PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (474049)

Clipboard (0)
None

Related Articles

1.  Immunohistochemical staining of radixin and moesin in prostatic adenocarcinoma 
Background
Some members of the Protein 4.1 superfamily are believed to be involved in cell proliferation and growth, or in the regulation of these processes. While the expression levels of two members of this family, radixin and moesin, have been studied in many tumor types, to our knowledge they have not been investigated in prostate cancer.
Methods
Tissue microarrays were immunohistochemically stained for either radixin or moesin, with the staining intensities subsequently quantified and statistically analyzed using One-Way ANOVA or nonparametric equivalent with subsequent Student-Newman-Keuls tests for multiple comparisons. There were 11 cases of normal donor prostates (NDP), 14 cases of benign prostatic hyperplasia (BPH), 23 cases of high-grade prostatic intraepithelial neoplasia (HGPIN), 88 cases of prostatic adenocarcinoma (PCa), and 25 cases of normal tissue adjacent to adenocarcinoma (NAC) analyzed in the microarrays.
Results
NDP, BPH, and HGPIN had higher absolute staining scores for radixin than PCa and NAC, but with a significant difference observed between only HGPIN and PCa (p = < 0.001) and HGPIN and NAC (p = 0.001). In the moesin-stained specimens, PCa, NAC, HGPIN, and BPH all received absolute higher staining scores than NDP, but the differences were not significant. Stage 4 moesin-stained PCa had a significantly reduced staining intensity compared to Stage 2 (p = 0.003).
Conclusions
To our knowledge, these studies represent the first reports on the expression profiles of radixin and moesin in prostatic adenocarcinoma. The current study has shown that there were statistically significant differences observed between HGPIN and PCa and HGPIN and NAC in terms of radixin expression. The differences in the moesin profiles by tissue type were not statistically significant. Additional larger studies with these markers may further elucidate their potential roles in prostatic neoplasia progression.
doi:10.1186/1472-6890-11-1
PMCID: PMC3029218  PMID: 21235778
2.  Immunohistochemical Staining of Slit2 in Primary and Metastatic Prostatic Adenocarcinoma1 
Translational Oncology  2011;4(5):314-320.
BACKGROUND: Conflicting roles for Slit2, a protein involved in mediating the processes of cell migration and chemotactic response, have been previously described in prostate cancer. Here we use immunohistochemistry to evaluate the expression of Slit2 in normal donor prostate (NDP), benign prostatic hyperplasia (BPH), high-grade prostatic intraepithelial neoplasia (HGPIN), normal tissue adjacent to prostatic adenocarcinoma (NAC), primary prostatic adenocarcinoma (PCa), and metastatic prostatic adenocarcinoma (Mets). METHODS: Tissue microarrays were immunostained for Slit2. The staining intensities were quantified using automated image analysis software. The data was statistically analyzed using one-way analysis of variance with subsequent Tukey tests for multiple comparisons or a nonparametric equivalent. Eleven cases of NDP, 35 cases of NAC, 15 cases of BPH, 35 cases of HGPIN, 106 cases of PCa, and 37 cases of Mets were analyzed. RESULTS: Specimens of PCa and HGPIN had the highest absolute staining for Slit2. Significant differences were seen between PCa and NDP (P < .05), PCa and NAC (P < .05), HGPIN and NDP (P < .05), and HGPIN and NAC (P < .05). Whereas the average Mets staining was not significantly different from NDP or NAC, several individual Mets cases featured intense staining. CONCLUSIONS: To our knowledge, this represents the first study comparing the immunohistochemical profiles of Slit2 in PCa and Mets to specimens of HGPIN, BPH, NDP, and NAC. These findings suggest that Slit2 expression can be increased in HGPIN, PCa, and Mets, making it a potentially important biomarker for prostate cancer.
PMCID: PMC3162306  PMID: 21966548
3.  Immunohistochemical profiles of claudin-3 in primary and metastatic prostatic adenocarcinoma 
Diagnostic Pathology  2011;6:12.
Background
Claudins are integral membrane proteins that are involved in forming cellular tight junctions. One member of the claudin family, claudin-3, has been shown to be overexpressed in breast, ovarian, and pancreatic cancer. Here we use immunohistochemistry to evaluate its expression in benign prostatic hyperplasia (BPH), prostatic intraepithelial neoplasia (PIN), normal tissue adjacent to prostatic adenocarcinoma (NAC), primary prostatic adenocarcinoma (PCa), and metastatic prostatic adenocarcinoma (Mets).
Methods
Tissue microarrays were immunohistochemically stained for claudin-3, with the staining intensities subsequently quantified and statistically analyzed using a one-way ANOVA with subsequent Tukey tests for multiple comparisons or a nonparametric equivalent. Fifty-three cases of NAC, 17 cases of BPH, 35 cases of PIN, 107 cases of PCa, and 55 cases of Mets were analyzed in the microarrays.
Results
PCa and Mets had the highest absolute staining for claudin-3. Both had significantly higher staining than BPH (p < 0.05 in both cases) and NAC (p < 0.05 in both cases). PIN had a lower, but non-significant, staining score than PCa and Mets, but a statistically higher score than both BPH and NAC (p < 0.05 for both cases). No significant differences were observed between PCa, Mets, and PIN.
Conclusions
To our knowledge, this represents one of the first studies comparing the immunohistochemical profiles of claudin-3 in PCa and NAC to specimens of PIN, BPH, and Mets. These findings provide further evidence that claudin-3 may serve as an important biomarker for prostate cancer, both primary and metastatic, but does not provide evidence that claudin-3 can be used to predict risk of metastasis.
doi:10.1186/1746-1596-6-12
PMCID: PMC3033791  PMID: 21255442
4.  Prognostic significance of peroxiredoxin 1 and ezrin-radixin-moesin-binding phosphoprotein 50 in cholangiocarcinoma 
Human pathology  2012;43(10):1719-1730.
