Search tips
Search criteria

Results 1-25 (1057428)

Clipboard (0)

Related Articles

1.  Elucidation of the RamA Regulon in Klebsiella pneumoniae Reveals a Role in LPS Regulation 
PLoS Pathogens  2015;11(1):e1004627.
Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins.
Author Summary
Bacteria can rapidly evolve under antibiotic pressure to develop resistance, which occurs when target genes mutate, or when resistance-encoding genes are transferred. Alternatively, microbes can simply alter the levels of intrinsic proteins that allow the organism to “buy” time to resist antibiotic pressure. Klebsiella pneumoniae is a pathogen that causes significant blood stream or respiratory infections, but more importantly is a bacterium that is increasingly being reported as multidrug resistant. Our data demonstrate that RamA can trigger changes on the bacterial surface that allow Klebsiella to survive both antibiotic challenge, degradation by host immune peptides and resist phagocytosis. We demonstrate that the molecular basis of increased survival of ramA overexpressing K. pneumoniae, against host-derived factors is associated with RamA-driven alterations of the lipid A moiety of Klebsiella LPS. This modification is likely to be linked to Klebsiella’s ability to resist the host response so that it remains undetected by the immune system. The relevance of our work extends beyond RamA in Klebsiella as other pathogens such as Enterobacter spp and Salmonella spp. also produce this protein. Thus our overarching conclusion is that the intrinsic regulator, RamA perturbs host-microbe and microbe-drug interactions.
PMCID: PMC4310594  PMID: 25633080
2.  RamA, a Member of the AraC/XylS Family, Influences Both Virulence and Efflux in Salmonella enterica Serovar Typhimurium ▿ †  
Journal of Bacteriology  2010;192(6):1607-1616.
The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 lacking a functional ramA or ramR or with plasmid-mediated high-level overexpression of ramA were compared to those of the wild-type parental strain. Inactivation of ramA led to increased expression of 14 SPI-1 genes and decreased expression of three SPI-2 genes, and it altered expression of ribosomal biosynthetic genes and several amino acid biosynthetic pathways. Furthermore, disruption of ramA led to decreased survival within RAW 264.7 mouse macrophages and attenuation within the BALB/c ByJ mouse model. Highly overexpressed ramA led to increased expression of genes encoding multidrug resistance (MDR) efflux pumps, including acrAB, acrEF, and tolC. Decreased expression of 34 Salmonella pathogenicity island (SPI) 1 and 2 genes, decreased SipC production, decreased adhesion to and survival within macrophages, and decreased colonization of Caenorhabditis elegans were also seen. Disruption of ramR led to the increased expression of ramA, acrAB, and tolC, but not to the same level as when ramA was overexpressed on a plasmid. Inactivation of ramR had a more limited effect on pathogenicity gene expression. In silico analysis of a suggested RamA-binding consensus sequence identified target genes, including ramR, acrA, tolC, sipABC, and ssrA. This study demonstrates that the regulation of a mechanism of MDR and expression of virulence genes show considerable overlap, and we postulate that such a mechanism is dependent on transcriptional activator concentration and promoter sensitivity. However, we have no evidence to support the hypothesis that increased MDR via RamA regulation of AcrAB-TolC gives rise to a hypervirulent strain.
PMCID: PMC2832520  PMID: 20081028
3.  ramR Mutations Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium▿  
In the sequenced genome of Salmonella enterica serovar Typhimurium strain LT2, an open reading frame (STM0580) coding for a putative regulatory protein of the TetR family is found upstream of the ramA gene. Overexpression of ramA results in increased expression of the AcrAB efflux pump and, consequently, multidrug resistance (MDR) in several bacterial species. The inactivation of the putative regulatory protein gene upstream of ramA in a susceptible serovar Typhimurium strain resulted in an MDR phenotype with fourfold increases in the MICs of unrelated antibiotics, such as quinolones/fluoroquinolones, phenicols, and tetracycline. The inactivation of this gene also resulted in a fourfold increase in the expression of ramA and a fourfold increase in the expression of the AcrAB efflux pump. These results indicated that the gene encodes a local repressor of ramA and was thus named ramR. In contrast, the inactivation of marR, marA, soxR, and soxS did not affect the susceptibilities of the strain. In quinolone- or fluoroquinolone-resistant strains of serovar Typhimurium overexpressing AcrAB, several point mutations which resulted in amino acid changes or an in-frame shift were identified in ramR; in addition, mutations interrupting ramR with an IS1 element were identified in high-level fluoroquinolone-resistant serovar Typhimurium DT204 strains. One serovar Typhimurium DT104 isolate had a 2-nucleotide deletion in the putative RamR binding site found upstream of ramA. These mutations were confirmed to play a role in the MDR phenotype by complementing the isolates with an intact ramR gene or by inactivating their respective ramA gene. No mutations in the mar or sox region were found in the strains studied. In conclusion, mutations in ramR appear to play a major role in the upregulation of RamA and AcrAB and, consequently, in the efflux-mediated MDR phenotype of serovar Typhimurium.
