PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (716251)

Clipboard (0)
None

Related Articles

1.  Effect of fish oils containing different amounts of EPA, DHA, and antioxidants on plasma and brain fatty acids and brain nitric oxide synthase activity in rats 
Upsala Journal of Medical Sciences  2009;114(4):206-213.
Background
The interest in n-3 polyunsaturated fatty acids (PUFAs) has expanded significantly in the last few years, due to their many positive effects described. Consequently, the interest in fish oil supplementation has also increased, and many different types of fish oil supplements can be found on the market. Also, it is well known that these types of fatty acids are very easily oxidized, and that stability among supplements varies greatly.
Aims of the study
In this pilot study we investigated the effects of two different types of natural fish oils containing different amounts of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and antioxidants on plasma and brain fatty acids, blood lipids, vitamin E, and in vivo lipid peroxidation, as well as brain nitric oxide synthase (NOS) activity, an enzyme which has been shown to be important for memory and learning ability.
Methods
Sprague-Dawley rats were divided into four groups and fed regular rat chow pellets enriched with 5% (w/w) of butter (control group), a natural fish oil (17.4% EPA and 11.7% DHA, referred to as EPA-rich), and a natural fish oil rich in DHA (7.7% EPA and 28.0% DHA, referred to as DHA-rich). Both of the fish oils were stabilized by a commercial antioxidant protection system (Pufanox®) at production. The fourth group received the same DHA-rich oil, but without Pufanox® stabilization (referred to as unstable). As an index of stability of the oils, their peroxide values were repeatedly measured during 9 weeks. The dietary treatments continued until sacrifice, after 10 days.
Results
Stability of the oils varied greatly. It took the two stabilized oils 9 weeks to reach the same peroxide value as the unstable oil reached after only a few days. Both the stabilized EPA- and DHA-rich diets lowered the triacylglycerols and total cholesterol compared to control (-45%, P < 0.05 and -54%, P < 0.001; -31%, P < 0.05 and -25%, P < 0.01) and so did the unstable oil, but less efficiently. Only the unstable oil increased in vivo lipid peroxidation significantly compared to control (+40%, P < 0.001). Most of the fatty acids in the plasma phospholipids were significantly affected by both the EPA- and DHA-rich diets compared to control, reflecting their specific fatty acid pattern. The unstable oil diet resulted in smaller changes, especially in n-3 PUFAs. In the brain phospholipids the changes were less pronounced, and only the diet enriched with the stabilized DHA-rich oil resulted in a significantly greater incorporation of DHA (+13%, P < 0.01), as well as total n-3 PUFAs (+13%, P < 0.01) compared to control. Only the stabilized DHA-rich oil increased the brain NOS activity (+33%, P < 0.01).
Conclusions
Both the EPA- and DHA-rich diets affected the blood lipids in a similarly positive manner, and they both had a large impact on plasma phospholipid fatty acids. It was only the unstable oil that increased in vivo lipid peroxidation. However, the intake of DHA was more important than that of EPA for brain phospholipid DHA enrichment and brain NOS activity, and the stability of the fish oil was also important for these effects.
doi:10.3109/03009730903268958
PMCID: PMC2852776  PMID: 19961266
Antioxidants; brain; DHA; EPA; fish oil; lipid peroxidation; nitric oxide synthase
2.  4-Hydroxy Hexenal Derived from Docosahexaenoic Acid Protects Endothelial Cells via Nrf2 Activation 
PLoS ONE  2013;8(7):e69415.
Recent studies have proposed that n-3 polyunsaturated fatty acids (n-3 PUFAs) have direct antioxidant and anti-inflammatory effects in vascular tissue, explaining their cardioprotective effects. However, the molecular mechanisms are not yet fully understood. We tested whether n-3 PUFAs showed antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcriptional factor for antioxidant genes. C57BL/6 or Nrf2−/− mice were fed a fish-oil diet for 3 weeks. Fish-oil diet significantly increased the expression of heme oxygenase-1 (HO-1), and endothelium-dependent vasodilation in the aorta of C57BL/6 mice, but not in the Nrf2−/− mice. Furthermore, we observed that 4-hydroxy hexenal (4-HHE), an end-product of n-3 PUFA peroxidation, was significantly increased in the aorta of C57BL/6 mice, accompanied by intra-aortic predominant increase in docosahexaenoic acid (DHA) rather than that in eicosapentaenoic acid (EPA). Human umbilical vein endothelial cells were incubated with DHA or EPA. We found that DHA, but not EPA, markedly increased intracellular 4-HHE, and nuclear expression and DNA binding of Nrf2. Both DHA and 4-HHE also increased the expressions of Nrf2 target genes including HO-1, and the siRNA of Nrf2 abolished these effects. Furthermore, DHA prevented oxidant-induced cellular damage or reactive oxygen species production, and these effects were disappeared by an HO-1 inhibitor or the siRNA of Nrf2. Thus, we found protective effects of DHA through Nrf2 activation in vascular tissue, accompanied by intra-vascular increases in 4-HHE, which may explain the mechanism of the cardioprotective effects of DHA.
doi:10.1371/journal.pone.0069415
PMCID: PMC3720569  PMID: 23936010
3.  Eicosapentaenoic acid and docosahexaenoic acid reduce interleukin-1β-mediated cartilage degradation 
Arthritis Research & Therapy  2010;12(6):R207.
Introduction
In inflammatory joint disease, such as osteoarthritis (OA), there is an increased level of proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines stimulate the production of matrix metalloproteinases (MMPs), which leads to the degradation of the cartilage extracellular matrix and the loss of key structural components such as sulphated glycosaminoglycan (sGAG) and collagen II. The aim of this study was to examine the therapeutic potential of n-3 polyunsaturated fatty acids (PUFAs) in an in vitro model of cartilage inflammation.