Summary
We performed a comparative proteomic analysis of protein expression profiles in four cholangiocarcinoma (CCA) cell lines: K100, M156, M213, and M139. The H69 biliary cell line was used as a control. Peroxiredoxin 1 (PRX1) and ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) were selected for further validation by immunohistochemistry (IHC) using a CCA tissue microarray (n=301) to assess their prognostic value in this cancer. Both PRX1 and EBP50 were overexpressed in CCA tissues compared with normal liver tissues. Of the 301 CCA cases, overexpression of PRX1 in 103 (34.3%) was associated with an age-related effect in young patients (P = 0.011) and the absence of cholangiocarcinoma in lymphatic vessels and perineural tissues (P = 0.004 and P = 0.037, respectively). Expression of EBP50 correlated with histopathologic type, being higher in 180 (59.8%) of moderately or poorly differentiated tumors (P = 0.039) and was associated with the presence of cholangiocarcinoma in lymphatic and vascular vessels (P< 0.001 and P< 0.001, respectively). The high expression of EBP50 and the low expression of PRX1 correlated with reduced survival by univariate analysis (P = 0.017 and P = 0.048, respectively). Moreover, the impact of PRX1 and EBP50 expression on patient survival was an independent predictor in multivariate analyses (P = 0.004 and P = 0.025, respectively). Therefore, altered expression of PRX1 and EBP50 may be used as prognostic markers incholangiocarcinoma.
doi:10.1016/j.humpath.2011.11.021
PMCID: PMC3386378  PMID: 22446018
Cholangiocarcinoma; EBP50; Proteomics; PRX1; Prognostic marker; Tumor marker
5.  Cell Cycle Dependent Association of EBP50 with Protein Phosphatase 2A in Endothelial Cells 
PLoS ONE  2012;7(4):e35595.
Ezrin-radixin-moesin (ERM)-binding phosphoprotein 50 (EBP50) is a phosphorylatable PDZ domain-containing adaptor protein that is abundantly expressed in epithelium but was not yet studied in the endothelium. We report unusual nuclear localization of EBP50 in bovine pulmonary artery endothelial cells (BPAEC). Immunofluorescent staining and cellular fractionation demonstrated that EBP50 is present in the nuclear and perinuclear region in interphase cells. In the prophase of mitosis EBP50 redistributes to the cytoplasmic region in a phosphorylation dependent manner and during mitosis EBP50 co-localizes with protein phosphatase 2A (PP2A). Furthermore, in vitro wound healing of BPAEC expressing phospho-mimic mutant of EBP50 was accelerated indicating that EBP50 is involved in the regulation of the cell division. Cell cycle dependent specific interactions were detected between EBP50 and the subunits of PP2A (A, C, and Bα) with immunoprecipitation and pull-down experiments. The interaction of EBP50 with the Bα containing form of PP2A suggests that this holoenzyme of PP2A can be responsible for the dephosphorylation of EBP50 in cytokinesis. Moreover, the results underline the significance of EBP50 in cell division via reversible phosphorylation of the protein with cyclin dependent kinase and PP2A in normal cells.
doi:10.1371/journal.pone.0035595
PMCID: PMC3327649  PMID: 22523604
6.  Phosphorylation of EBP50 negatively regulates β-PIX-dependent Rac1 activity in anoikis 
Cell Death and Differentiation  2012;19(6):1027-1037.
We demonstrated a protein kinase C (PKC)-dependent phosphorylation of canine ezrin/radixin/moesin (ERM)-binding phosphoprotein 50 (EBP50) at serine 347/348 by site-directed mutagenesis and a phospho-specific antibody. Cell fractionation and confocal imaging revealed the relocation of EBP50 from the plasma membrane to cytosol that accompanied this phosphorylation event. Increased phosphorylation at these serine residues led to the dissociation of EBP50 from ezrin and β-PIX, which are two upstream regulators of Rac1 activation. Cells overexpressing an EBP50 mutant, mimicking serine 347/348 phosphorylation, became refractory to hepatocyte growth factor-induced cell spreading and scattering, which is normally mediated by Rac1 activation. Detachment of cells from the substratum also elicited an increase in EBP50 phosphorylation, apparently due to counteracting activities of PKC and protein phosphastase 2A, which resulted in decreased Rac1 activation and induction of anoikis. Cells overexpressing an EBP50 mutant defective in serine 347/348 phosphorylation did not undergo apoptosis in suspension culture. These studies reveal a signaling cascade in which different phosphorylation states and subcellular localization of EBP50 regulate Rac1 function.
doi:10.1038/cdd.2012.4
PMCID: PMC3354064  PMID: 22301917
EBP50; Rac1; β-PIX; anoikis; PP2A
7.  The scaffolding protein EBP50 promotes vascular smooth muscle cell proliferation and neointima formation by regulating Skp2 and p21cip1 
Objective
The Ezrin-Radixin-Moesin-Binding Phosphoprotein 50 (EBP50) is a scaffolding protein known to regulate ion homeostasis in the kidney and intestine. Previous work showed that EBP50 expression increases after balloon injury in rat carotids. This study was designed to determine the role of EBP50 on vascular smooth muscle cells (VSMC) proliferation and the development of neointimal hyperplasia.
Methods and Results
Wire injury was performed in wild type (WT) and EBP50 knockout (KO) mice. Two weeks after injury, neointima formation was 80% lower in KO than in WT mice. Proliferation of KO VSMC was significantly lower than WT cells and overexpression of EBP50 increased VSMC proliferation. Akt activity and expression of S-phase kinase protein 2 (Skp2) decreased in KO cells resulting in the stabilization of the cyclin-dependent kinase inhibitor, p21cip1. Consequently, KO cells were arrested in G0/G1 phase. Consistent with these observations, p21cip1 was detected in injured femoral arteries of KO but not WT mice. No differences in apoptosis between WT and KO were observed.