PMCID: PMC2443889  PMID: 18443112
4.  In Vitro Selection of ramR and soxR Mutants Overexpressing Efflux Systems by Fluoroquinolones as Well as Cefoxitin in Klebsiella pneumoniae▿ 
The relationship between efflux system overexpression and cross-resistance to cefoxitin, quinolones, and chloramphenicol has recently been reported in Klebsiella pneumoniae. In 3 previously published clinical isolates and 17 in vitro mutants selected with cefoxitin or fluoroquinolones, mutations in the potential regulator genes of the AcrAB efflux pump (acrR, ramR, ramA, marR, marA, soxR, soxS, and rob) were searched, and their impacts on efflux-related antibiotic cross-resistance were assessed. All mutants but 1, and 2 clinical isolates, overexpressed acrB. No mutation was detected in the regulator genes studied among the clinical isolates and 8 of the mutants. For the 9 remaining mutants, a mutation was found in the ramR gene in 8 of them and in the soxR gene in the last one, resulting in overexpression of ramA and soxS, respectively. Transformation of the ramR mutants and the soxR mutant with the wild-type ramR and soxR genes, respectively, abolished overexpression of acrB and ramA in the ramR mutants and of soxS in the soxR mutant, as well as antibiotic cross-resistance. Resistance due to efflux system overexpression was demonstrated for 4 new antibiotics: cefuroxime, cefotaxime, ceftazidime, and ertapenem. This study shows that the ramR and soxR genes control the expression of efflux systems in K. pneumoniae and suggests the existence of efflux pumps other than AcrAB and of other loci involved in the regulation of AcrAB expression.
PMCID: PMC3101381  PMID: 21464248
5.  Binding of the RamR Repressor to Wild-Type and Mutated Promoters of the ramA Gene Involved in Efflux-Mediated Multidrug Resistance in Salmonella enterica Serovar Typhimurium 
The transcriptional activator RamA is involved in multidrug resistance (MDR) by increasing expression of the AcrAB-TolC RND-type efflux system in several pathogenic Enterobacteriaceae. In Salmonella enterica serovar Typhimurium (S. Typhimurium), ramA expression is negatively regulated at the local level by RamR, a transcriptional repressor of the TetR family. We here studied the DNA-binding activity of the RamR repressor with the ramA promoter (PramA). As determined by high-resolution footprinting, the 28-bp-long RamR binding site covers essential features of PramA, including the −10 conserved region, the transcriptional start site of ramA, and two 7-bp inverted repeats. Based on the RamR footprint and on electrophoretic mobility shift assays (EMSAs), we propose that RamR interacts with PramA as a dimer of dimers, in a fashion that is structurally similar to the QacR-DNA binding model. Surface plasmon resonance (SPR) measurements indicated that RamR has a 3-fold-lower affinity (KD [equilibrium dissociation constant] = 191 nM) for the 2-bp-deleted PramA of an MDR S. Typhimurium clinical isolate than for the wild-type PramA (KD = 66 nM). These results confirm the direct regulatory role of RamR in the repression of ramA transcription and precisely define how an alteration of its binding site can give rise to an MDR phenotype.
PMCID: PMC3264254  PMID: 22123696
6.  Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA 
The transcriptional activator RamA regulates production of the multidrug resistance efflux AcrAB–TolC system in several Enterobacteriaceae. This study investigated factors that lead to increased expression of ramA.
In order to monitor changes in ramA expression, the promoter region of ramA was fused to a gfp gene encoding an unstable green fluorescence protein (GFP) on the reporter plasmid, pMW82. The ramA reporter plasmid was transformed into Salmonella Typhimurium SL1344 and a ΔacrB mutant. The response of the reporter to subinhibitory concentrations of antibiotics, dyes, biocides, psychotropic agents and efflux inhibitors was measured during growth over a 5 h time period.
Our data revealed that the expression of ramA was increased in a ΔacrB mutant and also in the presence of the efflux inhibitors phenylalanine-arginine-β-naphthylamide, carbonyl cyanide m-chlorophenylhydrazone and 1-(1-naphthylmethyl)-piperazine. The phenothiazines chlorpromazine and thioridazine also increased ramA expression, triggering the greatest increase in GFP expression. However, inducers of Escherichia coli marA and soxS and 12 of 17 tested antibiotic substrates of AcrAB–TolC did not induce ramA expression.