Methods
Two specific n-3 compounds were tested, namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), each at 0.1, 1 and 10 μM. Full thickness bovine cartilage explants, 5 mm in diameter, were cultured for 5 days with or without IL-1β and in the presence or absence of each n-3 compound. The media were replaced every 24 hours and assayed for sGAG content using the 1,9-dimethylmethylene blue (DMB) method. Chondrocyte viability was determined at the end of the culture period using fluorescence microscopy to visualise cells labelled with calcein AM and ethidium homodimer.
Results
Treatment with IL-1β (10 ng.ml-1) produced a large increase in sGAG release compared to untreated controls, but with no effect on cell viability, which was maintained above 80% for all treatments. In the absence of IL-1β, both n-3 compounds induced a mild catabolic response with increased loss of sGAG, particularly at 10 μM. By contrast, in the presence of IL-1β, both EPA and DHA at 0.1 and 1 μM significantly reduced IL-1β-mediated sGAG loss. The efficacy of the EPA treatment was maintained at approximately 75% throughout the 5-day period. However, at the same concentrations, the efficacy of DHA, although initially greater, reduced to approximately half that of EPA after 5 days. For both EPA and DHA, the highest dose of 10 μM was less effective.
Conclusions
The results support the hypothesis that n-3 compounds are anti-inflammatory through competitive inhibition of the arachidonic acid oxidation pathway. The efficacy of these compounds is likely to be even greater at more physiological levels of IL-1β. Thus we suggest that n-3 PUFAs, particularly EPA, have exciting therapeutic potential for preventing cartilage degradation associated with chronic inflammatory joint disease.
doi:10.1186/ar3183
PMCID: PMC3046514  PMID: 21059244
4.  Docosahexaenoic Acid Decreases Pro-Inflammatory Mediators in an In Vitro Murine Adipocyte Macrophage Co-Culture Model 
PLoS ONE  2014;9(1):e85037.
Paracrine interactions between adipocytes and macrophages contribute to chronic inflammation in obese adipose tissue. Dietary strategies to mitigate such inflammation include long-chain polyunsaturated fatty acids, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, which act through PPARγ-dependent and independent pathways. We utilized an in vitro co-culture model designed to mimic the ratio of macrophages:adipocytes in obese adipose tissue, whereby murine 3T3-L1 adipocytes were cultured with RAW 264.7 macrophages in direct contact, or separated by a trans-well membrane (contact-independent mechanism), with 125 µM of albumin-complexed DHA, EPA, palmitic acid (PA), or albumin alone (control). Thus, we studied the effect of physical cell contact versus the presence of soluble factors, with or without a PPARγ antagonist (T0070907) in order to elucidate putative mechanisms. After 12 hr, DHA was the most anti-inflammatory, decreasing MCP1 and IL-6 secretion in the contact system (−57%, −63%, respectively, p≤0.05) with similar effects in the trans-well system. The trans-well system allowed for isolation of cell types for inflammatory mediator analysis. DHA decreased mRNA expression (p<0.05) of Mcp1 (−7.1 fold) and increased expression of the negative regulator, Mcp1-IP (+1.5 fold). In macrophages, DHA decreased mRNA expression of pro-inflammatory M1 polarization markers (p≤0.05), Nos2 (iNOS; −7 fold), Tnfα (−4.2 fold) and Nfκb (−2.3 fold), while increasing anti-inflammatory Tgfβ1 (+1.7 fold). Interestingly, the PPARγ antagonist co-administered with DHA or EPA in co-culture reduced (p≤0.05) adiponectin cellular protein, without modulating other cytokines (protein or mRNA). Overall, our findings suggest that DHA may lessen the degree of MCP1 and IL-6 secreted from adipocytes, and may reduce the degree of M1 polarization of macrophages recruited to adipose tissue, thereby decreasing the intensity of pro-inflammatory cross-talk between adipocytes and macrophages in obese adipose tissue.
doi:10.1371/journal.pone.0085037
PMCID: PMC3896343  PMID: 24465472
5.  Eicosapentaenoic and docosahexaenoic acid supplementation and inflammatory gene expression in the duodenum of obese patients with type 2 diabetes 
Nutrition Journal  2013;12:98.
Background
The extent to which long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) from fish oil such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert their anti-inflammatory effects by down-regulating intestinal inflammation in humans is unknown. We investigated the impact of LCn-3PUFA supplementation on inflammatory gene expression in the duodenum of obese patients with type 2 diabetes.
Findings
This placebo-controlled randomized crossover study included 12 men with type 2 diabetes. After a 4-week run-in period, patients received in a random sequence 5 g/d of fish oil (providing 3 g of EPA + DHA) and a placebo (corn and soybean oil) for 8 weeks each. The two treatment phases were separated by a 12-week washout period. Gene expression was assessed by real-time polymerase chain reaction in duodenal biopsy samples obtained in the fasted state at the end of each treatment phase. Intestinal mRNA expression levels of interleukin (IL)-6 and tumor-necrosis factor (TNF)-α were hardly detectable after either treatment (<100 copies/105 copies of the reference gene ATP5o). Intestinal mRNA expression of IL-18 and of the transcription factor signal transducer and activator of transcription 3 (STAT3) was higher (>5000 copies/105 copies ATP5o) but still relatively low. EPA + DHA supplementation had no impact on any of these levels (all P ≥ 0.73).
Conclusions
These data suggest that duodenal cells gene expression of pro-inflammatory cytokines is low in patients with type 2 diabetes and not affected by EPA + DHA supplementation. Further studies are warranted to determine if inflammatory gene expression in other tissues surrounding the intestine is modulated by EPA + DHA supplementation.