Conclusions
EBP50 is critical for neointima formation and induces VSMC proliferation by decreasing Skp2 stability, thereby accelerating the degradation of the cell cycle inhibitor p21cip1.
doi:10.1161/ATVBAHA.111.235200
PMCID: PMC3241829  PMID: 22034511
proliferation; smooth muscle; EBP50; Skp2; p21cip1
8.  EBP50 Inhibits the Anti-Mitogenic Action of the Parathyroid Hormone Type 1 Receptor in Vascular Smooth Muscle Cells 
Parathyroid hormone-related protein (PTHrP) and the parathyroid hormone type 1 receptor (PTH1R) are important regulators of vascular remodeling. PTHrP expression is associated to increased proliferation of vascular smooth muscle cells (VSMC). In contrast, signaling via the PTH1R inhibits cell growth. The mechanisms regulating the dual effect of PTHrP and PTH1R on VSMC proliferation are only partially understood. In this study we examined the role of the adaptor protein ezrin-radixin-moesin-binding phosphoprotein (EBP50) on PTH1R expression, trafficking, signaling and control of A10 cells proliferation. In normal rat vascular tissues, EBP50 was restricted to the endothelium with little expression in VSMC. EBP50 expression significantly increased in VSMC following angioplasty in parallel with PTHrP. Interestingly, PTHrP was able to induce EBP50 expression. In the clonal rat aortic smooth muscle cell line A10, EBP50 increased the recruitment of PTH1R to the cells membrane and delayed its internalization in response to PTHrP(1-36). This effect required an intact C-terminal motif in the PTH1R. In naive A10 cells, PTHrP(1-36) stimulated cAMP production but not intracellular calcium release. In contrast, PTHrP(1-36) induced both cAMP and calcium signaling in A10 cells over-expressing EBP50. Finally, EBP50 attenuated the induction of p27 kip1 and the antiproliferative effect of PTHrP(1-36). In summary, this study demonstrates the dynamic expression of EBP50 in vessels following injury and the effects of EBP50 on PTH1R function in VSMC. These finding highlight one of the mechanisms leading to increased VSMC proliferation and have important implication in the understanding of the molecular events leading to restenosis.
doi:10.1016/j.yjmcc.2010.08.025
PMCID: PMC2975869  PMID: 20843475
Vascular smooth muscle cell; Parathyroid hormone-related protein; Parathyroid hormone type 1 receptor; Ezrin-radixin-moesin-binding phosphoprotein EBP50; Proliferation; Cyclic AMP; Calcium; Restenosis; Neointima
9.  Aberrant cellular retinol binding protein 1 (CRBP1) gene expression and promoter methylation in prostate cancer 
Journal of Clinical Pathology  2004;57(8):872-876.
Aims: Retinoids are involved in cell growth, differentiation, and carcinogenesis. Their effects depend on cytosolic transport and binding to nuclear receptors. CRBP1 encodes a protein involved in this process. Because altered CRBP1 expression and promoter hypermethylation occur in several tumours, these changes were investigated in prostate tumorigenesis.
Methods: The CRBP1 promoter was assessed by methylation specific polymerase chain reaction on tissue samples from 36 radical prostatectomy specimens (paired normal tissue, adenocarcinoma, and high grade prostatic intraepithelial neoplasia (HGPIN)), 32 benign prostatic hyperplasias (BPHs), and 13 normal prostate tissue samples from cystoprostatectomies. Methylation of DNA extracted from microdissected tissue was examined blindly. CRBP1 expression was assessed by immunohistochemistry on formalin fixed, paraffin wax embedded tissue.
Results: Loss of CRBP1 expression was seen in 15 of 36 adenocarcinomas and 18 of 36 HGPINs. Fifteen adenocarcinomas and nine HGPINs showed overexpression, whereas the remainder showed normal expression. BPH displayed normal expression. No significant associations were found between CRBP1 expression and Gleason score or stage. CRBP1 promoter hypermethylation was found in 17 of 36 adenocarcinomas, three of 35 HGPINs, one of 36 normal prostate tissues from the same patients, none of 32 BPHs, and none of 13 normal prostate tissues from cystoprostatectomies. Loss of expression and hypermethylation of CRBP1 were not significantly associated.
Conclusions: Altered CRBP1 expression and hypermethylation are common in prostate carcinoma, although CRBP1 hypermethylation is not an early event in tumorigenesis. Moreover, both adenocarcinoma and HGPIN show frequent CRBP1 overexpression. The molecular mechanisms underlying altered CRBP1 expression in prostate cancer deserve further study.
doi:10.1136/jcp.2003.014555
PMCID: PMC1770387  PMID: 15280411
CRBP1; prostate cancer; PIN; methylation; immunoexpression
10.  Temporal and Spatial Regulation of Ezrin-Radixin-Moesin-Binding Phosphoprotein-50-kDa (EBP50) during Embryo Implantation in Mouse Uterus 
Embryo implantation is a crucial process for successful pregnancy. To date, the mechanism of embryo implantation remains unclear. Ezrin-radixin-moesin-binding protein-50-kDa (EBP50) is a scaffold protein, which has been shown to play an important role in cancer development. Embryo implantation and cancer follow a similar progression. Thus, in this article, we utilized immunohistochemical staining and western blot analyses to examine the spatiotemporal expression and regulation of EBP50 both in the mouse uterus during embryo implantation as well as in other related models. We found that EBP50 was detected in epithelial cells in all of the groups used in our study. During the peri-implantation period, EBP50 mainly localized in apical membranes. At the implantation site (IS) on day 5 (D5) of pregnancy, EBP50 was mainly expressed in the nuclei of stroma cells, whereas from day 6 to day 8 (D6–D8) of pregnancy, the expression of EBP50 was noted in the cytoplasm of decidual cells. The expression of EBP50 was not significantly different in the pseudopregnant uterus and decreased in the uteri subjected to activation of delayed implantation. Artificial decidualization also decreased EBP50 expression. Thus, the expression levels and location were affected by active blastocysts and decidualization during the window of implantation.
doi:10.3390/ijms131216418
PMCID: PMC3546698  PMID: 23208378
implantation; mouse; uterus; EBP50
11.  Clinical significance of EBP50 overexpression assessed by quantum dot analysis in gastric cancer 
Oncology Letters  2013;5(6):1844-1848.
Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a postsynaptic density-95/disc-large/zonula occludens-1 (PDZ) homologous domain-containing protein that is involved in cell signaling. EBP50 regulates cell apoptosis, proliferation and invasion. In the present study, the prognostic impact factor of EBP50 expression was evaluated using a quantum dot (QD)-based assay and immunohistochemistry (IHC). The EBP50 protein expression in gastric cancer (GC) tissues was evaluated using IHC and QD-IHC. The study included 101 patients with GC (29 females and 72 males, aged 24–81 years), diagnosed and treated at the General Surgery Department of Renmin Hospital of Wuhan University (Wuhan, China) between 2000 and 2005. The survival rate was calculated using the Kaplan-Meier method and log-rank tests. IHC and QD analyses of 101 GC tissue specimens revealed that EBP50-positive tumor cells were frequently present in GC. Increased EBP50 immunostaining was observed in 63 specimens (62.4%). The EBP50 expression levels were correlated with increased tumor size and the male gender. EBP50 was well distributed in the cytoplasm and nuclei of the GC cells. However, EBP50 protein expression exhibited no correlation with age, differentiation, stage or lymph node metastasis. There were no associations between the expression of EBP50 and the mean survival rates (IHC, 50.5 vs. 58.1 months, P>0.05; QD, 55.4 vs. 63.2 months, P>0.05). These findings suggest that EBP50 protein expression is not correlated with the prognosis of patients with GC. QD-IHC and IHC have similar advantages for the detection of EBP50 protein expression.
doi:10.3892/ol.2013.1271
PMCID: PMC3701077  PMID: 23833653
ezrin-radixin-moesin-binding phosphoprotein 50; tumor marker; gastric cancer; quantum dot; prognosis; immunochemistry
12.  Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer 
BMC Genomics  2013;14:898.
Background
Multidrug resistance 1 (MDR1) gene encodes for an ATP binding cassette transporter - P-glycoprotein (P-gp) - involved in chemoresistance to taxanes. MDR1 promoter methylation is frequent in prostate carcinoma (PCa), suggesting an epigenetic regulation but no functional correlation has been established. We aimed to elucidate the epigenetic mechanisms involved in MDR1 deregulation in PCa.
Results
MDR1 promoter methylation and P-gp expression were assessed in 121 PCa, 39 high-grade prostatic intraepithelial neoplasia (HGPIN), 28 benign prostatic hyperplasia (BPH) and 10 morphologically normal prostate tissue (NPT) samples, using quantitative methylation specific PCR and immunohistochemistry, respectively. PCa cell lines were exposed to a DNA methyltransferases inhibitor 5-aza-2′deoxycytidine (DAC) and histone deacetylases inhibitor trichostatin A (TSA). Methylation and histone posttranscriptional modifications status were characterized and correlated with mRNA and protein expression. MDR1 promoter methylation levels and frequency significantly increased from NPTs, to HGPIN and to PCa. Conversely, decreased or absent P-gp immunoexpression was observed in HGPIN and PCa, inversely correlating with methylation levels. Exposure to DAC alone did not alter significantly methylation levels, although increased expression was apparent. However, P-gp mRNA and protein re-expression were higher in cell lines exposed to TSA alone or combined with DAC. Accordingly, histone active marks H3Ac, H3K4me2, H3K4me3, H3K9Ac, and H4Ac were increased at the MDR1 promoter after exposure to TSA alone or combined with DAC.
Conclusion
Our data suggests that, in prostate carcinogenesis, MDR1 downregulation is mainly due to histone post-translational modifications. This occurs concomitantly with aberrant promoter methylation, substantiating the association with P-gp decreased expression.
doi:10.1186/1471-2164-14-898
PMCID: PMC3878566  PMID: 24344919
CpG island hypermethylation; Epigenetic regulation; Histone post-translational activation/repression marks; MDR1; P-gp; Prostate
13.  A Regulated Complex of the Scaffolding Proteins PDZK1 and EBP50 with Ezrin Contribute to Microvillar Organization 
Molecular Biology of the Cell  2010;21(9):1519-1529.
We characterize a ternary complex of PDZK1, EBP50, and ezrin that is regulated by their individual inter- and intramolecular interactions. PDZK1 is shown to undergo cell confluence-dependent nucleocytoplasmic shuttling that regulates the formation of this complex. A functional redundancy between PDZK1 and EBP50 in microvilli maintenance is shown.