This study shows that expression of ramA is not induced by most substrates of the AcrAB–TolC efflux system, but is increased by mutational inactivation of acrB or when efflux is inhibited.
PMCID: PMC3682690  PMID: 23493314
antibiotic resistance; efflux inhibitors; phenothiazines
7.  Coordinated Regulation of gnd, Which Encodes 6-Phosphogluconate Dehydrogenase, by the Two Transcriptional Regulators GntR1 and RamA in Corynebacterium glutamicum 
Journal of Bacteriology  2012;194(23):6527-6536.
The transcriptional regulation of Corynebacterium glutamicum gnd, encoding 6-phosphogluconate dehydrogenase, was investigated. Two transcriptional regulators, GntR1 and RamA, were isolated by affinity purification using gnd promoter DNA. GntR1 was previously identified as a repressor of gluconate utilization genes, including gnd. Involvement of RamA in gnd expression had not been investigated to date. The level of gnd mRNA was barely affected by the single deletion of ramA. However, gnd expression was downregulated in the ramA gntR1 double mutant compared to that of the gntR1 single mutant, suggesting that RamA activates gnd expression. Two RamA binding sites are found in the 5′ upstream region of gnd. Mutation proximal to the transcriptional start site diminished the gluconate-dependent induction of gnd-lacZ. DNase I footprinting assay revealed two GntR1 binding sites, with one corresponding to a previously proposed site that overlaps with the −10 region. The other site overlaps the RamA binding site. GntR1 binding to this newly identified site inhibits DNA binding of RamA. Therefore, it is likely that GntR1 represses gnd expression by preventing both RNA polymerase and RamA binding to the promoter. In addition, DNA binding activity of RamA was reduced by high concentrations of NAD(P)H but not by NAD(P), implying that RamA senses the redox perturbation of the cell.
PMCID: PMC3497509  PMID: 23024346
8.  Involvement of Regulatory Interactions among Global Regulators GlxR, SugR, and RamA in Expression of ramA in Corynebacterium glutamicum 
Journal of Bacteriology  2013;195(8):1718-1726.
The central carbon metabolism genes in Corynebacterium glutamicum are under the control of a transcriptional regulatory network composed of several global regulators. It is known that the promoter region of ramA, encoding one of these regulators, interacts with its gene product, RamA, as well as with the two other regulators, GlxR and SugR, in vitro and/or in vivo. Although RamA has been confirmed to repress its own expression, the roles of GlxR and SugR in ramA expression have remained unclear. In this study, we examined the effects of GlxR binding site inactivation on expression of the ramA promoter-lacZ fusion in the genetic background of single and double deletion mutants of sugR and ramA. In the wild-type background, the ramA promoter activity was reduced to undetectable levels by the introduction of mutations into the GlxR binding site but increased by sugR deletion, indicating that GlxR and SugR function as the transcriptional activator and repressor, respectively. The marked repression of ramA promoter activity by the GlxR binding site mutations was largely compensated for by deletions of sugR and/or ramA. Furthermore, ramA promoter activity in the ramA-sugR double mutant was comparable to that in the ramA mutant but was significantly higher than that in the sugR mutant. Taken together, it is likely that the level of ramA expression is dynamically balanced by GlxR-dependent activation and repression by RamA along with SugR in response to perturbation of extracellular and/or intracellular conditions. These findings add multiple regulatory loops to the transcriptional regulatory network model in C. glutamicum.
PMCID: PMC3624568  PMID: 23396909
9.  ramR Mutations in Clinical Isolates of Klebsiella pneumoniae with Reduced Susceptibility to Tigecycline▿  
Five Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline (MIC, 2 μg/ml) were analyzed. A gene homologous to ramR of Salmonella enterica was identified in Klebsiella pneumoniae. Sequencing of ramR in the nonsusceptible Klebsiella strains revealed deletions, insertions, and point mutations. Transformation of mutants with wild-type ramR genes, but not with mutant ramR genes, restored susceptibility to tigecycline and repressed overexpression of ramA and acrB. Thus, this study reveals a molecular mechanism for tigecycline resistance in Klebsiella pneumoniae.