Trial registration
ClinicalTrials.gov ID: NCT01449773
doi:10.1186/1475-2891-12-98
PMCID: PMC3718629  PMID: 23855973
Eicosapentaenoic acid (EPA); Docosahexaenoic acid (DHA); Signal transducer and activator of transcription 3 (STAT3); Inflammatory gene expression; n-3 supplementation; Placebo-controlled; Duodenum; Type 2 diabetes
6.  Changes in plasma and erythrocyte omega-6 and omega-3 fatty acids in response to intravenous supply of omega-3 fatty acids in patients with hepatic colorectal metastases 
Background
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are functionally the most important omega-3 polyunsaturated fatty acids (PUFAs). Oral supply of these fatty acids increases their levels in plasma and cell membranes, often at the expense of the omega-6 PUFAs arachidonic acid (ARA) and linoleic acid. This results in an altered pattern of lipid mediator production to one which is less pro-inflammatory. We investigated whether short term intravenous supply of omega-3 PUFAs could change the levels of EPA, DHA, ARA and linoleic acid in plasma and erythrocytes in patients with hepatic colorectal metastases.
Methods
Twenty patients were randomised to receive a 72 hour infusion of total parenteral nutrition with (treatment group) or without (control group) omega-3 PUFAs. EPA, DHA, ARA and linoleic acid were measured in plasma phosphatidylcholine (PC) and erythrocytes at several times points up to the end of infusion and 5 to 12 days (mean 9 days) after stopping the infusion.
Results
The treatment group showed increases in plasma PC EPA and DHA and erythrocyte EPA and decreases in plasma PC and erythrocyte linoleic acid, with effects most evident late in the infusion period. Plasma PC and erythrocyte EPA and linoleic acid all returned to baseline levels after the 5–12 day washout. Plasma PC DHA remained elevated above baseline after washout.
Conclusions
Intravenous supply of omega-3 PUFAs results in a rapid increase of EPA and DHA in plasma PC and of EPA in erythrocytes. These findings suggest that infusion of omega-3 PUFAs could be used to induce a rapid effect especially in targeting inflammation.
Trial registration
http://www.clinicaltrials.gov identifier NCT00942292
doi:10.1186/1476-511X-12-64
PMCID: PMC3659039  PMID: 23648075
Parenteral nutrition; Fish oil; Omega-3 fatty acids; Eicosapentaenoic acid; Docosahexaenoic acid; Arachidonic acid; Liver metastases
7.  Lipid Profiling following Intake of the Omega 3 Fatty Acid DHA Identifies the Peroxidized Metabolites F4-Neuroprostanes as the Best Predictors of Atherosclerosis Prevention 
PLoS ONE  2014;9(2):e89393.
Abstract
The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR−/−) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R2 = 0.97, p = 0.02), triglyceridemia (R2 = 0.97, p = 0.01) and cholesterolemia (R2 = 0.96, p<0.01). Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001) and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA, further in vitro investigations are needed to confirm such a contention and to decipher the molecular mechanisms of action.
doi:10.1371/journal.pone.0089393
PMCID: PMC3928438  PMID: 24558496
8.  Redox-Sensitive Induction of Src/PI3-kinase/Akt and MAPKs Pathways Activate eNOS in Response to EPA:DHA 6:1 
PLoS ONE  2014;9(8):e105102.
Aims
Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation.
Methods and Results
EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively.
Conclusion
Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.
doi:10.1371/journal.pone.0105102
PMCID: PMC4136823  PMID: 25133540
9.  Docosahexaenoic acid attenuates the early inflammatory response following spinal cord injury in mice: in-vivo and in-vitro studies 
Background
Two families of polyunsaturated fatty acid (PUFA), omega-3 (ω-3) and omega-6 (ω-6), are required for physiological functions. The long chain ω-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have significant biological effects. In particular, DHA is a major component of cell membranes in the brain. It is also involved in neurotransmission. Spinal cord injury (SCI) is a highly devastating pathology that can lead to catastrophic dysfunction, with a significant reduction in the quality of life. Previous studies have shown that EPA and DHA can exert neuroprotective effects in SCI in mice and rats. The aim of this study was to analyze the mechanism of action of ω-3 PUFAs, such as DHA, in a mouse model of SCI, with a focus on the early pathophysiological processes.
Methods
In this study, SCI was induced in mice by the application of an aneurysm clip onto the dura mater via a four-level T5 to T8 laminectomy. Thirty minutes after compression, animals received a tail vein injection of DHA at a dose of 250 nmol/kg. All animals were killed at 24 h after SCI, to evaluate various parameters implicated in the spread of the injury.
Results
Our results in this in-vivo study clearly demonstrate that DHA treatment reduces key factors associated with spinal cord trauma. Treatment with DHA significantly reduced: (1) the degree of spinal cord inflammation and tissue injury, (2) pro-inflammatory cytokine expression (TNF-α), (3) nitrotyrosine formation, (4) glial fibrillary acidic protein (GFAP) expression, and (5) apoptosis (Fas-L, Bax, and Bcl-2 expression). Moreover, DHA significantly improved the recovery of limb function.
Furthermore, in this study we evaluated the effect of oxidative stress on dorsal root ganglion (DRG) cells using a well-characterized in-vitro model. Treatment with DHA ameliorated the effects of oxidative stress on neurite length and branching.
Conclusions
Our results, in vivo and in vitro, clearly demonstrate that DHA treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.