PDZK1 and ezrin, radixin, moesin binding phosphoprotein 50 kDa (EBP50) are postsynaptic density 95/disc-large/zona occludens (PDZ)-domain–containing scaffolding proteins found in the apical microvilli of polarized epithelial cells. Binary interactions have been shown between the tail of PDZK1 and the PDZ domains of EBP50, as well as between EBP50 and the membrane–cytoskeletal linking protein ezrin. Here, we show that these molecules form a regulated ternary complex in vitro and in vivo. Complex formation is cooperative because ezrin positively influences the PDZK1/EBP50 interaction. Moreover, the interaction of PDZK1 with EBP50 is enhanced by the occupancy of EBP50's adjacent PDZ domain. The complex is further regulated by location, because PDZK1 shuttles from the nucleus in low confluence cells to microvilli in high confluence cells, and this regulates the formation of the PDZK1/EBP50/ezrin complex in vivo. Knockdown of EBP50 decreases the presence of microvilli, a phenotype that can be rescued by EBP50 re-expression or expression of a PDZK1 chimera that is directly targeted to ezrin. Thus, when appropriately located, PDZK1 can provide a function necessary for microvilli formation normally provided by EBP50. By entering into the ternary complex, PDZK1 can both enhance the scaffolding at the apical membrane as well as augment EBP50's role in microvilli formation.
doi:10.1091/mbc.E10-01-0008
PMCID: PMC2861611  PMID: 20237154
14.  Comparison of annexin II, p63 and α‐methylacyl‐CoA racemase immunoreactivity in prostatic tissue: a tissue microarray study 
Journal of Clinical Pathology  2006;60(7):773-780.
Background
Current ancillary markers for diagnosis in prostate biopsies include p63 and α‐methylacyl‐CoA racemase (AMACR). Annexin II (ANXII), a calcium and phospholipid binding protein, is lost in prostate cancer.
Aims
To investigate ANXII expression in order to assess its utility as a novel diagnostic marker in comparison to p63 and AMACR.
Methods
Using immunohistochemistry on six tissue microarrays, ANXII, p63, and AMACR expression was analysed from 210 radical prostatectomy cases. Staining was evaluated in benign and atrophic glands, high‐grade prostatic intraepithelial neoplasia (HGPIN), and prostatic adenocarcinoma. Separate scores were given for ANXII, AMACR and p63 expression.
Results
Diffuse cytoplasmic expression of ANXII correlated with p63 reactivity in basal cells. Benign glands were positive for ANXII in 286/292 cores (98%) and negative for AMACR in all 292 cores. HGPIN showed heterogeneous expression of AMACR and ANXII. A significantly larger proportion of HGPIN glands were correctly identified as ANXII negative than as positive for AMACR. ANXII loss in prostate cancer was found in 282/320 cores (88%) and correlated with positive AMACR expression (272/320 cores, 85%), which was not statistically significant. There was no statistically significant correlation between ANXII scores and the clinical parameters examined.
Conclusions
Immunohistochemical staining for ANXII is a consistent and reliable marker of prostatic neoplasia. The findings of this study suggest the potential utility of ANXII as a diagnostic aid in prostate cancer histopathology.
doi:10.1136/jcp.2006.040808
PMCID: PMC1995785  PMID: 16916997
annexin A2; α‐methylacyl‐CoA racemase; diagnostic markers, prostatic intraepithelial neoplasia; prostatic neoplasms
15.  Increased expression of Golgi phosphoprotein-3 is associated with tumor aggressiveness and poor prognosis of prostate cancer 
Diagnostic Pathology  2012;7:127.
Background
To investigate the expression of Golgi phosphoprotein-3 (GOLPH3) in prostate cancer and determine its prognostic value.
Methods
Immunohistochemical staining for GOLPH3 was performed on tissue microarrays of 342 prostate patients. The correlation between GOLPH3 expression with its clinicopathologic factors was also analyzed in order to determine its prognostic significance.
Results
GOLPH3 expression of normal prostate tissues, benign prostate hyperplasia, high-grade prostatic intraepithelial neoplasia, and hormone-dependent prostate cancer (HDPC) did not show any statistically significant difference. In contrast, statistically significant difference was reported in moderate/intense GOLPH3 expression in cases diagnosed with HDPC and castration resistant prostate cancer (CRPC) (P < 0.0005). Moderate /intense expression of GOLPH3 was associated with androgen independence (P = 0.012), higher Gleason score (P = 0.017), bone metastasis (P = 0.024), higher baseline prostate-specific antigen (PSA) (P = 0.038), and higher PSA nadir (P = 0.032). A significantly negative correlation was found between moderate/intense GOLPH3 expression and disease-free survival (DFS) (HR = 0.28, P = 0.012) and overall survival (OS) (HR = 0.42, P = 0.027). Univariated analysis indicated that moderate/intense GOLPH3 expression created a significantly prognostic impact in patients with CRPC. On the other hand, multivariate analysis indicated that GOLPH3 was a significantly independent prognostic factor of DFS (P = 0.027) in all prostate cancer patients.
Conclusions
In this study, it was discovered that the overexpression of GOLPH3 is associated with the transition of prostate cancer from hormone sensitive phase to hormone refractory phase. GOLPH3 might be an important prognostic factor of DFS and OS in patients with prostate cancer. In totality, GOLPH3 could be used as a novel candidate in devising a more effective therapeutic strategy to tackle CRPC.
Virtual slides
The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1452541171722856.
doi:10.1186/1746-1596-7-127
PMCID: PMC3488508  PMID: 23006319
Prostate cancer; Castration resistant; Golgi phosphoprotein-3; Prognosis; Tissue microarrays
16.  Diagnostic utility of p501s (prostein) in comparison to prostate specific antigen (PSA) for the detection of metastatic prostatic adenocarcinoma 
Diagnostic Pathology  2007;2:41.
Background
Immunohistochemical detection of prostate specific antigen (PSA) is widely used to identify metastatic prostatic adenocarcinoma. However, PSA may not be expressed in some poorly differentiated prostatic carcinomas and its immunoreactivity has been found in some non-prostatic tissues. P501s (prostein) is a prostate-specific marker that is expressed in the cytoplasm of benign and malignant prostatic glandular cells. It has not been detected in any other normal or malignant tissues. The purpose of this study was to evaluate the expression of P501s in metastatic prostatic adenocarcinoma and compare its expression with PSA.