PMCID: PMC2876394  PMID: 20350947
10.  Influence of Transcriptional Activator RamA on Expression of Multidrug Efflux Pump AcrAB and Tigecycline Susceptibility in Klebsiella pneumoniae 
Tigecycline is an expanded broad-spectrum antibacterial agent that is active against many clinically relevant species of bacterial pathogens, including Klebsiella pneumoniae. The majority of K. pneumoniae isolates are fully susceptible to tigecycline; however, a few strains that have decreased susceptibility have been isolated. One isolate, G340 (for which the tigecycline MIC is 4 μg/ml and which displays a multidrug resistance [MDR] phenotype), was selected for analysis of the mechanism for this decreased susceptibility by use of transposon mutagenesis with IS903φkan. A tigecycline-susceptible mutant of G340, GC7535, was obtained (tigecycline MIC, 0.25 μg/ml). Analysis of the transposon insertion mapped it to ramA, a gene that was previously identified to be involved in MDR in K. pneumoniae. For GC7535, the disruption of ramA led to a 16-fold decrease in the MIC of tigecycline and also a suppression of MDR. Trans-complementation with plasmid-borne ramA restored the original parental phenotype of decreased susceptibility to tigecycline. Northern blot analysis revealed a constitutive overexpression of ramA that correlated with an increased expression of the AcrAB transporter in G340 compared to that in tigecycline-susceptible strains. Laboratory mutants of K. pneumoniae with decreased susceptibility to tigecycline could be selected at a frequency of approximately 4 × 10−8. These results suggest that ramA is associated with decreased tigecycline susceptibility in K. pneumoniae due to its role in the expression of the AcrAB multidrug efflux pump.
PMCID: PMC549240  PMID: 15728897
11.  Differential Gene Expression by RamA in Ciprofloxacin-Resistant Salmonella Typhimurium 
PLoS ONE  2011;6(7):e22161.
Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM). The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.
PMCID: PMC3139621  PMID: 21811569
12.  AcrAB Multidrug Efflux Pump Regulation in Salmonella enterica serovar Typhimurium by RamA in Response to Environmental Signals* 
The Journal of Biological Chemistry  2008;283(35):24245-24253.
Salmonella enterica serovar Typhimurium has at least nine multidrug efflux pumps. Among these pumps, AcrAB is effective in generating drug resistance and has wide substrate specificity. Here we report that indole, bile, and an Escherichia coli conditioned medium induced the AcrAB pump in Salmonella through a specific regulator, RamA. The RamA-binding sites were located in the upstream regions of acrAB and tolC. RamA was required for indole induction of acrAB. Other regulators of acrAB such as MarA, SoxS, Rob, SdiA, and AcrR did not contribute to acrAB induction by indole in Salmonella. Indole activated ramA transcription, and overproduction of RamA caused increased acrAB expression. In contrast, induction of ramA was not required for induction of acrAB by bile. Cholic acid binds to RamA, and we suggest that bile acts by altering pre-existing RamA. This points to two different AcrAB regulatory modes through RamA. Our results suggest that RamA controls the Salmonella AcrAB-TolC multidrug efflux system through dual regulatory modes in response to environmental signals.
PMCID: PMC2527123  PMID: 18577510
13.  Involvement of the LuxR-Type Transcriptional Regulator RamA in Regulation of Expression of the gapA Gene, Encoding Glyceraldehyde-3-Phosphate Dehydrogenase of Corynebacterium glutamicum▿ †  
Journal of Bacteriology  2008;191(3):968-977.
SugR, RamA, GlxR, GntR1, and a MarR-type transcriptional regulator bind to the promoter region of the gapA gene encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH), essential for glycolysis in Corynebacterium glutamicum. We previously showed that SugR, a transcriptional repressor of phosphotransferase system genes for the sugar transport system, is involved in the downregulation of gapA expression in the absence of sugar. In this study, the role of RamA in the expression of the gapA gene was examined. Comparing the gapA expression and GAPDH activity of a ramA mutant with those of the wild type revealed that RamA is involved in upregulation of gapA expression in glucose-grown cells. DNase I footprint analyses and electrophoretic mobility shift assays revealed that RamA binds with different affinities to three sites in the gapA promoter. lacZ reporter assays with mutated RamA binding sites in the gapA promoter showed that the middle binding site is the most important for RamA to activate gapA expression and that binding of RamA to the gapA promoter activates the gene expression not only in glucose-grown cells but also in acetate-grown cells. Furthermore, RamA also directly activates sugR expression, indicating that two global regulators, RamA and SugR, are coordinately involved in the complex regulation of gapA expression in C. glutamicum.
PMCID: PMC2632084  PMID: 19047347
14.  The Role of RamA on the Development of Ciprofloxacin Resistance in Salmonella enterica Serovar Typhimurium 
PLoS ONE  2011;6(8):e23471.
