marker. This pyrE-based selection system will contribute to genetic studies of bifidobacteria.
PMCID: PMC4034322  PMID: 24936363
pyrimidine metabolism; gene knockout; homologous recombination; 5-FOA; B. longum 105-A; bifidobacterial minimal medium (BMM); gene inactivation
16.  New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. 
Journal of Bacteriology  1995;177(6):1527-1535.
The Bacillus subtilis sacY and sacT genes encode antiterminator proteins, similar to the Escherichia coli bglG gene product and required for transcription of sucrose metabolism genes. A Tn10 insertion into bglP (formerly sytA) has been previously identified as restoring sucrose utilization to a strain with deletions of both sacY and sacT. The nucleotide sequence of bglP showed a high degree of homology with the E. coli bglF gene (BglF is a beta-glucoside permease of the phosphotransferase system and also acts as a negative regulator of the BglG antiterminator). Complementation studies of an E. coli strain with a deletion of the bgl operon showed that BglP was a functional beta-glucoside permease. In B. subtilis, bglP complemented in trans both the bglP::Tn10 original insertion and a phenotypically similar bglP deletion. Disruption of licT abolished the suppressor phenotype in a bglP mutant. LicT is a recently identified third B. subtilis antiterminator of the BglG/SacY family. These observations indicated that BglP was also a negative regulator of LicT. Both LicT and BglP seem to be involved in the induction by beta-glucosides of an operon containing at least two genes, bglP itself and bglH, encoding a phospho-beta-glucosidase. Other beta-glucoside genes homologous to bglP and bglH have been recently described in B. subtilis. Thus, B. subtilis possesses several sets of beta-glucoside genes, like E. coli, but these genes do not appear to be cryptic.
PMCID: PMC176769  PMID: 7883710
17.  Heteroduplex Formation, Mismatch Resolution, and Genetic Sectoring During Homologous Recombination in the Hyperthermophilic Archaeon Sulfolobus Acidocaldarius 
Hyperthermophilic archaea exhibit certain molecular-genetic features not seen in bacteria or eukaryotes, and their systems of homologous recombination (HR) remain largely unexplored in vivo. We transformed a Sulfolobus acidocaldarius pyrE mutant with short DNAs that contained multiple non-selected genetic markers within the pyrE gene. From 20 to 40% of the resulting colonies were found to contain two Pyr+ clones with distinct sets of the non-selected markers. The dual-genotype colonies could not be attributed to multiple DNAs entering the cells, or to conjugation between transformed and non-transformed cells. These colonies thus appear to represent genetic sectoring in which regions of heteroduplex DNA formed and then segregated after partial resolution of inter-strand differences. Surprisingly, sectoring was also frequent in cells transformed with single-stranded DNAs. Oligonucleotides produced more sectored transformants when electroporated as single strands than as a duplex, although all forms of donor DNA (positive-strand, negative-strand, and duplex) produced a diversity of genotypes, despite the limited number of markers. The marker patterns in the recombinants indicate that S. acidocaldarius resolves individual mismatches through un-coordinated short-patch excision followed by re-filling of the resulting gap. The conversion events that occur during transformation by single-stranded DNA do not show the strand bias necessary for a system that corrects replication errors effectively; similar events also occur in pre-formed heteroduplex electroporated into the cells. Although numerous mechanistic details remain obscure, the results demonstrate that the HR system of S. acidocaldarius can generate remarkable genetic diversity from short intervals of moderately diverged DNAs.
PMCID: PMC3367456  PMID: 22679441
linear DNA; genetic transformation; mismatch repair; gene conversion
18.  Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius 
For reverse genetic approaches inactivation or selective modification of genes are required to elucidate their putative function. Sulfolobus acidocaldarius is a thermoacidophilic Crenarchaeon which grows optimally at 76°C and pH 3. As many antibiotics do not withstand these conditions the development of a genetic system in this organism is dependent on auxotrophies. Therefore we constructed a pyrE deletion mutant of S. acidocaldarius wild type strain DSM639 missing 322 bp called MW001. Using this strain as the starting point, we describe here different methods using single as well as double crossover events to obtain markerless deletion mutants, tag genes genomically and ectopically integrate foreign DNA into MW001. These methods enable us to construct single, double, and triple deletions strains that can still be complemented with the pRN1 based expression vector. Taken together we have developed a versatile and robust genetic tool box for the crenarchaeote S. acidocaldarius that will promote the study of unknown gene functions in this organism and makes it a suitable host for synthetic biology approaches.
PMCID: PMC3374326  PMID: 22707949
archaea; Sulfolobus; genetics; deletion mutant; expression system; in-frame deletion
19.  Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803 
Nucleic Acids Research  2000;28(12):2353-2362.