doi:10.1186/1742-2094-11-6
PMCID: PMC3895696  PMID: 24405628
DHA; Inflammation; Omega-3; Oxidative stress; Spinal cord injury
10.  Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Prostate Cancer Cell Migration and Invasion Induced by Tumor-Associated Macrophages 
PLoS ONE  2014;9(6):e99630.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the major n-3 polyunsaturated fatty acids (PUFAs) in fish oil that decrease the risk of prostate cancer. Tumor-associated macrophages (TAMs) are the main leukocytes of intratumoral infiltration, and increased TAMs correlates with poor prostate cancer prognosis. However, the mechanism of n-3 PUFAs on prostate cancer cell progression induced by TAMs is not well understood. In this study, we investigated the effects of EPA and DHA on modulating of migration and invasion of prostate cancer cells induced by TAMs-like M2-type macrophages. PC-3 prostate cancer cells were pretreated with EPA, DHA, or the peroxisome proliferator-activated receptor (PPAR)-γ antagonist, GW9662, before exposure to conditioned medium (CM). CM was derived from M2-polarized THP-1 macrophages. The migratory and invasive abilities of PC-3 cells were evaluated using a coculture system of M2-type macrophages and PC-3 cells. EPA/DHA administration decreased migration and invasion of PC-3 cells. The PPAR-γ DNA-binding activity and cytosolic inhibitory factor κBα (IκBα) protein expression increased while the nuclear factor (NF)-κB p65 transcriptional activity and nuclear NF-κB p65 protein level decreased in PC-3 cells incubated with CM in the presence of EPA/DHA. Further, EPA/DHA downregulated mRNA expressions of matrix metalloproteinase-9, cyclooxygenase-2, vascular endothelial growth factor, and macrophage colony-stimulating factor. Pretreatment with GW9662 abolished the favorable effects of EPA/DHA on PC-3 cells. These results indicate that EPA/DHA administration reduced migration, invasion and macrophage chemotaxis of PC-3 cells induced by TAM-like M2-type macrophages, which may partly be explained by activation of PPAR-γ and decreased NF-κB p65 transcriptional activity.
doi:10.1371/journal.pone.0099630
PMCID: PMC4055683  PMID: 24925287
11.  Omega-3 Fatty Acids and Inflammatory Processes 
Nutrients  2010;2(3):355-374.
Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content) results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.). Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.
doi:10.3390/nu2030355
PMCID: PMC3257651  PMID: 22254027
leukocyte; neutrophil; macrophage; monocyte; eicosanoid; cytokine; interleukin; fish oil
12.  Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family 
Background
Acute and chronic inflammation play essential roles in inflammatory/autoimmune conditions. Protective anti-inflammatory effects of the n-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were reported in animal models of colitis, sepsis, and stroke. Since dendritic cells (DC) represent the essential cellular link between innate and adaptive immunity and have a prominent role in tolerance for self-antigens, we sought to investigate the impact of DHA on DC maturation and proinflammatory cytokine production.
Methods
Murine bone marrow-derived DC were treated with DHA and stimulated with various toll-like receptor (TLR) ligands. Flow cytometry was used to determine the levels of surface maturation markers and endocytic activity. Cytokine expression and secretion were measured by real-time RT-PCR and ELISA assays. PPARγ and NFκB activity in nuclear extracts were determined by binding to specific oligonucleotide sequences using ELISA-based assays. In vivo effects of DHA were assessed in splenic DC from LPS-inoculated mice maintained on a DHA-enriched diet.
Results
DHA maintained the immature phenotype in bone marrow-derived DC by preventing the upregulation of MHCII and costimulatory molecules (CD40, CD80 and CD86) and maintaining high levels of endocytic activity. DHA inhibited the production of pro-inflammatory cytokines, including the IL-12 cytokine family (IL-12p70, IL-23, and IL-27), from DC stimulated with TLR2, 3, 4, and 9 ligands. DHA inhibition of IL-12 expression was mediated through activation of PPARγ and inhibition of NFκBp65 nuclear translocation. DHA exerted a similar inhibitory effect on IL-12 and IL-23 expression in vivo in LPS-inoculated mice maintained on a DHA-enriched diet.
Conclusions
Exposure of bone marrow-derived DC to DHA resulted in the maintenance of an immature phenotype and drastic reduction in proinflammatory cytokine release. DHA inhibited the expression and secretion of the IL-12 cytokine family members (IL-12p70, IL-23 and IL-27), which play essential roles in the differentiation of the proinflammatory Th1/Th17 effector cells. The effect of DHA on IL-12 expression was mediated through activation of PPARγ and inhibition of NFκB. Inhibition of IL-12 and IL-23 expression was also evident in splenic DC from mice fed a DHA-enriched diet, suggesting that dietary DHA acts as an anti-inflammatory agent in vivo.
doi:10.1186/1476-511X-9-12
PMCID: PMC2827414  PMID: 20122166
13.  The effects of omega 3 fatty acid supplementation on brain tissue oxidative status in aged wistar rats 
Hippokratia  2012;16(3):241-245.
Background: The omega 3 fatty acids play an important role in many physiological processes. Their effect is well documented in neurodegenerative diseases and inflammatory diseases. Also, aging as a biophysiological process could be influenced by eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) components of fish oil. However there are not many studies showing the effect of PUFA (polyunsaturated FA) suplementation in eldery brain functions and the response to oxidative strees. The aim of this study was to investigate the effects of dietary omega-3 fatty acid supplementation on levels of lipid peroxidation and oxidant/antioxidant status of brain tissue in aged (24 months old) Wistar rats.
Methods: Animals were divided in two groups. Control group (n=8) was fed with standard laboratory food and received water ad libitum. Treated group (n=8) was also fed with standard laboratory food, water ad libitum and received fish oil capsules (EPA+DHA) for 6 weeks. Daily dose was 30mg EPA and 45mg DHA (capsules: 200mg EPA and 300mg DHA; in-house method). At the end of treatment animals were sacrificed and brains were collected and frozen on -80ºC. The levels of lipid peroxidation (malondialdehyde - MDA), activity of catalase (CAT) and activity of superoxide dismutase (SOD) were examined in cerebral cortex. Catalase activity was determined by measuring the decrease in absorbance (H2O2 degradation) at 240 nm for 3 min and expressed as U/mg protein. Total SOD (superoxide dismutase) activity was performed at room temperature according to the method of Misra and Fridovich. The extent of lipid peroxidation (LPO) was estimated as the concentration of thiobarbituric acid reactive product malondialdehyde (MDA) by using the method of Aruoma et al. The incorporation of fatty acids in cellular membranes was confirmed by gas chromatography.
Results: Our results showed that lipid peroxidation significantly decreased in treated animal group, where MDA concentration was 0.38±0.001 vs. 0.43±0.001 nM/ml (p<0.05) in control. However SOD activity increased significantly in treated animal group 1.57±0.24 vs. 4.12±0.15 U/gHb/L (p<0.01) in control. CAT activity decreased in treated group but not significantly.