Active efflux pump is a primary fluoroquinolone resistant mechanism of clinical isolates of Salmonella enterica serovar Typhimurium. RamA is an essential element in producing multidrug resistant (MDR) S.enterica serovar Typhimurium. The aim of the present study was to elucidate the roles of RamA on the development of ciprofloxacin, the first choice for the treatment of salmonellosis, resistance in S. enterica serovar Typhimurium. Spontaneous mutants were selected via several passages of S. enterica serovar Typhimurium CVCC541 susceptible strain (ST) on M-H agar with increasing concentrations of ciprofloxacin (CIP). Accumulation of ciprofloxacin was tested by the modified fluorometric method. The expression levels of MDR efflux pumps were determined by real time RT-PCR. In ST and its spontaneous mutants, the ramA gene was inactivated by insertion of the kan gene and compensated on a recombinant plasmid pGEXΦ(gst-ramA). The mutant prevention concentration (MPC) and mutant frequencies of ciprofloxacin against ST and a spontaneous mutant in the presence, absence and overexpression of RamA were tested. Four spontaneous mutants (SI1-SI4) were obtained. The SI1 (CIP MICs, 0.1 mg/L) without any target site mutation in its quinolone resistant determining regions (QRDRs) and SI3 (CIP MICs, 16 mg/L) harboring the Ser83→Phe mutation in its QRDR of GyrA strains exhibited reduced susceptibility and resistance to multidrugs, respectively. In SI1, RamA was the main factor that controlled the susceptibility to ciprofloxacin by activating MdtK as well as increasing the expression level of acrAB. In SI3, RamA played predominant role in ciprofloxacin resistance via increasing the expression level of acrAB. Likewise, the deficiency of RamA decreased the MPCs and mutant frequencies of ST and SI2 to ciprofloxacin. In conclusion, the expression of RamA promoted the development of ciprofloxacin resistant mutants of S. enterica serovar Typhimurium. The inhibition of RamA could decrease the appearance of the ciprofloxacin resistant mutants.
PMCID: PMC3155569  PMID: 21858134
15.  Regulation of RamA by RamR in Salmonella enterica Serovar Typhimurium: Isolation of a RamR Superrepressor 
Antimicrobial Agents and Chemotherapy  2012;56(11):6037-6040.
RamA is a transcription factor involved in regulating multidrug resistance in Salmonella enterica serovar Typhimurium SL1344. Green fluorescent protein (GFP) reporter fusions were exploited to investigate the regulation of RamA expression by RamR. We show that RamR represses the ramA promoter by binding to a palindromic sequence and describe a superrepressor RamR mutant that binds to the ramA promoter sequence more efficiently, thus exhibiting a ramA inactivated phenotype.
PMCID: PMC3486581  PMID: 22948865
16.  Characterization of RarA, a Novel AraC Family Multidrug Resistance Regulator in Klebsiella pneumoniae 
Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466–4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.
PMCID: PMC3421627  PMID: 22644028
17.  First Emergence of acrAB and oqxAB Mediated Tigecycline Resistance in Clinical Isolates of Klebsiella pneumoniae Pre-Dating the Use of Tigecycline in a Chinese Hospital 
PLoS ONE  2014;9(12):e115185.
Tigecycline is one of the few therapeutic options for treating infections caused by some multi-drug resistant pathogens, such as Klebsiella pneumoniae. However, tigecycline-resistant K. pneumoniae has been discovered recently in China. From 2009 to 2013, nine tigecycline-resistant K. pneumoniae isolates were identified in our hospital. Six of nine strains were identified before using tigecycline. To investigate the efflux-mediated resistance mechanisms of K. pneumoniae, the expression of efflux pump genes (acrA, acrB, tolC, oqxA and oqxB) and pump regulators (acrR, marA, soxS, rarA, rob and ramA) were examined by real-time RT-PCR. Molecular typing of the tigecycline resistant strains was performed. ST11 was the predominant clone of K. pneumoniae strains, while ST1414 and ST1415 were novel STs. Efflux pump inhibitor (EPI)-carbonyl cyanide chlorophenylhydrazone (CCCP) was able to reverse the resistance patterns of 5 resistant K. pneumoniae strains. In comparison with strain A111, a tigecycline-susceptible strain (negative control), we found that the expression levels of efflux pump genes and pump regulators were higher in a majority of resistant strains. Higher expression levels of regulators rarA (2.41-fold, 9.55-fold, 28.44-fold and 18.31-fold, respectively) and pump gene oqxB (3.87-fold, 31.96-fold, 50.61-fold and 29.45-fold, respectively) were observed in four tigecycline resistant strains (A363, A361, A368, A373, respectively). Increased expression of acrB was associated with ramA and marA expression. To our knowledge, studies on tigecycline resistance mechanism in K. pneumoniae are limited especially in China. In our study, we found that both efflux pump AcrAB-TolC and OqxAB contributed to tigecycline resistance in K. pneumoniae isolates.
PMCID: PMC4264890  PMID: 25503276
18.  Correlation of the expression of acrB and the regulatory genes marA, soxS and ramA with antimicrobial resistance in clinical isolates of Klebsiella pneumoniae endemic to New York City 
Nosocomial isolates of Klebsiella pneumoniae resistant to all commonly used antimicrobial agents have emerged in many regions of the world. It is unknown if efflux systems contribute to the multidrug resistance phenotype.