Photolyase is a DNA repair enzyme that reverses UV-induced photoproducts in DNA in a light-dependent manner. Recently, photolyase homologs were identified in higher eukaryotes. These homologs, termed cryptochromes, function as blue light photoreceptors or regulators of circadian rhythm. In contrast, most bacteria have only a single photolyase or photolyase-like gene. Unlike other microbes, the chromosome of the cyanobacterium Synechocystis sp. PCC6803 contains two ORFs (slr0854 and sll1629) with high similarities to photolyases. We have characterized both genes. The slr0854 gene product exhibited specific, light-dependent repair activity for a cyclobutane pyrimidine dimer (CPD), whereas the sll1629 gene product lacks measurable affinity for DNA in vitro. Disruption of either slr0854 or sll1629 had little or no effect on the growth rate of the cyanobacterium. A mutant lacking the slr0854 gene showed severe UV sensitivity, in contrast to a mutant lacking sll1629. Phylogenetic analysis showed that sll1629 is more closely related to the cryptochromes than photolyases. We conclude that sll1629 is a bacterial cryptochrome. To our knowledge, this is the first description of a bacterial cryptochrome.
PMCID: PMC102721  PMID: 10871367
20.  Molecular Characteristics of Spontaneous Deletions in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius 
Journal of Bacteriology  2003;185(4):1266-1272.
Prokaryotic genomes acquire and eliminate blocks of DNA sequence by lateral gene transfer and spontaneous deletion, respectively. The basic parameters of spontaneous deletion, which are expected to influence the course of genome evolution, have not been determined for any hyperthermophilic archaeon. We therefore screened a number of independent pyrimidine auxotrophs of Sulfolobus acidocaldarius for deletions and sequenced those detected. Deletions accounted for only 0.4% of spontaneous pyrE mutations, corresponding to a frequency of about 10−8 per cell. Nucleotide sequence analysis of five independent deletions showed no significant association of the endpoints with short direct repeats, despite the fact that several such repeats occur within the pyrE gene and that duplication mutations in pyrE reverted at high frequencies. Endpoints of the spontaneous deletions did not coincide with short inverted repeats or potential stem-loop structures. No consensus sequence common to all the deletions could be identified, although two deletions showed the potential of being stabilized by octanucleotide sequences elsewhere in pyrE, and another pair of deletions shared an octanucleotide at their 3′ ends. The unusually low frequency and low sequence dependence of spontaneous deletions in the S. acidocaldarius pyrE gene compared to other genetic systems could not be explained in terms of possible constraints imposed by the 5-fluoroorotate selection.
PMCID: PMC142876  PMID: 12562797
21.  The Trichoderma reesei Cry1 Protein Is a Member of the Cryptochrome/Photolyase Family with 6–4 Photoproduct Repair Activity 
PLoS ONE  2014;9(6):e100625.
DNA-photolyases use UV-visible light to repair DNA damage caused by UV radiation. The two major types of DNA damage are cyclobutane pyrimidine dimers (CPD) and 6–4 photoproducts (6-4PP), which are repaired under illumination by CPD and 6–4 photolyases, respectively. Cryptochromes are proteins related to DNA photolyases with strongly reduced or lost DNA repair activity, and have been shown to function as blue-light photoreceptors and to play important roles in circadian rhythms in plants and animals. Both photolyases and cryptochromes belong to the cryptochrome/photolyase family, and are widely distributed in all organisms. Here we describe the characterization of cry1, a member of the cryptochrome/photolyase protein family of the filamentous fungus Trichoderma reesei. We determined that cry1 transcript accumulates when the fungus is exposed to light, and that such accumulation depends on the photoreceptor Blr1 and is modulated by Envoy. Conidia of cry1 mutants show decreased photorepair capacity of DNA damage caused by UV light. In contrast, strains over-expressing Cry1 show increased repair, as compared to the parental strain even in the dark. These observations suggest that Cry1 may be stimulating other systems involved in DNA repair, such as the nucleotide excision repair system. We show that Cry1, heterologously expressed and purified from E. coli, is capable of binding to undamaged and 6-4PP damaged DNA. Photorepair assays in vitro clearly show that Cry1 repairs 6-4PP, but not CPD and Dewar DNA lesions.
PMCID: PMC4070973  PMID: 24964051
22.  Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spl) gene, which is involved in repair of UV radiation-induced DNA damage during spore germination. 
Journal of Bacteriology  1993;175(6):1735-1744.
Upon UV irradiation, Bacillus subtilis spore DNA accumulates the novel thymine dimer 5-thyminyl-5,6-dihydrothymine. Spores can repair this "spore photoproduct" (SP) upon germination either by the uvr-mediated general excision repair pathway or by the SP-specific spl pathway, which involves in situ monomerization of SP to two thymines by an enzyme named SP lyase. Mutants lacking both repair pathways produce spores that are extremely sensitive to UV. For cloning DNA that can repair a mutation in the spl pathway called spl-1, a library of EcoRI fragments of chromosomal DNA from B. subtilis 168 was constructed in integrative plasmid pJH101 and introduced by transformation into a mutant B. subtilis strain that carries both the uvrA42 and spl-1 mutations, and transformants whose spores exhibited UV resistance were selected by UV irradiation. With a combination of genetic and physical mapping techniques, the DNA responsible for the restoration of UV resistance was shown to be present on a 2.3-kb EcoRI-HindIII fragment that was mapped to a new locus in the metC-pyrD region of the B. subtilis chromosome immediately downstream from the pstI gene. The spl coding sequence was localized on the cloned fragment by analysis of in vitro-generated deletions and by nucleotide sequencing. The spl nucleotide sequence contains an open reading frame capable of encoding a 40-kDa polypeptide that shows regional amino acid sequence homology to DNA photolyases from a number of bacteria and fungi.