Conclusion: Incorporation of omega-3 fatty acids after their supplementation had beneficial effects on brain tissue. Omega-3 fatty acids increased activity of SOD and decreased lipid peroxidation. Changes in oxidative/antioxidative balance are a result of EPA and DHA effects on lipids and enzymes of antioxidative system.
PMCID: PMC3738731  PMID: 23935291
fish oil; omega 3 fatty acids; rats; aging; brain; oxidative stress
14.  Nutrition Intervention: A Strategy Against Systemic Inflammatory Syndrome 
Background
Sepsis and septic shock syndrome are the leading causes of death in critically ill patients. Lipopolysaccharide (LPS) released by the colonic microorganisms may translocate across a compromised lumen, leading to upregulated reactive oxidative stress, inflammation, and sepsis. The authors examined an enteral formula high in cysteine (antioxidant precursor), ω-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and prebiotic fructooligosaccharides (FOS) against systemic inflammatory syndrome.
Methods
Rats were allocated to (1) standard soy-based diet high in cysteine and crude fiber and devoid of EPA-DHA (CHOW); (2) whey-peptide-based liquid diet high in cysteine, EPA-DHA, and FOS (CYSPUFA); or (3) casein-based liquid isonitrogenous diet, low in cysteine and devoid of EPA-DHA-FOS (CASN). Liquid diets provided 25% and CHOW, 23% of calories as protein. After 6 days on diets, rats received an intraperitoneal injection of LPS or saline. Animals gained weight on their respective diets and lost weight after LPS administration. The CYSPUFA group lost considerably less weight (vs CASN or CHOW, P < .05). Inflammatory cytokines significantly increased by 4 hours and subsided 18 hours after assault. The CASN group showed elevated liver enzyme alanine aminotransferase release from damaged hepatocytes and developed severe hepatic pathology with low hematocrit. The CHOW group developed more severe hepatic lesions compared with those on liquid diets. Concentration of liver enzyme and pathology were improved in rats receiving CYSP-UFA.
Conclusions
Data indicate that CYSPUFA, a diet rich in EPA-DHA-FOS, protects against LPS-induced systemic inflammatory responses and warrants clinical studies in critically ill patients.
doi:10.1177/0148607108327194
PMCID: PMC3063840  PMID: 19380752
sepsis; cysteine; eicosapentaenoic acid; docosahexaenoic acid; probiotic fructooligosaccharides; enteral formula
15.  DOCOSAHEXAENOIC ACID PREVENTS DENDRITIC CELL MATURATION, INHIBITS ANTIGEN-SPECIFIC Th1/Th17 DIFFERENTIATION AND SUPPRESSES EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS 
Brain, behavior, and immunity  2010;25(5):872-882.
Docosahexaenoic acid (DHA), the most abundant essential n-3 polyunsaturated fatty acid in the CNS, emerged recently together with eicosapentaenoic acid (EPA) and DHA/EPA metabolic derivatives as a major player in the resolution of inflammation. Protective antiinflammatory effects of DHA were reported in clinical studies and animal models of colitis, sepsis, and stroke. Here we report for the first time a beneficial effect of dietary n-3 fatty acids in experimental autoimmune encephalomyelitis (EAE), a model for human multiple sclerosis. In the present study we investigated the effects of DHA on the function of bone marrow-derived dendritic cells (DC) in CD4+ T cell stimulation and differentiation. Pretreatment of DC with DHA prevented LPS-induced DC maturation, maintaining an immature phenotype characterized by low expression of costimulatory molecules and lack of proinflammatory cytokine production (IL-12p70, IL-6 and IL-23). DHA-treated DC were poor stimulators of antigen-specific T cells in terms of proliferation and Th1/Th17 differentiation. This was associated with an increase in p27(kip1), a cell cycle arresting agent, and with decreases in Tbet, GATA-3 and RORγt, master transcription factors for Th1, Th2, and Th17. In contrast, T cells co-cultured with DC-DHA express higher levels of TGFβ and Foxp3, without exhibiting a functional Treg phenotype. Similar to the in vitro results, the beneficial effect of DHA in EAE was associated with reduced numbers of IFNγ- and IL-17-producing CD4+ T cells in both spleen and CNS.
doi:10.1016/j.bbi.2010.09.012
PMCID: PMC3031664  PMID: 20854895
Docosahexaenoic acid; Experimental autoimmune encephalomyelitis; IL-12; IL-23; Th1; Th17; Foxp3; Tbet; RORγt
16.  Metabolic Effects of n-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids 
PLoS ONE  2012;7(6):e38834.
Background
n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides.
Methodology/Principal Findings
In a ‘prevention study’, C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ∼35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine.
Conclusions/Significance
Compared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the endocannabinoid system activity in WAT.
doi:10.1371/journal.pone.0038834
PMCID: PMC3372498  PMID: 22701720
17.  A Metabolomic Analysis of Omega-3 Fatty Acid-Mediated Attenuation of Western Diet-Induced Nonalcoholic Steatohepatitis in LDLR-/- Mice 
PLoS ONE  2013;8(12):e83756.
Background
Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease and a risk factor for cirrhosis, hepatocellular carcinoma and liver failure. Previously, we reported that dietary docosahexaenoic acid (DHA, 22:6,n-3) was more effective than eicosapentaenoic acid (EPA, 20:5,n-3) at reversing western diet (WD) induced NASH in LDLR-/- mice.
Methods
Using livers from our previous study, we carried out a global non-targeted metabolomic approach to quantify diet-induced changes in hepatic metabolism.