The expression of genes encoding the efflux pump AcrAB and the global regulators MarA, SoxS and RamA were examined and correlated with antimicrobial resistance.
Twenty isolates belonged to the two important clones representing KPC-possessing strains endemic to our region. Virtually all of these isolates had negligible or absent expression of the genes, and resistance to fluoroquinolones and aminoglycosides could be explained by alternative mechanisms. All of these isolates were susceptible to tigecycline. A group of 14 heterogeneous isolates was also examined. There was a correlation between expression of marA with expression of soxS. Only expression of soxS was significantly correlated with expression of acrB. With a background substitution in GyrA, increased expression of acrB and marA appeared to contribute to fluoroquinolone resistance in some isolates. A correlation was noted between expression of soxS and ramA (but not marA and acrB) and tigecycline MICs. Following in vitro exposure to tigecycline, resistance occurred in association with a marked increase in marA and acrB expression in isolates lacking expression of soxS and ramA.
While laboratory-derived tigecycline resistance was associated with increased acrB expression, the variation in tigecycline MICs in clinical isolates was associated only with selected regulator genes. It appears that other mechanisms beyond activation of the acrAB system mediate tigecycline resistance.
PMCID: PMC2707265  PMID: 19457933
efflux; tigecycline; multidrug-resistant
19.  RamA Is an Alternate Activator of the Multidrug Resistance Cascade in Enterobacter aerogenes 
Multidrug resistance (MDR) in Enterobacter aerogenes can be mediated by induction of MarA, which is triggered by certain antibiotics and phenolic compounds. In this study, we identified the gene encoding RamA, a 113-amino-acid regulatory protein belonging to the AraC-XylS transcriptional activator family, in the Enterobacter aerogenes ATCC 13048 type strain and in a clinical multiresistant isolate. Overexpression of RamA induced an MDR phenotype in drug-susceptible Escherichia coli JM109 and E. aerogenes ATCC 13048, as demonstrated by 2- to 16-fold-increased resistance to β-lactams, tetracycline, chloramphenicol, and quinolones, a decrease in porin production, and increased production of AcrA, a component of the AcrAB-TolC drug efflux pump. We show that RamA enhances the transcription of the marRAB operon but is also able to induce an MDR phenotype in a mar-deleted strain. We demonstrate here that RamA is a transcriptional activator of the Mar regulon and is also a self-governing activator of the MDR cascade.
PMCID: PMC434192  PMID: 15215103
20.  Effect of Transcriptional Activators SoxS, RobA, and RamA on Expression of Multidrug Efflux Pump AcrAB-TolC in Enterobacter cloacae 
Antimicrobial Agents and Chemotherapy  2012;56(12):6256-6266.
Control of membrane permeability is a key step in regulating the intracellular concentration of antibiotics. Efflux pumps confer innate resistance to a wide range of toxic compounds such as antibiotics, dyes, detergents, and disinfectants in members of the Enterobacteriaceae. The AcrAB-TolC efflux pump is involved in multidrug resistance in Enterobacter cloacae. However, the underlying mechanism that regulates the system in this microorganism remains unknown. In Escherichia coli, the transcription of acrAB is upregulated under global stress conditions by proteins such as MarA, SoxS, and Rob. In the present study, two clinical isolates of E. cloacae, EcDC64 (a multidrug-resistant strain overexpressing the AcrAB-TolC efflux pump) and Jc194 (a strain with a basal AcrAB-TolC expression level), were used to determine whether similar global stress responses operate in E. cloacae and also to establish the molecular mechanisms underlying this response. A decrease in susceptibility to erythromycin, tetracycline, telithromycin, ciprofloxacin, and chloramphenicol was observed in clinical isolate Jc194 and, to a lesser extent in EcDC64, in the presence of salicylate, decanoate, tetracycline, and paraquat. Increased expression of the acrAB promoter in the presence of the above-described conditions was observed by flow cytometry and reverse transcription-PCR, by using a reporter fusion protein (green fluorescent protein). The expression level of the AcrAB promoter decreased in E. cloacae EcDC64 derivates deficient in SoxS, RobA, and RamA. Accordingly, the expression level of the AcrAB promoter was higher in E. cloacae Jc194 strains overproducing SoxS, RobA, and RamA. Overall, the data showed that SoxS, RobA, and RamA regulators were associated with the upregulation of acrAB, thus conferring antimicrobial resistance as well as a stress response in E. cloacae. In summary, the regulatory proteins SoxS, RobA, and RamA were cloned and sequenced for the first time in this species. The involvement of these proteins in conferring antimicrobial resistance through upregulation of acrAB was demonstrated in E. cloacae.