PMCID: PMC203968  PMID: 8449881
23.  Roles of the Y-family DNA Polymerase Dbh in Accurate Replication of the Sulfolobus Genome at Extremely High Temperature 
DNA repair  2012;11(4):391-400.
The intrinsically thermostable Y-family DNA polymerases of Sulfolobus spp. have revealed detailed three-dimensional structure and catalytic mechanisms of trans-lesion DNA polymerases, yet their functions in maintaining their native genomes remain largely unexplored. To identify functions of the Y-family DNA polymerase Dbh in replicating the Sulfolobus genome under extreme conditions, we disrupted the dbh gene in Sulfolobus acidocaldarius and characterized the resulting mutant strains phenotypically. Disruption of dbh did not cause any obvious growth defect, sensitivity to any of several DNA-damaging agents, or change in overall rate of spontaneous mutation at a well-characterized target gene. Loss of dbh did, however, cause significant changes in the spectrum of spontaneous forward mutation in each of two orthologous target genes of different sequence. Relative to wild-type strains, dbh− constructs exhibited fewer frame-shift and other small insertion-deletion mutations, but exhibited more base-pair substitutions that converted G:C base pairs to T:A base pairs. These changes, which were confirmed to be statistically significant, indicate two distinct activities of the Dbh polymerase in Sulfolobus cells growing under nearly optimal culture conditions (78-80 °C and pH 3). The first activity promotes slipped-strand events within simple repetitive motifs, such as mononucleotide runs or triplet repeats, and the second promotes insertion of C opposite a potentially miscoding form of G, thereby avoiding G:C to T:A transversions.
PMCID: PMC3591481  PMID: 22305938
Trans-lesion DNA synthesis; Y-family DNA polymerase; Sulfolobus DNA polymerase Dbh; DNA-damage sensitivity; Spontaneous mutation spectra
24.  Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity. 
Journal of Bacteriology  1992;174(10):3161-3170.
The sacT gene which controls the sacPA operon of Bacillus subtilis encodes a polypeptide homologous to the B. subtilis SacY and the Escherichia coli BglG antiterminators. Expression of the sacT gene is shown to be constitutive. The DNA sequence upstream from sacP contains a palindromic sequence which functions as a transcriptional terminator. We have previously proposed that SacT acts as a transcriptional antiterminator, allowing transcription of the sacPA operon. In strains containing mutations inactivating ptsH or ptsI, the expression of sacPA and sacB is constitutive. In this work, we show that this constitutivity is due to a fully active SacY antiterminator. In the wild-type sacT+ strain or in the sacT30 mutant, SacT requires both enzyme I and HPr of the phosphotransferase system (PTS) for antitermination. It appears that the PTS exerts different effects on the sacB gene and the sacPA operon. The general proteins of the PTS are not required for the activity of SacY while they are necessary for SacT activity.
PMCID: PMC205982  PMID: 1577686
25.  Identification of a new gene, tmoF, in the Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. 
Journal of Bacteriology  1992;174(22):7253-7261.
Five genes, tmoABCDE, encoding toluene-4-monooxygenase (T4MO) were previously mapped to a 3.6-kb region of a 10.2-kb SacI DNA fragment isolated from Pseudomonas mendocina KR1 (K.-M. Yen, M. R. Karl, L. M. Blatt, M. J. Simon, R. B. Winter, P. R. Fausset, H. S. Lu, A. A. Harcourt, and K. K. Chen, J. Bacteriol. 173:5315-5327, 1991). In this report, we describe the identification and characterization of a DNA region in the SacI fragment whose expression enhances the T4MO activity determined by the tmoABCDE gene cluster. This region was mapped immediately downstream of the putative transcription termination sequence previously located at the end of the tmoABCDE gene cluster (Yen et al., J. Bacteriol., 1991) and was found to stimulate T4MO activity two- to threefold when expressed in Escherichia coli or Pseudomonas putida. Determination of the nucleotide sequence of this region revealed an open reading frame (ORF) of 978 bp. Expression of the ORF resulted in the synthesis of an approximately 37-kDa polypeptide whose N-terminal amino acid sequence completely matched that of the product predicted from the ORF. The ORF thus defines a gene, which has now been designated tmoF. The TmoF protein shares amino acid sequence homology with the reductases of several mono- and dioxygenase systems. In addition, the reductase component of the naphthalene dioxygenase system, encoded by the nahAa gene of plasmid NAH7 from P. putida G7, could largely replace the TmoF protein in stimulating T4MO activity, and TmoF could partially replace the NahAa protein in forming active naphthalene dioxygenase. The overall properties of tmoF suggest that it is a member of the T4mo gene cluster and encodes the NADH:ferredoxin oxidoreductase of the T4MO system.
PMCID: PMC207419  PMID: 1429451

Results 1-25 (1014226)