Methods
Immunohistochemical stains with anti-P501s antibodies were performed on 5-micron sections of tissue microarray (TMA) specimens. The TMA is constructed with normal donor prostates (NDP), prostatic adenocarcinoma (PRCA), non-neoplastic prostatic tissues adjacent to malignant glands (NAT), benign prostatic hyperplasia (BPH), high-grade prostatic neoplasia (PIN), metastatic adenocarcinoma to lymph nodes (MLN), metastatic adenocarcinoma to other sites (MC), and samples of benign testis, colon, adrenal and kidney. The two groups of metastatic lesions were also subjected to stains with antibodies to PSA. A composite score (ranging from 0 to 3) was assigned to score intensity of staining.
Results
Granular staining pattern of p501s was seen in all benign glands (score = 1.77 – 2.1) and malignant acini (score = 1.52) at the apical aspect of cytoplasm, predominantly adjacent to the nuclei. No staining was observed in controls including testis, colon, adrenal and kidney. The MLN group received a score of 1.0, with 10% of cases negative for p501s. The MC cases had a score of 0.64, with 16.7% of case showing loss of p501s expression. Although the metastatic lesions demonstrated similar rate of negative expression with PSA antibody, only 2 MC cases (3.3%) showed simultaneous negative stains for both P501S and PSA.
Conclusion
P501s is an organ specific marker for benign and malignant prostatic epithelial cells. Its characteristic cytoplasmic stain pattern provides an additional valuable immunomarker for detection of metastatic prostatic malignancy, even though the intensity of its expression is reduced, as in the case with PSA. Simultaneous stains with P501S and PSA will greatly improve the detection rate and identify a significant majority of the metastases.
doi:10.1186/1746-1596-2-41
PMCID: PMC2174437  PMID: 17963516
17.  EBP50 inhibits EGF-induced breast cancer cell proliferation by blocking EGFR phosphorylation 
Amino Acids  2012;43(5):2027-2035.
Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.
doi:10.1007/s00726-012-1277-z
PMCID: PMC3472071  PMID: 22476347
EBP50; EGFR; Protein interaction; Phosphorylation; ERK1/2; PDZ; Breast cancer
18.  EBP50 Promotes Focal Adhesion Turnover and Vascular Smooth Muscle Cells Migration 
The Ezrin-Radixin-Moesin-Binding Phosphoprotein 50 (EBP50) is a PDZ-containing scaffolding protein that regulates a variety of physiological functions. In the vasculature, EBP50 promotes neointima formation following arterial injury. In this study the role of EBP50 on vascular smooth muscle cell (VSMC) migration was characterized. The spreading and motility of primary VSMC isolated from EBP50 knockout (KO) mice were significantly reduced compared to wild type (WT) cells. EBP50-null VSMC had fewer and larger focal adhesions than wild type cells. Assembly and disassembly of focal adhesion - assessed by live-cell total internal reflection fluorescence imaging - in response to epidermal growth factor (EGF) were significantly reduced in KO cells. Immunoprecipitation experiments showed that EBP50 interacts with EGF receptor via the PDZ2 domain and with focal adhesion kinase (FAK) via the C-terminal ERM domain. EBP50 promoted the formation of a complex containing both EGF receptor and FAK. Phosphorylation of Tyr-925 of FAK in response to EGF was significantly reduced in KO cell compared to WT cells. The residence time of FAK in focal adhesions - determined by fluorescence recovery after photobleaching - was increased in WT cells. Collectively, these studies indicate that EBP50, by scaffolding EGF receptor and FAK, facilitates activation of FAK, focal adhesion turnover, and migration of VSMC.
doi:10.1016/j.yjmcc.2012.08.022
PMCID: PMC3496052  PMID: 22974528
EBP50; NHERF; FAK; EGF; vascular smooth muscle cell; migration; focal adhesion
19.  NHERF1: molecular brake on the PI3K pathway in breast cancer 
The adaptor protein NHERF1/EBP50 (Na/H exchanger regulatory factor 1/ezrin-radixin-moesin-binding phosphoprotein 50) emerged recently as an important player in breast cancer progression. Consisting of two tandem PDZ domains linked to a carboxyl-terminal ezrin-binding region, NHERF1 assembles macromolecular complexes at the apical membrane of epithelial cells in many epithelial tissues, including the mammary gland. Involved initially in trafficking and regulation of transmembrane ion transporters and G protein-coupled receptors, NHERF1 also couples molecules involved in cell growth, such as the platelet-derived growth factor receptor (PDGFR) and PTEN (phosphatase and tensin homolog deleted on chromosome 10). In the previous issue of Breast Cancer Research, Pan and colleagues show an inhibitory action of NHERF1 on the phosphoinositide-3 kinase (PI3K)/Akt pathway in breast cancer cells via interaction of NHERF1 with PTEN, the physiological antagonist of the PI3K. Additionally, they show that NHERF1 expression confers susceptibility to PDGFR pharmacological inhibition depending on the presence of PTEN tumor suppressor.
doi:10.1186/bcr1992
PMCID: PMC2397532  PMID: 18430260
20.  Tumor suppressor function of ezrin-radixin-moesin-binding phosphoprotein-50 through β-catenin/E-cadherin pathway in human hepatocellular cancer 
AIM: To determine the effect and molecular mechanism of ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) in hepatocellular carcinoma (HCC).