PMCID: PMC3497196  PMID: 23006750
21.  Salmonella enterica Serovar Typhimurium RamA, Intracellular Oxidative Stress Response, and Bacterial Virulence  
Infection and Immunity  2004;72(2):996-1003.
Escherichia coli and Salmonella enterica serovar Typhimurium have evolved genetic systems, such as the soxR/S and marA regulons, to detoxify reactive oxygen species, like superoxide, which are formed as by-products of metabolism. Superoxide also serves as a microbicidal effector mechanism of the host's phagocytes. Here, we investigate whether regulatory genes other than soxR/S and marA are active in response to oxidative stress in Salmonella and may function as virulence determinants. We identified a bacterial gene, which was designated ramA (342 bp) and mapped at 13.1 min on the Salmonella chromosome, that, when overexpressed on a plasmid in E. coli or Salmonella, confers a pleiotropic phenotype characterized by increased resistance to the redox-cycling agent menadione and to multiple unrelated antibiotics. The ramA gene is present in Salmonella serovars but is absent in E. coli. The gene product displays 37 to 52% homology to the transcriptional activators soxR/S and marA and 80 to 100% identity to a multidrug resistance gene in Klebsiella pneumoniae and Salmonella enterica serovar Paratyphi A. Although a ramA soxR/S double null mutant is highly susceptible to intracellular superoxide generated by menadione and displays decreased Mn-superoxide dismutase activity, intracellular survival of this mutant within macrophage-like RAW 264.7 cells and in vivo replication in the spleens in Ityr mice are not affected. We concluded that despite its role in the protective response of the bacteria to oxidative stress in vitro, the newly identified ramA gene, together with soxR/S, does not play a role in initial replication of Salmonella in the organs of mice.
PMCID: PMC321585  PMID: 14742546
22.  RamA, which controls expression of the MDR efflux pump AcrAB-TolC, is regulated by the Lon protease 
RamA regulates the AcrAB-TolC multidrug efflux system. Using Salmonella Typhimurium, we investigated the stability of RamA and its impact on antibiotic resistance.
To detect RamA, we introduced ramA::3XFLAG::aph into plasmid pACYC184 and transformed this into Salmonella Typhimurium SL1344ramA::cat and lon::aph mutants. An N-terminus-deleted mutant [pACYC184ramA(Δ2-21)::3XFLAG::aph] in which the first 20 amino acids of RamA were deleted was also constructed. To determine the abundance and half-life of FLAG-tagged RamA, we induced RamA with chlorpromazine (50 mg/L) and carried out western blotting using anti-FLAG antibody. Susceptibility to antibiotics and phenotypic characterization of the lon mutant was also carried out.
We show that on removal of chlorpromazine, a known inducer of ramA, the abundance of RamA decreased to pre-induced levels. However, in cells lacking functional Lon, we found that the RamA protein was not degraded. We also demonstrated that the 21 amino acid residues of the RamA N-terminus are required for recognition by the Lon protease. Antimicrobial susceptibility and phenotypic tests showed that the lon mutant was more susceptible to fluoroquinolone antibiotics, was filamentous when observed by microscopy and grew poorly, but showed no difference in motility or the ability to form a biofilm. There was also no difference in the ability of the lon mutant to invade human intestinal cells (INT-407).
In summary, we show that the ATP-dependent Lon protease plays an important role in regulating the expression of RamA and therefore multidrug resistance via AcrAB-TolC in Salmonella Typhimurium.
PMCID: PMC3922155  PMID: 24169580
Salmonella; transcription factors; proteolysis
23.  Role of AcrR and RamA in Fluoroquinolone Resistance in Clinical Klebsiella pneumoniae Isolates from Singapore 
The MICs of ciprofloxacin for 33 clinical isolates of K. pneumoniae resistant to extended-spectrum cephalosporins from three hospitals in Singapore ranged from 0.25 to >128 μg/ml. Nineteen of the isolates were fluoroquinolone resistant according to the NCCLS guidelines. Strains for which the ciprofloxacin MIC was ≥0.5 μg/ml harbored a mutation in DNA gyrase A (Ser83→Tyr, Leu, or IIe), and some had a secondary Asp87→Asn mutation. Isolates for which the MIC was 16 μg/ml possessed an additional alteration in ParC (Ser80→IIe, Trp, or Arg). Tolerance of the organic solvent cyclohexane was observed in 10 of the 19 fluoroquinolone-resistant strains; 3 of these were also pentane tolerant. Five of the 10 organic solvent-tolerant isolates overexpressed AcrA and also showed deletions within the acrR gene. Complementation of the mutated acrR gene with the wild-type gene decreased AcrA levels and produced a two- to fourfold reduction in the fluoroquinolone MICs. None of the organic solvent-tolerant clinical isolates overexpressed another efflux-related gene, acrE. While marA and soxS were not overexpressed, another marA homologue, ramA, was overexpressed in 3 of 10 organic solvent-tolerant isolates. These findings indicate that multiple target and nontarget gene changes contribute to fluoroquinolone resistance in K. pneumoniae. Besides AcrR mutations, ramA overexpression (but not marA or soxS overexpression) was related to increased AcrAB efflux pump expression in this collection of isolates.