Results
Livers from WD + olive oil (WD + O)-fed mice displayed histological and gene expression features consistent with NASH. The metabolomic analysis of 320 metabolites established that the WD and n-3 polyunsaturated fatty acid (PUFA) supplementation had broad effects on all major metabolic pathways. Livers from WD + O-fed mice were enriched in saturated (SFA) and monounsaturated fatty acids (MUFA), palmitoyl-sphingomyelin, cholesterol, n-6 PUFA, n-6 PUFA-containing phosphoglycerolipids, n-6 PUFA-derived oxidized lipids (12-HETE) and depleted of C20-22 n-3 PUFA-containing phosphoglycerolipids, C20-22 n-3 PUFA-derived oxidized lipids (18-HEPE, 17,18-DiHETE) and S-lactoylglutathione, a methylglyoxal detoxification product. WD + DHA was more effective than WD + EPA at attenuating WD + O-induced changes in NASH gene expression markers, n-6 PUFA and oxidized lipids, citrate and S-lactosyl glutathione. Diet-induced changes in hepatic MUFA and sphingolipid content were associated with changes in expression of enzymes involved in MUFA and sphingolipid synthesis. Changes in hepatic oxidized fatty acids and S-lactoylglutathione, however, correlated with hepatic n-3 and n-6 C20-22 PUFA content. Hepatic C20-22 n-3 PUFA content was inversely associated with hepatic α-tocopherol and ascorbate content and positively associated with urinary F2- and F3-isoprostanes, revealing diet effects on whole body oxidative stress.
Conclusion
DHA regulation of hepatic SFA, MUFA, PUFA, sphingomyelin, PUFA-derived oxidized lipids and S-lactoylglutathione may explain the protective effects of DHA against WD-induced NASH in LDLR-/- mice.
doi:10.1371/journal.pone.0083756
PMCID: PMC3866250  PMID: 24358308
18.  Marine- and plant-derived ω-3 fatty acids differentially regulate prostate cancer cell proliferation 
Molecular and Clinical Oncology  2013;1(3):444-452.
Fish oil contains the marine ω-3 polyunsaturated fatty acids (ω-3 PUFAs) docosahexaenoic (DHA) and eicosapentaenoic acid (EPA). The consumption of diets rich in these fatty acids is associated with a decreased incidence of prostate cancer. However, there is limited knowledge regarding the non-marine ω-3 PUFA α-linolenic acid (ALA). To study which ω-3 PUFAs are more effective in prostate cancer prevention, and whether the mechanisms of action are conserved between them, we investigated the effect of DHA, EPA and ALA on the human prostate cancer cell lines PC-3 and LNCaP. Different trends of inhibition of PC-3 cell proliferation were observed for the three ω-3 PUFA, with DHA having the most pronounced effects on cell proliferation, while ALA had the minimum effects of the three ω-3 PUFAs. All the ω-3 PUFAs decreased fatty acid synthase (FASN) mRNA. Concerning genes involved in inflammation, cell cycle and apoptosis, DHA regulated the most genes in all categories, followed by EPA and then ALA. In addition, DHA and EPA increased the gene expression of the pro-apoptotic protein activating transcription factor 3 mRNA. Moreover, these two fatty acids significantly induced apoptosis. In conclusion, while some mechanisms of cancer cell inhibition are conserved among ω-3 PUFA, the extent, magnitude, and duration of transcriptional changes vary for each individual fatty acid.
doi:10.3892/mco.2013.76
PMCID: PMC3916163  PMID: 24649190
prostate cancer; ω-3; docosahexaenoic acid; eicosapentaenoic acid; α-linolenic acid
19.  Eicosapentaenoic acid/docosahexaenoic acid 1:1 ratio improves histological alterations in obese rats with metabolic syndrome 
Background
Marine polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been associated with improvement in the Metabolic Syndrome (MS). The aim of this study is to evaluate how three fish-oil diets with different eicosapentaenoic acid/docosahexaenoic acid ratios (EPA/DHA ratio) affect the histology of liver, kidney, adipose tissue and aorta in a preliminary morphological study. This work uses an animal model of metabolic syndrome in comparison with healthy animals in order to provide information about the best EPA:DHA ratio to prevent or to improve metabolic syndrome symptoms.
Methods
35 Wistar rats, as a control, and 35 spontaneously hypertensive obese rats (SHROB) were fed for 13 weeks with 3 different suplemmentation of fish oil containing EPA and DHA ratios (1:1, 2:1 and 1:2, respectively). All samples were stained with haematoxylin/eosin stain, except aorta samples, which were stained also with Verhoeff and van Gieson’s stain. A histological study was carried out to evaluate changes. These changes were statistically analyzed using SPSS IBM 19 software. The quantitative data were expressed by mean ± SD and were compared among groups and treatments using ANOVA with post-hoc tests for parametric data and the U-Mann–Whitney for non-parametric data. Qualitative data were expressed in frequencies, and compared with contingency tables using χ2 statistics.
Results
EPA:DHA 1:1 treatment tended to improve the density and the wrinkling of elastic layers in SHROB rats. Only Wistar rats fed with EPA:DHA 1:1 treatment did not show mast cells in adipose tissue and has less kidney atrophy. In both strains EPA:DHA 1:1 treatment improved inflammation related parameters in liver and kidney.
Conclusions
EPA:DHA 1:1 treatment was the most beneficial treatment since improved many histological parameters in both groups of rats.
doi:10.1186/1476-511X-13-31
PMCID: PMC3927584  PMID: 24512213
Metabolic syndrome; Omega-3-polyunsaturated fatty acids; EPA/DHA ratio; Histology; SHROB rats; Fish oils
20.  Reduction in Dietary Omega-6 Polyunsaturated Fatty Acids:Eicosapentaenoic Acid plus Docosahexaenoic Acid Ratio Minimizes Atherosclerotic Lesion Formation and Inflammatory Response in the LDL Receptor Null Mouse 
Atherosclerosis  2008;204(1):147-155.