METHODS: Three human HCC cell lines, i.e., SM-MC7721, HepG2 and Hep3B, were used. We transfected the Pbk-CMV-HA-EBP50 plasmid into SMMC7721 cells with Lipofectamine 2000 to overexpress EBP50. Western blotting were performed to determine the effects of the plasmid on EBP50 expression and to detect the expression of β-catenin and E-cadherin before and after the transfection of the plasmid into SMMC7721 cells. In vitro cell proliferation was assessed with a Cell Counting Kit-8 (CCK-8) assay. Cell cycle distribution was assessed with flow cytometry. Invasion and migration ability of before and after the transfection were determined with a transwell assay. Cell apoptosis was demonstrated with Annexin V-FITC. The effect of EBP50 overexpressing on tumor growth in vivo was performed with a xenograft tumor model in nude mice.
RESULTS: The transfection efficiency was confirmed with Western blotting (1.36 ± 0.07 vs 0.81 ± 0.09, P < 0.01). The CCK8 assay demonstrated that the growth of cells overexpressing EBP50 was significantly lower than control cells (P < 0.01). Cell cycle distribution showed there was a G0/G1 cell cycle arrest in cells overexpressing EBP50 (61.3% ± 3.1% vs 54.0% ± 2.4%, P < 0.05). The transwell assay showed that cell invasion and migration were significantly inhibited in cells overexpressing EBP50 compared with control cells (5.8 ± 0.8 vs 21.6 ± 1.3, P < 0.01). Annexin V-FITC revealed that apoptosis was significantly increased in cells overexpressing EBP50 compared with control cells (14.8% ± 2.7% vs 3.4% ± 1.3%, P < 0.05). The expression of β-catenin was downregulated and E-cadherin was upregulated in cells overexpressing EBP50 compared with control cells (0.28 ± 0.07 vs 0.56 ± 0.12, P < 0.05; 0.55 ± 0.08 vs 0.39 ± 0.07, P < 0.05). In vivo tumor growth assay confirmed that up-regulation of EBP50 could obviously slow the growth of HCC derived from SMMC7721 cells (28.9 ± 7.2 vs 70.1 ± 7.2, P < 0.01).
CONCLUSION: The overexpression of EBP50 could inhibit the growth of SMMC7721 cells and promote apoptosis by modulating β-catenin, E-cadherin. EBP50 may serve asa potential therapeutic target in HCC.
doi:10.3748/wjg.v19.i8.1306
PMCID: PMC3587489  PMID: 23483729
Hepatocellular carcinoma; Ezrin-radixin-moesin-binding phosphoprotein-50; Growth; Migration; Invasion
21.  Organ-wide Telomeric Status in Diseased and Disease-free Prostatic Tissues 
The Prostate  2010;70(13):1471-1479.
BACKGROUND
Telomere attrition occurs early in the development of prostatic adenocarcinoma. However, little is known about either telomere status in benign prostatic hyperplasia (BPH), or the spatial and organ-wide distribution of potential telomere aberrations throughout all areas of prostatic glands affected by cancer or BPH.
METHODS
Slot blot titration assay was used to determine telomere DNA content (TC), a proxy for telomere length, in macrodissected tissue consisting of 54 normal samples from 5 disease-free prostates, 128 BPH samples from 4 non-cancerous prostates, and 45 tumor, 73 BPH, and 4 prostatic intraepithelial neoplasia (PIN) samples from 5 cancerous prostates.
RESULTS
Compared to TC in normal prostate samples (n=54; TC mean=0.98), tumor samples displayed telomere attrition (n=45; TC mean=0.67). TC in PIN samples was similar to tumors. BPH samples from cancerous prostates were similar to TC in tumors and also displayed telomere shortening (n=73; TC mean=0.76), whereas BPH samples from non-cancerous prostates displayed longer telomeres (n=128; TC mean=1.06). In prostates affected by adenocarcinoma, areas of potential telomere attrition occurred in histologically normal tissues through the entire gland. However, three-dimensional zoning revealed a pattern of increasing TC as a function of distance from the primary (index) tumor.
CONCLUSIONS
Spatial distributions of TC in prostate specimens indicate a complex “field effect” with varying contributions from both cancer and BPH. The observation that telomere length variations occur in fields of histologically normal tissues surrounding the tumor is of clinical importance, as it may have implications for the diagnosis and focal therapy of prostate cancer.
doi:10.1002/pros.21182
PMCID: PMC3920907  PMID: 20687220
Telomere alterations; prostate cancer; benign prostatic hyperplasia; field cancerization
22.  Serum CXCL13 positively correlates with prostatic disease, prostate-specific antigen and mediates prostate cancer cell invasion, integrin clustering and cell adhesion 
Cancer letters  2009;283(1):29-35.
Chemokines and corresponding receptor interactions have been shown to be involved in prostate cancer (PCa) progression and organ-specific metastasis. We have recently shown that PCa cell lines and primary prostate tumors express CXCR5, which correlates with PCa grade. In this study, we present the first evidence that CXCL13, the only ligand for CXCR5, and IL-6 were significantly elevated in PCa patient serum compared to serum from subjects with benign prostatic hyperplasia (BPH), or high-grade prostatic intraepithelial neoplasia (HGPIN) as well as normal healthy donors (NHD). Serum CXCL13 levels significantly (p < 0.0001) correlated with serum prostate-specific antigen (PSA), whereas serum IL-6 levels significantly (p < 0.0003) correlated with CXCL13 serum levels. CXCL13 was found to be a better predictor of PCa than PSA. In addition, CXCL13 was highly expressed by human bone marrow endothelial (HBME) cells and osteoblasts (OBs), but not osteoclasts (OCs), following treatment with physiologically relevant levels of interleukin-6 (IL-6). We further demonstrate that CXCL13, produced by IL-6-treated HBME cells, was able to induce PCa cell invasion in a CXCR5-dependent manner. CXCL13-mediated PCa cell αvβ3-integrin clustering and adhesion to HBME cells was abrogated by CXCR5 blockade. These results demonstrate that the CXCL13-CXCR5 axis is significantly associated with PCa progression.
doi:10.1016/j.canlet.2009.03.022
PMCID: PMC3600557  PMID: 19375853
chemokine; prostate; integrin; adhesion; invasion
23.  TMPRSS2-ERG Gene Fusion Causing ERG Overexpression Precedes Chromosome Copy Number Changes in Prostate Carcinomas and Paired HGPIN Lesions1 
Neoplasia (New York, N.Y.)  2006;8(10):826-832.