PMCID: PMC182603  PMID: 12936981
24.  Experimental identification and characterization of 97 novel npcRNA candidates in Salmonella enterica serovar Typhi 
Nucleic Acids Research  2010;38(17):5893-5908.
We experimentally identified and characterized 97 novel, non-protein-coding RNA candidates (npcRNAs) from the human pathogen Salmonella enterica serovar Typhi (hereafter referred to as S. typhi). Three were specific to S. typhi, 22 were restricted to Salmonella species and 33 were differentially expressed during S. typhi growth. We also identified Salmonella Pathogenicity Island-derived npcRNAs that might be involved in regulatory mechanisms of virulence, antibiotic resistance and pathogenic specificity of S. typhi. An in-depth characterization of S. typhi StyR-3 npcRNA showed that it specifically interacts with RamR, the transcriptional repressor of the ramA gene, which is involved in the multidrug resistance (MDR) of Salmonella. StyR-3 interfered with RamR–DNA binding activity and thus potentially plays a role in regulating ramA gene expression, resulting in the MDR phenotype. Our study also revealed a large number of cis-encoded antisense npcRNA candidates, supporting previous observations of global sense–antisense regulatory networks in bacteria. Finally, at least six of the npcRNA candidates interacted with the S. typhi Hfq protein, supporting an important role of Hfq in npcRNA networks. This study points to novel functional npcRNA candidates potentially involved in various regulatory roles including the pathogenicity of S. typhi.
PMCID: PMC2943607  PMID: 20460466
25.  High-Level Carbapenem Resistance in a Klebsiella pneumoniae Clinical Isolate Is Due to the Combination of blaACT-1 β-Lactamase Production, Porin OmpK35/36 Insertional Inactivation, and Down-Regulation of the Phosphate Transport Porin PhoE 
Antimicrobial Agents and Chemotherapy  2006;50(10):3396-3406.
Clinical isolates of Klebsiella pneumoniae resistant to carbapenems and essentially all other antibiotics (multidrug resistant) are being isolated from some hospitals in New York City with increasing frequency. A highly related pair of K. pneumoniae strains isolated on the same day from one patient in a hospital in New York City were studied for antibiotic resistance. One (KP-2) was resistant to imipenem, meropenem, and sulopenem (MICs of 16 to 32 μg/ml) while the other (KP-1) was susceptible (MIC of 0.5 μg/ml); both contained the blaACT-1, blaSHV-1, and blaTEM-1 β-lactamases. blaACT-1 in both strains was encoded on a large ∼150-kb plasmid. Both isolates contained an identical class 1 integron encoding resistance to aminoglycosides and chloramphenicol. They each had identical insertions in ompK35 and ompK36, resulting in disruption of these key porin genes. The carbapenem-resistant and -susceptible isolates were extensively studied for differences in the structural and regulatory genes for the operons acrRAB, marORAB, romA-ramA, soxRS, micF, micC, phoE, phoBR, rpoS, and hfq. No changes were detected between the isolates except for a significant down-regulation of ompK37, phoB, and phoE in KP-2 as deduced from reverse transcription-PCR analysis of mRNA and polyacrylamide gel electrophoresis separation of outer membrane proteins. Backcross analysis was conducted using the wild-type phoE gene cloned into the vector pGEM under regulation of its native promoter as well as the lacZ promoter following transformation into the resistant KP-2 isolate. The wild-type gene reversed carbapenem resistance only when under control of the heterologous lacZ promoter. In the background of ompK35-ompK36 gene disruption, the up-regulation of phoE in KP-1 apparently compensated for porin loss and conferred carbapenem susceptibility. Down-regulation of phoE in KP-2 may represent the normal state of this gene, or it may have been selected from KP-1 in vivo under antibiotic pressure, generating the carbapenem-resistant clone. This is the first study in the Enterobacteriaceae where expression of the phosphate-regulated PhoE porin has been associated with resistance to antimicrobials. Our results with this pair of Klebsiella clinical isolates highlight the complex and evolving nature of multiple drug resistance in this species.
PMCID: PMC1610099  PMID: 17005822

Results 1-25 (1057428)