Dietary very long chain omega (ω)-3 polyunsaturated fatty acids (PUFA) have been associated with reduced CVD risk, the mechanisms of which have yet to be fully elucidated. LDL receptor null mice (LDLr-/-) were used to assess the effect of different ratios of dietary ω-6 PUFA to eicosapentaenoic acid plus docosahexaenoic acid (ω-6:EPA+DHA) on atherogenesis and inflammatory response. Mice were fed high saturated fat diets without EPA and DHA (HSF ω-6), or with ω-6:EPA+DHA at ratios of 20:1 (HSF R=20:1), 4:1 (HSF R=4:1), and 1:1 (HSF R=1:1) for 32 weeks. Mice fed the lowest ω-6:EPA+DHA ratio diet had lower circulating concentrations of non-HDL cholesterol (25%, P<0.05) and interleukin-6 (IL-6) (44%, P<0.05) compared to mice fed the HSF ω-6 diet. Aortic and elicited peritoneal macrophage (Mϕ) total cholesterol were 24% (P=0.07) and 25% (P<0.05) lower, respectively, in HSF R=1:1 compared to HSF ω-6 fed mice. MCP-1 mRNA levels and secretion were 37% (P<0.05) and 38% (P<0.05) lower, respectively, in elicited peritoneal Mϕ isolated from HSF R=1:1 compared to HSF ω-6 fed mice. mRNA and protein levels of ATP-binding cassette A1, and mRNA levels of TNFα were significantly lower in elicited peritoneal Mϕ isolated from HSF R=1:1 fed mice, whereas there was no significant effect of diets with different ω-6:EPA+DHA ratios on CD36, Mϕ scavenger receptor 1, scavenger receptor B1 and IL-6 mRNA or protein levels. These data suggest that lower ω-6:EPA+DHA ratio diets lowered some measures of inflammation and Mϕ cholesterol accumulation, which was associated with less aortic lesion formation in LDLr-/- mice.
doi:10.1016/j.atherosclerosis.2008.08.024
PMCID: PMC2826705  PMID: 18842266
ω-6:EPA+DHA ratio; ω-3 fatty acids; atherosclerosis; inflammation; macrophage cholesterol accumulation; LDLr-/- mouse; diet; elicited peritoneal Mϕ
21.  On the potential application of polar and temperate marine microalgae for EPA and DHA production 
AMB Express  2013;3:26.
Long chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are considered essential omega-3 fatty acids in human nutrition. In marine microalgae EPA and/or DHA are allegedly involved in the regulation of membrane fluidity and thylakoid membrane functioning. The cellular content of EPA and DHA may therefore be enhanced at low temperature and irradiance conditions. As a result, polar and cold temperate marine microalgal species might potentially be suitable candidates for commercial EPA and DHA production, given their adaptation to low temperature and irradiance habitats.
In the present study we investigated inter- and intraspecific EPA and DHA variability in five polar and (cold) temperate microalgae. Intraspecific EPA and DHA content did not vary significantly in an Antarctic (Chaetoceros brevis) and a temperate (Thalassiosira weissflogii) centric diatom after acclimation to a range of irradiance levels at two temperatures. Interspecific variability was investigated for two Antarctic (Chaetoceros brevis and Pyramimonas sp. (Prasinophyceae)) and three cold-temperate species (Thalassiosira weissflogii, Emiliania huxleyi (Prymnesiophyceae) and Fibrocapsa japonica (Raphidophyceae)) during exponential growth. Interspecific variability was shown to be much more important than intraspecific variability. Highest relative and absolute levels of DHA were measured in the prymnesiophyte E. huxleyi and the prasinophyte Pyramimonas sp., while levels of EPA were high in the raphidophyte F. japonica and the diatoms C. brevis and T. weissflogii. Yet, no significant differences in LC-PUFA content were found between polar and cold-temperate species. Also, EPA and DHA production rates varied strongly between species. Highest EPA production rate (174 μg L-1 day-1) was found in the Antarctic diatom Chaetoceros brevis, while DHA production was highest in the cold-temperate prymnesiophyte Emiliania huxleyi (164 μg L-1 day-1). We show that, following careful species selection, effective mass cultivation of marine microalgae for EPA and DHA production may be possible under low temperature and irradiance conditions.
doi:10.1186/2191-0855-3-26
PMCID: PMC3671209  PMID: 23673135
Eicosapentaenoic acid; Docosahexaenoic acid; Thalassiosira weissflogii; Chaetoceros brevis; Fibrocapsa japonica; Emiliania huxleyi; Pyramimonas sp.
22.  Docosahexaenoic Acid Suppresses Neuroinflammatory Responses and Induces Heme Oxygenase-1 Expression in BV-2 Microglia: Implications of Antidepressant Effects for Omega-3 Fatty Acids 
Neuropsychopharmacology  2010;35(11):2238-2248.
Accumulating evidence suggests that the pathophysiology of depression might be associated with neuroinflammation, which could be attenuated by pharmacological treatment for depression. Omega-3 polyunsaturated fatty acids (PUFAs) are anti-inflammatory and exert antidepressant effects. The aim of this study was to identify the molecular mechanisms through which docosahexaenoic acid (DHA), the main omega-3 PUFA in the brain, modulates oxidative reactions and inflammatory cytokine production in microglial and neuronal cells. The results of this study showed that DHA reduced expressions of tumor necrosis factor-α, interleukin-6, nitric oxide synthase, and cyclo-oxygenase-2, induced by interferon-γ, and induced upregulation of heme oxygenase-1 (HO-1) in BV-2 microglia. The inhibitory effect of DHA on nitric oxide production was abolished by HO-1 inhibitor zinc protoporphyrin IX. In addition, DHA caused AKT and ERK activation in a time-dependent manner, and the DHA-induced HO-1 upregulation could be attenuated by PI-3 kinase/AKT and MEK/ERK inhibitors. DHA also increased IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation, whereas both nuclear factor-κB and IκB protease inhibitors could inhibit DHA-induced HO-1 expressions. The other major n-3 PUFA, eicosapentaenoic acid, showed similar effects of DHA on inflammation and HO-1 in repeated key experiments. In connecting with inflammation hypothesis of depression and clinical studies supporting the antidepressant effects of omega-3 PUFAs, this study provides a novel implication of the antidepressant mechanisms of DHA.
doi:10.1038/npp.2010.98
PMCID: PMC3055314  PMID: 20668435
omega-3 fatty acids; docosahexaenoic acid (DHA); heme oxygenase-1 (HO-1); antidepressant; microglia; inflammation; biological psychiatry; depression, unipolar/bipolar; molecular & cellular neurobiology; psychopharmacology; omega-3 fatty acids; docosahexaenoic acid (DHA); heme oxygenase-1 (HO-1); antidepressant; microglia, inflammation
23.  Short-Term Long Chain Omega3 Diet Protects from Neuroinflammatory Processes and Memory Impairment in Aged Mice 
PLoS ONE  2012;7(5):e36861.