Abstract
TMPRSS2-ETS gene fusions have been found recurrently in prostate carcinomas, but not in the presumed precursor lesion, high-grade prostatic intraepithelial neoplasia (HGPIN). However, HGPIN lesions may share chromosomal changes with prostate cancer. To determine the relative order of genetic events in prostate carcinogenesis, we have analyzed 34 prostate carcinomas, 19 paired HGPIN lesions, 14 benign prostate hyperplasias, and 11 morphologically normal prostatic tissues for TMPRSS2-ERG and TMPRSS2-ETV1 rearrangements and genomic imbalances. TMPRSS2 exon 1 was fused in-frame with ERG exon 4 in 17 of 34 (50%) prostate carcinomas and in 4 of 19 (21%) HGPIN lesions, but in none of controls. The findings were further validated by sequencing analysis and by the real-time polymerase chain reaction quantification of TMPRSS2-ERG fusion transcript and the ERG exons 5/6:exons 1/2 expression ratio. Chromosome copy number changes were detected by comparative genomic hybridization in 42% of clinically confined carcinomas and in none of the 16 HGPIN lesions analyzed. We demonstrate for the first time that the TMPRSS2-ERG fusion gene can be detected in a proportion of HGPIN lesions and that this molecular rearrangement is an early event that may precede chromosome-level alterations in prostate carcinogenesis.
PMCID: PMC1715930  PMID: 17032499
TMPRSS2-ETS fusion oncogenes; prostate cancer; high-grade prostatic intraepithelial neoplasia; chromosomal changes; ERG
24.  Significance of S100A2 and S100A4 Expression in the Progression of Prostate Adenocarcinoma 
Korean Journal of Urology  2010;51(7):456-462.
Purpose
The aim of this study was to investigate the expression pattern of calcium-binding proteins S100A2 and S100A4. We also sought to determine the prognostic value of these markers for patients with prostate adenocarcinoma.
Materials and Methods
Immunohistochemical staining was performed to detect S100A2 and S100A4 expression in 26 tissue samples obtained during transurethral resection from patients with benign prostatic hyperplasia (BPH) and in 67 tissue samples obtained during prostate biopsy and radical prostatectomy from patients with prostate carcinoma. The immunoreactivity of these proteins was stratified on a scale of 0 to 3 and was correlated with the pathologic features of prostate adenocarcinoma.
Results
High expression of S100A2 was observed in the tissue of patients with BPH, whereas low or no expression was observed in prostate cancer (CaP) cells. The protein level of S100A4 was significantly higher in CaP than in BPH cells. The higher level of S100A4 observed in CaP tissue correlated with increasing tumor grade.
Conclusions
Decreased expression of S100A2 and increased expression of S100A4 may be important in the progression of CaP. This finding could aid in identifying aggressive CaP. The simultaneous analysis of S100A2 and S100A4 expression in prostate tissues may be a useful prognostic marker for CaP.
doi:10.4111/kju.2010.51.7.456
PMCID: PMC2907493  PMID: 20664777
Prostatic hyperplasia; Prostatic neoplasms; S100A2 protein, human; S100A4 protein, human
25.  BAX-INTERACTING FACTOR-1 (BIF-1) EXPRESSION IN PROSTATE CANCER 
Clinical genitourinary cancer  2008;6(2):117-121.
Background
Bif-1 protein is a member of the endophilin B family that binds to and activates the pro-apoptotic Bax protein in response to apoptotic signals. Loss of Bif-1 suppresses the intrinsic pathway of apoptosis and promotes tumorigenesis. We examined the expression levels of Bif-1 protein in human prostate cancer.
Methods
Thirty-nine archival tissues specimens of human prostate cancer, and a human prostate cancer tissue microarray containing 19 samples of normal prostate (NR), 26 samples of benign prostatic hyperplasias (BPH), 30 samples of high grade prostatic intraepithelial neoplasia (PIN), and 153 samples of prostate cancer (CA), were selected for immuno-histochemical staining with Bif-1 antibody. The slides were scored by two independent observers.
Results
Non TMA samples: moderate to strong Bif-1 staining was identified in 38 of 39 CA. In 32 cases foci of PIN were identified adjacent to CA. Of these, twenty-nine (91%) showed strong and diffuse Bif-1 staining. BPH, identified in 27 cases, was weakly Bif-1 positive in 89% of cases. TMA samples: 38.6% (59/153) of CA showed moderate-strong Bif-1 expression, and 21.5% (33/153) were Bif-1 negative. Bif-1 expression was moderate-strong in 76.6% (23/30) of PIN. Bif-1 was weak-moderate in 53.8% (14/26) of BPH and negative in 46.1% (12/26) of them. Low-moderate Bif-1 was seen in 89.5% of NR.
Conclusions
The loss of Bif-1 expression in a subset of CAs is in agreement with the proapoptotic function of Bif-1. The significance of the increased Bif-1 in a subgroup of CA and in PIN remains to be determined. It seems that Bif-1 has a role in prostate cancer, providing the rationale for using Bif-1 as a target for prostate anticancer therapy.
doi:10.3816/CGC.2008.n.018
PMCID: PMC2626142  PMID: 18824435
Bif-1; prostate adenocarcinoma; PIN; immunohistochemistry

Results 1-25 (474049)