Regular consumption of food enriched in omega3 polyunsaturated fatty acids (ω3 PUFAs) has been shown to reduce risk of cognitive decline in elderly, and possibly development of Alzheimer's disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most likely active components of ω3-rich PUFAs diets in the brain. We therefore hypothesized that exposing mice to a DHA and EPA enriched diet may reduce neuroinflammation and protect against memory impairment in aged mice. For this purpose, mice were exposed to a control diet throughout life and were further submitted to a diet enriched in EPA and DHA during 2 additional months. Cytokine expression together with a thorough analysis of astrocytes morphology assessed by a 3D reconstruction was measured in the hippocampus of young (3-month-old) and aged (22-month-old) mice. In addition, the effects of EPA and DHA on spatial memory and associated Fos activation in the hippocampus were assessed. We showed that a 2-month EPA/DHA treatment increased these long-chain ω3 PUFAs in the brain, prevented cytokines expression and astrocytes morphology changes in the hippocampus and restored spatial memory deficits and Fos-associated activation in the hippocampus of aged mice. Collectively, these data indicated that diet-induced accumulation of EPA and DHA in the brain protects against neuroinflammation and cognitive impairment linked to aging, further reinforcing the idea that increased EPA and DHA intake may provide protection to the brain of aged subjects.
doi:10.1371/journal.pone.0036861
PMCID: PMC3360741  PMID: 22662127
24.  ω-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cGMP/PKG signaling in cardiac fibroblasts 
Circulation  2011;123(6):584-593.
Background
Omega-3 polyunsaturated fatty acids [ω-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] from fish oil ameliorate cardiovascular diseases. However, little is known about the effects of ω-3 PUFAs on cardiac fibrosis, a major cause of diastolic dysfunction and heart failure. The current study assessed the effects of ω-3 PUFAs on cardiac fibrosis.
Methods and Results
We assessed left ventricular (LV) fibrosis and pathology in mice subjected to transverse aortic constriction (TAC) subsequent to the consumption of a fish oil or a control diet. In control mice, four weeks of TAC induced significant cardiac dysfunction, cardiac fibrosis and cardiac fibroblast activation (proliferation and transformation into myofibroblasts). Dietary supplementation with fish oil prevented TAC-induced cardiac dysfunction and cardiac fibrosis, and blocked cardiac fibroblast activation. In heart tissue, TAC increased active TGF-β1 levels and phosphorylation of Smad2. In isolated adult mouse cardiac fibroblasts, TGF-β1 induced cardiac fibroblast transformation, proliferation, and collagen synthesis. EPA and DHA increased cGMP levels and blocked cardiac fibroblast transformation, proliferation, and collagen synthesis. EPA and DHA blocked phospho-Smad2/3 nuclear translocation. DT3, a PKG inhibitor, blocked the anti-fibrotic effects of EPA and DHA. EPA and DHA increased phospho-eNOS and eNOS protein levels and nitric oxide production.
Conclusions
ω-3 fatty acids prevent cardiac fibrosis and cardiac dysfunction by blocking TGF-β1-induced phospho-Smad2/3 nuclear translocation through activation of the cGMP/PKG pathway in cardiac fibroblasts.
doi:10.1161/CIRCULATIONAHA.110.971853
PMCID: PMC3056077  PMID: 21282499
transverse aortic constriction; ω-3 fatty acids; cardiac fibrosis; cGMP/PKG
25.  Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios 
Background & aims
Diets with low omega (ω)-6 polyunsaturated fatty acids (PUFA) to eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) ratios have been shown to decrease aortic cholesterol accumulation and have been suggested to promote weight loss. The involvement of the liver and gonadal adipose tissue (GAT) in mediating these effects is not well understood. LDL receptor null mice were used to assess the effect of an atherogenic diet with different ω-6:EPA+DHA ratios on weight gain, hepatic and GAT lipid accumulation, and their relationship to atherosclerosis.
Methods
Four groups of mice were fed a high saturated fat and cholesterol diet (HSF ω-6) alone, or with ω-6 PUFA to EPA+DHA ratios up to 1:1 for 32 weeks. Liver and GAT were collected for lipid and gene expression analysis.
Results
The fatty acid profile of liver and GAT reflected the diets. All diets resulted in similar weight gains. Compared to HSF ω-6 diet, the 1:1 ratio diet resulted in lower hepatic total cholesterol (TC) content. Aortic TC was positively correlated with hepatic and GAT TC and triglyceride. These differences were accompanied by significantly lower expression of CD36, ATP-transporter cassette A1, scavenger receptor B class 1, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), acetyl-CoA carboxylase alpha, acyl-CoA synthetase long-chain family member 5, and stearoyl-coenzyme A desaturase 1 (SCD1) in GAT, and HMGCR, SCD1 and cytochrome P450 7A1 in liver.
Conclusions
Dietary ω-6:EPA+DHA ratios did not affect body weight, but lower ω-6:EPA+DHA ratio diets decreased liver lipid accumulation, which possibly contributed to the lower aortic cholesterol accumulation.
doi:10.1016/j.clnu.2013.04.009
PMCID: PMC4005276  PMID: 23672804
Atherosclerosis; Liver; Gonadal adipose tissue; Fatty acids; Lipid metabolism; Omega-3 fatty acids

Results 1-25 (716251)